
Self-adaptive Crossover in Genetic
Programming: The Case of the Tartarus

Problem

Thomas D. Griffiths(B) and Anikó Ekárt

Aston Lab for Intelligent Collectives Engineering (ALICE), Aston University,
Aston Triangle, Birmingham B4 7ET, UK

{grifftd1,a.ekart}@aston.ac.uk

Abstract. The runtime performance of many evolutionary algorithms
depends heavily on their parameter values, many of which are problem
specific. Previous work has shown that the modification of parameter
values at runtime can lead to significant improvements in performance.
In this paper we discuss both the ‘when’ and ‘how ’ aspects of imple-
menting self-adaptation in a Genetic Programming system, focusing on
the crossover operator. We perform experiments on Tartarus Problem
instances and find that the runtime modification of crossover parameters
at the individual level, rather than population level, generate solutions
with superior performance, compared to traditional crossover methods.

Keywords: Self-adaption · Crossover · Tartarus problem

1 Introduction

In the field of Evolutionary Algorithms and specifically Genetic Programming, it
is widely accepted that the on-the-fly modification and adaptation of parameters
values at runtime can lead to improvements in performance [1]. This process of
modifying parameter values can be conceptualised into two distinct processes,
the first: ‘when’ to modify and the second: ‘how’ to modify.

A common approach for deciding ‘when’ to trigger the parameter modifica-
tions, whether they be deterministic [2] or probabilistic [3], is decided by use of
a pre-determined schedule or fixed time interval; we refer to these as episodic
modifications. The primary benefit of episodic methods is that they allow for
a regular and predictable sequence of parameter modifications to be performed
over time without the need for any further interaction.

However, the rigid nature of this approach presents several drawbacks when
utilised on dynamic or multi-dimensional optimisation problems, such as the
Tartarus Problem (TP). An alternative to episodic modification is to create a
mechanism which provides a continual opportunity to modify parameter values
at any time; we refer to this as continuous modification. We therefore propose the
introduction of a self-adaptive crossover bias method, allowing for the continual
modification of individual crossover parameters at runtime.
c© Springer Nature Switzerland AG 2018
A. Auger et al. (Eds.): PPSN 2018, LNCS 11101, pp. 236–246, 2018.
https://doi.org/10.1007/978-3-319-99253-2_19

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-99253-2_19&domain=pdf


Self-adaptive Crossover in Genetic Programming 237

The process of deciding ‘how’ the parameter value is to be modified is often
more complex, this can be divided into two smaller, sequential sub-tasks:

• Deciding the mechanism by which the parameter values are modified,
• Calculating the magnitude of the parameter value modifications.

This division between the mechanism and the magnitude allows for the meth-
ods by which the modifications are made and the impact of those modifications,
to be tuned and controlled separately at runtime. There exist several different
approaches to deciding ‘how’ the parameter values should be modified that are
utilised in Genetic Programming, these can be classified as either determinis-
tic, adaptive or self-adaptive. An outline and comparative taxonomy of these
approaches is presented in Sect. 2.

It is hypothesised that allowing the Genetic Programming system to trig-
ger the parameter modifications ‘as and when they are required’ will reduce the
number of ineffective adaptations being executed, increasing efficiency and allow-
ing for convergence to an optimal solution. The proposed self-adaptive crossover
bias will create a more continuous parameter value modification process, which
is more flexible compared to the rigid, traditional episodic approach, leading to
an increase in solution performance.

In this paper we discuss the differences between adaptive and self-adaptive
parameter modification and implement a self-adaptive crossover bias method
in genetic programming. The paper is organised as follows: Sect. 2 discusses
and defines the differences between adaptation and self-adaptation, presenting
a taxonomy of the two parameter modification approaches. Section 3 describes
the Tartarus Problem and the experimental setup. Section 4 presents the pro-
posed self-adaptive crossover operator and compares the performance with that
of individuals utilising a standard crossover operator. Finally, Sect. 5 addresses
conclusions and future research aspirations on the topic.

2 Parameter Modification Approaches

The parameter modification approaches utilised in genetic programming can be
generally classified into one of three categories [1], being deterministic, adaptive
or self-adaptive1 in nature. The characteristics, flexibility and complexity varies
widely between the three categories of approach.

Deterministic Parameter Modification – The parameter value is modi-
fied on a global level according to a fixed, pre-determined rule. The modifi-
cation receives no feedback from, and is not influenced by, the current status
of the search [4,5].
Adaptive Parameter Modification – The parameter value is modified on
a global level according to a mechanism, which receives input from, and is at
least partly influenced by, the status of the search [6].

1 The descriptive terms ‘Adaptive’ and ‘Self-Adaptive’ are used in the broad general
context of Evolutionary Computation. These terms have distinct meanings in fields
such as Artificial Life; based on strict Ecological and Psychological definitions.



238 T. D. Griffiths and A. Ekárt

Self-adaptive Parameter Modification – The parameter value is modified
on an individual level, where the parameters are encoded into the genome of
an individual in some form. The parameters undergo the same processes of
mutation and recombination as the individuals themselves. The modification
of these parameter values is coupled with the status of the search [7].

In Adaptive Parameter Modification (APM) the mechanism by which the
parameter values are modified is defined in advance, leading to explicit exoge-
nous parameter modification. The performance of APM is only as good as the
information that it receives from the environment, care must be taken to ensure
that the information received is applicable to the selected parameters.

Conversely, in the Self-Adaptive Parameter Modification (SAPM) the way in
which the parameter values are modified is entirely implicit. In this approach the
mutation and recombination processes of the evolutionary cycle itself are used
and exploited. The parameter values are embedded in the representation [8],
leading to an implicit endogenous parameter modification. The performance of
SAPM is closely linked to the choice of evolutionary operators, therefore effective
operator choice is essential. Table 1 outlines a taxonomy of approaches compar-
ing the three methods of deterministic, adaptive and self-adaptive parameter
modification.

Table 1. Taxonomy of parameter modification approaches. (× indicates a relationship.)

Deterministic APM SAPM

Affected by Explicitly-defined mechanisms × ×
State of the search × ×
Operator selection ×

Modifies Population level parameters × ×
Individual level parameters ×

The taxonomy outlined in Table 1 allows for the comparison of the different
parameter modification approaches to be made. Each approach is affected by
a selection of factors, both internal and external, which influence the overall
effectiveness and performance. The self-adaptive approach leads to modifications
to be made at the individual level, in contrast the adaptive and deterministic
approaches both lead to modifications to be made at the global level.

3 The Tartarus Problem

The Tartarus problem is a grid-based optimisation problem [9], which we intro-
duced as a genetic programming benchmark [10]. The problem was chosen due to
the fact that it satisfies many of the desirable benchmark characteristics outlined



Self-adaptive Crossover in Genetic Programming 239

by White et al. [11]. One of the most important characteristics of an effective
benchmark problem is tunable difficulty [12], the ability to create several prob-
lem instances with a tunable and predictable level of difficulty.

A Tartarus instance comprises of an enclosed, non-toroidal n × n grid, a set
number of movable blocks B and a controllable agent, as shown in Fig. 1(a).
Unlike in other grid based problems, such as the Lawnmower problem [13], the
agent is initially unaware of its location and orientation within the environment.
The agent receives input from eight sensors, allowing it to detect both blocks and
the environment boundary in the surrounding eight grid-squares. The goal is to
locate and move the blocks to the environment boundary, as shown in Fig. 1(b).
At the end of a run, the environment is analysed and the agent is awarded a
score, the fitness score, based on its progress in achieving the goal. The agent is
able to change its state by executing a finite number of actions m, chosen from
the following three actions:

(1) turn left, (2) turn right, (3) move forwards one square.

(a) Example Initial State (b) Example Final State

Fig. 1. Example states for the canonical 6 × 6 Tartarus instance.

3.1 Improved State Evaluation

We previously suggested that the original method of evaluating the state of Tar-
tarus instances was insufficient to capture the progress of the agent [10]. The
original method of state evaluation only rewarded individuals who had pushed
blocks all the way to the edges of the grid. This binary success or fail approach
works well for many benchmark problems where the absolute score achieved by a
candidate solution is the only desired success measure. However, for GP, reward-
ing part-way solutions is essential during evolution, so that better solutions can
evolve.

For example, the concentrated instance in Fig. 2(a) is very different from the
dispersed instance in Fig. 2(b). However, under the original evaluation method
[9] both of these states would have the same fitness score of zero. The blocks in
the dispersed instance are visibly closer to the edge of the grid when compared
to the blocks in the concentrated instance. Specifically, it would take a total of 32
movement actions to move the blocks to the edge of the grid in the concentrated
instance (a), but only 27 actions to move the blocks in the dispersed instance (b).



240 T. D. Griffiths and A. Ekárt

(a) Concentrated Instance (b) Dispersed Instance

Fig. 2. Comparison of concentrated and dispersed instances

We proposed an improved method for evaluating the state of a Tartarus
instance that utilises a more granular approach, rewarding blocks which have
moved part-way as well as blocks which have been moved completely to the
edge. This is done by calculating how close each block is to the edge of the
environment, resulting in the following state evaluation SE [10]:

SE = 6 −
12

B∑

i=1

di

B
(
n − 1

) , (1)

where B is the total number of blocks, n is the size of the grid and di is the
distance of block i from an edge in the given instance. The value range of SE
is consistent with the range of the original evaluation method; 0–6, allowing for
direct comparison between the canonical 6 × 6 grid and larger instance sizes.

A score near 0 would indicate that the agent has made no progress towards
moving the blocks to the edge of the environment, or in some cases moved blocks
closer to the centre in a counterintuitive manner. A score of 6 would indicate a
state where all of the blocks in the instance have been successfully moved to the
edges of the environment by the agent. At the end of each generation the agents
use their resultant SE value as their fitness score.

4 Self-adaptive Crossover Operator

For a TP instance of size n= 6, an agent at the standard level of difficulty, D = 1,
is allowed m = 80 movement operations [10]. For linear GP these operations
are encoded as a genome containing m alleles, with each allele corresponding to
one of the three possible agent actions outlined in Sect. 3.

For each individual genome, the aggregate number of move forward one
square (AF), turn left (AL) and turn right (AR) alleles are counted, these values
make up the genome composition. It is important to note that this composition
of the genome does not take into consideration the sequential order of the alleles,
but only the aggregate number of each type of allele present. We hypothesise
that for each Tartarus instance there exist optimal compositions of agent actions,



Self-adaptive Crossover in Genetic Programming 241

which, when used to seed future individuals, will likely lead to an increase in
solution performance.

As the composition of the individual genome is made up of three primary
components, it can be viewed on a ternary plot in order to visualise the mag-
nitude of the components present in the composition. A population of 1000
individuals were generated, corresponding to 697 unique genome compositions.
The population was executed across 100 different TP instances of size n = 6,
and the resultant fitness scores averaged.

Analysis of the data showed there to be a clear divide in the average fitness
scores between individuals who have an approximately equal composition, from
the central region of the ternary plot, and those individuals with an uneven
composition, who lie on the periphery. 80% of the compositions fall within the
central region; here the variation in average fitness scores is low, with values
ranging from 3.3–3.75, as shown in Fig. 3.

Fig. 3. The central 80% of compositions

However, for individuals who have an uneven composition, who fall outside
of this central region; the variation in average fitness scores is high, with values
ranging from 2.6–4.6. This is highlighted most clearly in Fig. 4, showing the
bottom 10% and the top 10% of individual compositions in terms of averaged
fitness score. It can be seen that the top 10% and bottom 10% of compositions
exist in two defined bands surrounding the central region.

Upon further investigation, it was found that increasing the number of move
forward instructions in the genome, relative to number of turn left and turn
right instructions, leads to a noticeable increase in fitness score. This can be
seen most notably in Fig. 3; there is a defined change in fitness scores between
the compositions in the uppermost section of the plot, with higher AF, and the
compositions in the lower section of the plot, with lower AF.



242 T. D. Griffiths and A. Ekárt

(a) Bottom 10% of Compositions (b) Top 10% of Compositions

Fig. 4. Top and bottom 10% of compositions

This is expected behaviour, it is intuitive that compositions containing a high
proportion of turn left or turn right instructions would simply spin around and
not move far from the initial grid location, therefore having a lower score. In a
similar manner, compositions containing a lower but approximately equal num-
ber of turn left and turn right instructions, the impact of these would effectively
be cancelled out, resulting in a lower score.

We postulated that it would be possible to use this information to design a
self-adaptive crossover bias in order to exploit the changes in expected fitness for
different areas of the composition space. This would allow for the introduction
of bias in the generation of new individuals by favouring offspring with certain
compositions. As it is the output of the chosen crossover operator that is affected,
the process of generating new individuals, the proposed self-adaptations can be
incorporated and utilised alongside any traditional crossover approach.

In order to do this, the crossover operator was parameterised at the indi-
vidual level. Each individual was assigned a random target AF value T ′

g during
initialisation, in the range AF = 2

5m − 4
5m, from where the value can adapt

during evolution. The process of adapting the target value is divided into two
stages. In the first stage, the ‘how ’ stage, the target value T ′

g is updated at the
end of generation g, during the evaluation step, according to the performance of
the individual in comparison to previous evaluations:

T′
g =

{
Tg if Fg > Fg-1

Tg + Rg if Fg ≤ Fg-1,
(2)

where Tg is the current target value, Fg and Fg-1 are the current and previous
fitness scores of the individual and Rg is a uniformly distributed random value
in the interval:

[

− AF g

Tg
,
AF g

Tg

]

,



Self-adaptive Crossover in Genetic Programming 243

where AF g is the current AF value in generation g. In the second stage, the
‘when’ stage, the probability of triggering the self-adaptation and implement-
ing the new target value T ′

g into the crossover parameters of the individual is
calculated:

P (T ′
g) =

Tg

G · B · T ′
g

, (3)

where G is the number of generations without an improvement in the fitness
score of the individual and B is the number of blocks present in the instance.

The probability P (T ′
g) is influenced by both the number of generations G

since the actions of the individual led to an improvement in fitness score and
the change between the target values Tg and T ′

g. As G increases or the differ-
ence between Tg and T ′

g increases, the chance that the self-adaptation will be
triggered becomes greater. If the self-adaptation is triggered, at the start of the
next generation, Tg+1 will be initialised with the current value T ′

g.
A population of 100 individuals was generated, each with a genome containing

a random mixture of m = 142 alleles. These individuals were tested on 100
instances of size n = 8. The target AF values T chosen by the individual at
each generation g were averaged. As shown in Fig. 5, over time, the target values
chosen by the individuals within the population stabilise and converge to a small
range of values. Figure 5 also shows the maximum and minimum T values within
the population, over generations, until they converge.

It can be seen that by generation 18 the target values of all the individuals
within the population have converged to approximately AF = 95, for an instance
of size n = 8. This indicates that allowing for the self-adaptation of the target
value T leads to the creation of a crossover operator favouring individuals with
compositions with close to optimal AF values. From Fig. 5 we can conclude that
an AF value close to the optimal value is found.

The utilisation of the proposed self-adaptive crossover bias leads to an
increase in both the overall solution performance and the rate of solution
improvement in the Tartarus Problem. In Fig. 6 the performance of the self-
adaptive crossover bias, averaged over 20 different TP instances of size n = 8, is
plotted against the performance using standard canonical crossover. The range
in fitness values present in the population at each generation is shown by the
shaded areas, with the average score shown as solid lines.

The occurrences of self-adaptations being triggered within a population plot-
ted against the changes in maximum fitness score, on a generation by genera-
tion basis is shown in Fig. 7. The plot shows that there is a strong correlation
between the occurrence of self-adaptations within the population and an increase
in the maximum fitness score achieved. We can conclude that the mechanisms
by which the self-adaptation is calculated and triggered are effective, improving
the performance of individuals in the population through the modification and
manipulation of evolutionary pressures.

Between generation 11 and generation 12, 32% of the individuals in the
population triggered self-adaptations of their target AF value Tn. This led to
an increase of 0.5 in the maximum fitness score of the population, bringing it



244 T. D. Griffiths and A. Ekárt

Fig. 5. Convergence of target AF value T within the population

Fig. 6. Comparison between self-adaptive bias and traditional crossover

from 4.5 to 5.0. This is a substantial increase in the maximum fitness score of
the population, a direct consequence of the self-adaptations carried out by the
individuals.



Self-adaptive Crossover in Genetic Programming 245

Fig. 7. Occurrences of self-adaptation and the maximum fitness score.

5 Conclusion

In this paper we outlined a novel approach to introducing self-adaptation into a
crossover operator bias at the individual level.

The self-adaptation is triggered by the individual as and when required on a
continual basis, rather than according to a pre-defined schedule or episodic time
interval. The introduction of bias into the crossover operator, favouring offspring
with certain compositions leads to convergence to solutions with higher average
fitness scores.

We demonstrated that the individuals within the population were able to
converge on a target parameter to be used by the crossover operator bias. This
crossover bias was successfully utilised in order to generate solutions with higher
average fitness score, when compared to solutions utilising traditional crossover
operators.

The next step is to concentrate on testing the robustness of the proposed self-
adaptation mechanism. Work will be conducted to test the applicability of the
mechanism on other benchmark problems in order to ensure that it is generalis-
able and flexible. The long-term aim is to adapt and improve the self-adaptive
mechanism so that it may be used on real world problems and applications.



246 T. D. Griffiths and A. Ekárt

References

1. Eiben, A.E., Michalewicz, Z., Schoenauer, M., Smith, J.E.: Parameter control in
evolutionary algorithms. In: Lobo, F.G., Lima, C.F., Michalewicz, Z. (eds.) Param-
eter Setting in Evolutionary Algorithms. Studies in Computational Intelligence,
vol. 54, pp. 19–46. Springer, Berlin (2007). https://doi.org/10.1007/978-3-540-
69432-8 2

2. Kirkpatrick, S., Gelatt, C., Vecchi, M.: Optimization by simulated annealing. Sci-
ence 220, 671–680 (1983)

3. Qin, A.K., Suganthan, P.N.: Self-adaptive differential evolution algorithm for
numerical optimization. In: Proceedings of the 2005 IEEE Congress on Evolu-
tionary Computation, vol. 2, pp. 1785–1791. IEEE (2005)

4. Hesser, J., Männer, R.: Towards an optimal mutation probability for genetic algo-
rithms. In: Schwefel, H.-P., Männer, R. (eds.) PPSN 1990. LNCS, vol. 496, pp.
23–32. Springer, Heidelberg (1991). https://doi.org/10.1007/BFb0029727

5. Hansen, N, Ostermeier, A., Gawelczyk, A.: On the adaptation of arbitrary normal
mutation distributions in evolution strategies: the generating set adaptation. In:
Eshelman, L.J. (ed.) Proceedings of the 6th International Conference on Genetic
Algorithms, ICGA 1995, pp. 57–64. Morgan Kaufmann (1995)

6. Hinterding, R., Michalewicz, Z., Peachey, T.C.: Self-adaptive genetic algorithm for
numeric functions. In: Voigt, H.-M., Ebeling, W., Rechenberg, I., Schwefel, H.-P.
(eds.) PPSN 1996. LNCS, vol. 1141, pp. 420–429. Springer, Heidelberg (1996).
https://doi.org/10.1007/3-540-61723-X 1006

7. Bäck, T.: The interaction of mutation rate, selection and self-adaptation within
a genetic algorithm. In: Proceedings of the 2nd Conference on Parallel Problem
Solving from Nature, PPSN II, pp. 85–94 (1992)

8. Dang, D.-C., Lehre, P.K.: Self-adaptation of mutation rates in non-elitist popula-
tions. In: Handl, J., Hart, E., Lewis, P.R., López-Ibáñez, M., Ochoa, G., Paechter,
B. (eds.) PPSN 2016. LNCS, vol. 9921, pp. 803–813. Springer, Cham (2016).
https://doi.org/10.1007/978-3-319-45823-6 75

9. Teller, A.: The evolution of mental models. In: Kinnear Jr, K.E. (ed.) Advances in
Genetic Programming, pp. 199–217 (1994)

10. Griffiths, T.D., Ekárt, A.: Improving the Tartarus problem as a benchmark in
genetic programming. In: McDermott, J., Castelli, M., Sekanina, L., Haasdijk, E.,
Garćıa-Sánchez, P. (eds.) EuroGP 2017. LNCS, vol. 10196, pp. 278–293. Springer,
Cham (2017). https://doi.org/10.1007/978-3-319-55696-3 18

11. White, D.R., et al.: Better GP benchmarks: community survey results and propos-
als. Genet. Program. Evolvable Mach. 14(1), 3–29 (2013)

12. McDermott, J., et al.: Genetic programming needs better benchmarks. In: Soule,
T., et al. (eds.) Proceedings of the 14th International Conference on Genetic and
Evolutionary Computation, GECCO 2012, pp. 791–798 (2012)

13. Koza, J.R.: Scalable learning in genetic programming using automatic function
definition. In: Kinnear Jr, K.E. (ed.) Advances in Genetic Programming, pp. 99–
117 (1994)

https://doi.org/10.1007/978-3-540-69432-8_2
https://doi.org/10.1007/978-3-540-69432-8_2
https://doi.org/10.1007/BFb0029727
https://doi.org/10.1007/3-540-61723-X_1006
https://doi.org/10.1007/978-3-319-45823-6_75
https://doi.org/10.1007/978-3-319-55696-3_18

	Self-adaptive Crossover in Genetic Programming: The Case of the Tartarus Problem
	1 Introduction
	2 Parameter Modification Approaches
	3 The Tartarus Problem
	3.1 Improved State Evaluation

	4 Self-adaptive Crossover Operator
	5 Conclusion
	References




