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Abstract. This paper proposes a novel decomposition-based evolution-
ary algorithm for multi-modal multi-objective optimization, which is the
problem of locating as many as possible (almost) equivalent Pareto opti-
mal solutions. In the proposed method, two or more individuals can be
assigned to each decomposed subproblem to maintain the diversity of
the population in the solution space. More precisely, a child is assigned
to a subproblem whose weight vector is closest to its objective vector, in
terms of perpendicular distance. If the child is close to one of individ-
uals that have already been assigned to the subproblem in the solution
space, the replacement selection is performed based on their scalarizing
function values. Otherwise, the child is newly assigned to the subprob-
lem, regardless of its quality. The effectiveness of the proposed method is
evaluated on seven problems. Results show that the proposed algorithm
is capable of finding multiple equivalent Pareto optimal solutions.

1 Introduction

A multi-objective optimization problem (MOP) is the problem of finding a
solution x = (x1, ..., xD)T ∈ S that minimizes an objective function vector
f : S → R

M . Here, S is the D-dimensional solution space, and R
M is the

M -dimensional objective space. Usually, f consists of M conflicting objective
functions. A solution x 1 is said to dominate x 2 iff fi(x 1) ≤ fi(x 2) for all
i ∈ {1, ...,M} and fi(x 1) < fi(x 2) for at least one index i. If there exists no x
in S such that x dominates x ∗, x ∗ is called a Pareto optimal solution. The set
of all x ∗ is the Pareto optimal solution set, and the set of all f (x ∗) is the Pareto
front. The goal of MOPs is usually to find a set of nondominated solutions that
approximates the Pareto front well in the objective space.

An evolutionary multi-objective optimization algorithm (EMOA) is an effi-
cient population-based optimization method to approximate the Pareto front of
a given MOP in a single run [1]. Although several paradigms of EMOAs (e.g.,
dominance-based EMOAs) have been proposed, decomposition-based EMOAs
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Fig. 1. Illustration of a situation where three solutions are identical or close to each
other in the objective space but are far from each other in the solution space. This
figure was made using [8,13] as reference.

are recently popular in the EMO community. In particular, MOEA/D [18] is
one of the most representative decomposition-based EMOAs [14].

There are multiple equivalent Pareto optimal solutions in some real-world
problems (e.g., space mission design problems [12], rocket engine design prob-
lems [7], and path-planning problems [17]). Figure 1 explains such a situation.
Diverse solutions are helpful for decision-making [3,11–13]. If two or more solu-
tions having (almost) the same objective vector are found, users can make a final
decision according to their preference which cannot be represented by the objec-
tive functions. For example, in Fig. 1, if xa becomes unavailable for some reasons
(e.g., materials shortages and traffic accidents), x b and x c can be candidates for
the final solution instead of xa.

A multi-modal MOP (MMOP) [3,8,17] is the problem of locating as many as
possible (almost) equivalent Pareto optimal solutions. Unlike the general MOPs,
the goal of MMOPs is to find a good approximation of the Pareto-optimal solu-
tion set. For example, in Fig. 1, it is sufficient to find one of xa, x b, and x c for
MOPs, because their objective vectors are almost the same. In contrast, EMOAs
need to find all of xa, x b, and x c for MMOPs. Some EMOAs for MMOPs have
been proposed in the literature (e.g., [3,6,12,13,17]).

While MMOPs can be found in real-world problems [7,12,17], it is likely
that most MOEA/D-type algorithms [14] are not capable of locating multiple
equivalent Pareto optimal solutions. This is because they do not have any explicit
mechanism to maintain the diversity of the population in the solution space. If
the ability to keep solution space diversity in the population is incorporated into
MOEA/D, an efficient multi-modal multi-objective optimizer may be realized.

This paper proposes a novel MOEA/D algorithm with addition and dele-
tion operators (MOEA/D-AD) for multi-modal multi-objective optimization. In
MOEA/D-AD, the population size μ is dynamically changed during the search
process. Multiple individuals that are far from each other in the solution space
can be assigned to the same decomposed single-objective subproblem. Only sim-
ilar individuals in the solution space are compared based on their scalarizing
function values. Thus, MOEA/D-AD maintains the diversity in the population
by performing environmental selection for each subproblem among individuals
that are close to each other in the solution space.
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Algorithm 1. The procedure of MOEA/D-AD
1 t ← 1, initialize the population P = {x 1, ..., xN};

2 for i ∈ {1, ..., N} do Assign x i to the i-th subproblem;
3 while The termination criteria are not met do
4 µ ← |P |;
5 Randomly select r1 and r2 from {1, ..., µ} such that r1 �= r2;
6 Generate the child u by recombining x r1 and x r2 ;
7 Apply the mutation operator to u ;

8 for i ∈ {1, ..., N} do di ← PD(f
′
(u),w i);

9 j ← arg min
i∈{1,...,N}

{di};

10 bwinner ← FALSE and bexplorer ← TRUE;
11 for x ∈ P | x has been assigned to the j-th subproblem do
12 if isNeighborhood(u, x) = TRUE then

13 bexplorer ← FALSE;

14 if g(u|wj) ≤ g(x|wj) then
15 P ← P\{x} and bwinner ← TRUE;

16 if bwinner = TRUE or bexplorer = TRUE then
17 P ← P ∪ {u} and assign u to the j-th subproblem;

18 t ← t + 1;

19 A ← selectSparseSolutions(P);
20 return A;

This paper is organized as follows. Section 2 introduces MOEA/D-AD.
Section 3 describes experimental setup. Section 4 presents experimental results
of MOEA/D-AD, including performance comparison and its analysis. Section 5
concludes this paper with discussions on directions for future work.

2 Proposed MOEA/D-AD

MOEA/D decomposes a given M -objective MOP into N single-objective sub-
problems using a scalarizing function g : RM → R and a set of uniformly dis-
tributed weight vectors W = {w1, ...,wN}, where w i = (wi

1, ..., w
i
M )T for each

i ∈ {1, ..., N}, and
∑M

j=1 wi
j = 1. One individual in the population P is assigned

to each decomposed subproblem. Thus, the population size μ of MOEA/D always
equals N (i.e., μ = N and |P | = |W |).

Algorithm 1 shows the procedure of the proposed MOEA/D-AD for multi-
modal multi-objective optimization. While the number of subproblems N is still
constant in MOEA/D-AD, μ is nonconstant. Although it is ensured that μ ≥ N ,
μ is dynamically changed during the search process (i.e., μ �= N and |P | �=
|W |) unlike MOEA/D. After the initialization of the population (lines 1–2), the
following steps are repeatedly applied until a termination condition is satisfied.
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Algorithm 2. The isNeighborhood(u ,x ) function
/* The population P = {y 1, ..., y µ} */

1 for i ∈ {1, ..., µ} do dEi ← NED(y i,u);

2 Sort individuals based on their distance values such that dE1 ≤ dE2 ≤ ... ≤ dEµ ;
3 for i ∈ {1, ..., L} do
4 if yi = x then return TRUE;

5 return FALSE;

At the beginning of each iteration, parent individuals are selected from the
whole population P (line 5). Unlike the original MOEA/D, the mating selection
is not restricted to neighborhood individuals to generate diverse new solutions.
Then, a child u is generated by applying the variation operators (lines 6–7).

After u has been generated, the environmental selection is performed (lines
8–17). Note that our subproblem selection method (described below) was derived
from MOEA/D-DU [16]. However, unlike MOEA/D-DU, only one subproblem
is updated for each iteration in MOEA/D-AD to preserve the diversity. First,
the perpendicular distance di between the normalized objective vector f ′(u) of
u and w i is calculated for each i ∈ {1, ..., N} (line 8), where PD represents the
perpendicular distance between two input vectors. Here, f ′(u) is obtained as
follows: f ′

k(u) = (fk(u) − fmin
k )/(fmax

k − fmin
k ), where fmin

k = miny∈P{fk(y)},
and fmax

k = maxy∈P{fk(y)} for each k ∈ {1, ...,M}. Then, the j-th subproblem
having the minimum d value is selected (line 9). The environmental selection is
performed only on the j-th subproblem.

The child u is compared to all the individuals that have been assigned to
the j-th subproblem (line 11–15). Two Boolean variables bwinner and bexplorer ∈
{TRUE,FALSE} (line 10) are used for the addition operation of MOEA/D-AD.
More precisely, bwinner represents whether u outperforms at least one individual
belonging to the j-th subproblem regarding the scalarizing function value, and
bexplorer indicates whether u is far from all the individuals assigned to the j-th
subproblem in the solution space. If at least one of bwinner and bexplorer is TRUE,
u enters the population P (lines 16–17).

In line 12 of Algorithm 1, the isNeighborhood(u ,x ) function returns TRUE
if u is close to x in the solution space (otherwise, it returns FALSE). Algorithm
2 shows details of the function, where the NED function returns the normalized
Euclidean distance between two input vectors using the upper and lower bounds
for each variable of a given problem. In Algorithm 2, L (1 ≤ L ≤ μ) is a control
parameter of MOEA/D-AD. First, the normalized Euclidean distance between
each individual in P and u is calculated. Then, all the μ individuals are sorted
based on their distance values in descending order. Finally, if x is within the L
nearest individuals from u among the μ individuals, the function returns TRUE.

If x is in the neighborhood of u in the solution space (line 12), they are com-
pared based on their scalarizing function values (lines 14–15). The environmental
selection is performed only among similar individuals in the solution space in
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Algorithm 3. The selectSparseSolutions(P) function
/* The population P = {x 1, ..., x µ} */

1 P ← selectNondominatedSolutions(P), µ ← |P |, A ← ∅;

2 for i ∈ {1, ..., µ} do bselectedi ← FALSE, Di ← ∞;
3 Randomly select j from {1, ..., µ};

4 A ← A ∪ {x j}, bselectedj ← TRUE;
5 for i ∈ {1, ..., µ} do

6 if bselectedi = FALSE then Di ← min(NED(x i, x j), Di);

7 while |A| < N do

8 j ← arg max
i∈{1,...,µ}|bselectedi =FALSE

Di, A ← A ∪ {x j}, bselectedj ← TRUE;

9 for i ∈ {1, ..., µ} do

10 if bselectedi = FALSE then Di ← min(NED(x i, x j), Di);

11 return A, which is the N or fewer nondominated solutions selected from P ;

order to maintain the diversity of the population. If x is worse than u , x is
removed from P (line 15). This is the deletion operation of MOEA/D-AD.

Since μ is not bounded, P may include a large number of solutions at the
end of the search. This is undesirable in practice because decision-makers are
likely to want to examine only a small number of nondominated solutions that
approximate the Pareto front and the Pareto solution set [18]. To address this
issue, a method of selecting N nondominated solutions is applied to the final
population (line 19). Recall that N denotes the number of subproblems.

Algorithm 3 shows details of the selectSparseSolutions function, which
returns N or less nondominated solutions A. First, nondominated solutions are
selected from P . Then, one individual is randomly selected from P and inserted
into A. Then, a solution having the maximum distance to solutions in A is
repeatedly stored into A. It is expected that a set of nondominated solutions
being far from each other in the solution space are obtained by this procedure.

3 Experimental Settings

Test Problems. We used the following seven two-objective MMOPs: the Two-
On-One problem [10], the Omni-test problem [3], the three SYM-PART problems
[11], and the two SSUF problems [9]. The number of variables D is five for the
Omni-test problem and two for the other problems. In the Two-On-One and
SSUF1 problems, there are two symmetrical Pareto optimal solutions that are
mapped to the same objective vector. In the other problems, Pareto optimal
solutions are regularly distributed. The number of equivalent Pareto optimal
solutions is two for the SSUF3 problem, nine for the three SYM-PART problems,
and 45 for the Omni-test problem.
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Performance Indicators. We used the inverted generational distance (IGD)
[20] and IGDX [19] for performance assessment of EMOAs. Below, A denotes a
set of nondominated solutions of the final population of an EMOA. The IGD and
IGDX metrics require a set of reference points A∗. For A∗ for each problem, we
used 5 000 solutions which were selected from randomly generated 10 000 Pareto-
optimal solutions by using the selectSparseSolutions function (Algorithm 3).

The IGD value is the average distance from each reference solution in A∗ to
its nearest solution in A in the objective space as follows:

IGD(A) =
1

|A∗|

(
∑

z∈A∗
min
x∈A

{
ED

(
f (x ), f (z )

)}
)

,

where ED(x 1,x 2) represents the Euclidean distance between x 1 and x 2.
Similarly, the IGDX value of A is given as follows:

IGDX(A) =
1

|A∗|

(
∑

z∈A∗
min
x∈A

{
ED

(
x , z

)}
)

.

While IGD measures the quality of A in terms of both convergence to the
Pareto front and diversity in the objective space, IGDX evaluates how well
A approximates the Pareto-optimal solution set in the solution space. Thus,
EMOAs that can find A with small IGD and IGDX values are efficient multi-
objective optimizers and multi-modal multi-objective optimizers, respectively. It
should be noted that small IGD values do not always mean small IGDX values.

Setup for EMOAs. We compared MOEA/D-AD with the following five meth-
ods: MO Ring PSO SCD [17], Omni-optimizer [3], NSGA-II [2], MOEA/D [18],
and MOEA/D-DU [16]. Omni-optimizer is a representative EMOA for MMOPs.
MO Ring PSO SCD is a recently proposed PSO algorithm for MMOPs. NSGA-
II and MOEA/D are widely used EMOAs for MOPs. Since the selection method
of the subproblem to be updated in MOEA/D-AD was derived from MOEA/D-
DU, we also included it in our experiments.

Available source code through the Internet were used for algorithm imple-
mentation. For the implementation of MOEA/D-AD, we used the jMetal frame-
work [4]. Source code of MOEA/D-AD can be downloaded from the first author’s
website (https://ryojitanabe.github.io/). The population size μ and the number
of weight vectors N were set to 100 for all the methods. In MOEA/D-AD, μ
is dynamically changed as shown in Fig. 4(a). For a fair comparison, we used
a set of nondominated solutions of the size N = 100 selected from the final
population by using the selectSparseSolutions function (Algorithm 3). Thus, the
EMOAs were compared using the obtained solution sets of the same size (100).
For all the six EMOAs, the number of maximum function evaluations was set
to 30 000, and 31 runs were performed. The SBX crossover and the polynomial
mutation were used in all the EMOAs (except for MO Ring PSO SCD). Their
control parameters were set as follows: pc = 1, ηc = 20, pm = 1/D, and ηm = 20.

https://ryojitanabe.github.io/
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Table 1. Results of the six EMOAs on the seven MMOPs. The tables (a) and (b)
show the mean IGD and IGDX values, respectively. The best and second best data
are represented by the bold and italic font. The numbers in parenthesis indicate the
ranks of the EMOAs. The symbols +, −, and ≈ indicate that a given EMOA performs
significantly better (+), significantly worse (−), and not significantly better or worse
(≈) compared to MOEA/D-AD according to the Wilcoxon rank-sum test with p < 0.05.

MOEA/

D-AD

MO Ring

PSO SCD

Omni-

optimizer

NSGA-II MOEA/D MOEA/

D-DU

(a) IGD

Two-On-One 0.0637 (5) 0.0606≈ (4) 0.0489+ (2) 0.0490+ (3) 0.0450+ (1) 0.0709− (6)

Omni-test 0.0755 (5) 0.1814− (6) 0.0303+ (2) 0.0297+ (1) 0.0517+ (4) 0.0458+ (3)

SYM-PART1 0.0302 (4) 0.0283+ (3) 0.0236+ (2) 0.0210+ (1) 0.0467− (5) 0.0478− (6)

SYM-PART2 0.0305 (3) 0.0312≈ (4) 0.0284+ (2) 0.0229+ (1) 0.0466− (5) 0.0474− (6)

SYM-PART3 0.0307 (2) 0.0323− (3) 0.0343− (4) 0.0228+ (1) 0.0455− (5) 0.0470− (6)

SSUF1 0.0075 (6) 0.0065+ (5) 0.0060+ (4) 0.0055+ (2) 0.0055+ (3) 0.0042+ (1)

SSUF3 0.0190 (5) 0.0106+ (3) 0.0170+ (4) 0.0073+ (1) 0.0629− (6) 0.0082+ (2)

(b) IGDX

Two-On-One 0.0353 (1) 0.0369− (2) 0.0383− (3) 0.1480− (4) 0.2805− (6) 0.2067− (5)

Omni-test 1.3894 (1) 2.2227− (3) 2.0337− (2) 2.5664− (4) 4.3950− (6) 2.9251− (5)

SYM-PART1 0.0686 (1) 0.1482− (2) 3.8027− (3) 7.9287− (5) 9.1551− (6) 5.0426− (4)

SYM-PART2 0.0783 (1) 0.1610− (2) 1.0863− (3) 5.3711− (5) 9.4834− (6) 5.1610− (4)

SYM-PART3 0.1480 (1) 0.4909− (2) 1.3620− (3) 5.8410− (5) 7.3969− (6) 4.6767− (4)

SSUF1 0.0761 (1) 0.0860− (2) 0.0899− (3) 0.1323− (5) 0.2443− (6) 0.1143− (4)

SSUF3 0.0302 (2) 0.0198+ (1) 0.0541− (3) 0.0710− (5) 0.3083− (6) 0.0599− (4)

We used the Tchebycheff function [18] for MOEA/D and MOEA/D-AD as
the scalarizing function. The control parameter L of MOEA/D-AD was set to
L = �0.1μ� (e.g., L = 201 when μ = 2018). According to [16,18], the neighbor-
hood size T of MOEA/D and MOEA/D-DU was set to T = 20. All other param-
eters of MOEA/D-DU and MO Ring PSO SCD were set according to [16,17].

4 Experimental Results

4.1 Performance Comparison

IGD Metric. Table 1 shows the comparison of the EMOAs on the seven prob-
lems. The IGD and IGDX values are reported in Table 1(a) and (b), respectively.

Table 1(a) shows that the performance of NSGA-II regarding the IGD metric
is the best on five problems. MOEA/D and MOEA/D-DU also perform best on
the Two-On-One and SSUF1 problems, respectively. In contrast, MOEA/D-AD
and MO Ring PSO SCD perform poorly on most problems. Note that such a
poor performance of multi-modal multi-objective optimizers for multi-objective
optimization has already been reported in [13,17]. Since multi-modal multi-
objective optimizers try to locate all equivalent Pareto optimal solutions, their
ability to find a good approximation of the Pareto front is usually worse than
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Fig. 2. Distribution of nondominated solutions in the final population of each EMOA
in the objective space on the SYM-PART1 problem. The horizontal and vertical axis
represent f1 and f2, respectively.

that of multi-objective optimizers, which directly approximate the Pareto front.
However, the IGD values achieved by MOEA/D-AD are only 1.3–2.6 times worse
than the best IGD values on all the problems.

IGDX Metric. Table 1(b) indicates that the three multi-modal multi-objective
optimizers (MOEA/D-AD, MO Ring PSO SCD, and Omni-optimizer) have
good performance, regarding the IGDX indicator. In particular, MOEA/D-AD
performs the best on the six MMOPs. MOEA/D-AD shows the second best per-
formance only on the SSUF3 problem. In contrast, the performance of MOEA/D
and MOEA/D-DU regarding the IGDX metric is quite poor. The IGDX values
obtained by MOEA/D are 3.2–121.1 times worse than those by MOEA/D-AD.
Thus, the new mechanism that maintains the solution space diversity in the
population mainly contributes to the effectiveness of MOEA/D-AD.

Distribution of Solutions Found. Figures 2 and 3 show the distribution of
nondominated solutions in the final population of each EMOA in the objective
and solution spaces on the SYM-PART1 problem. Again, we emphasize that
only N = 100 nondominated solutions selected from the final population by
using the selectSparseSolutions function (Algorithm 3) are shown for MOEA/D-
AD in Figs. 2 and 3. Results of a single run with median IGD and IGDX values
among 31 runs are shown in Figs. 2 and 3, respectively.

As shown in Fig. 2, the Pareto front of the SYM-PART1 problem is con-
vex. While the distribution of nondominated solutions found by MOEA/D and
MOEA/D-DU in the objective space is biased to the center of the Pareto front,
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Fig. 3. Distribution of nondominated solutions in the final population of each EMOA
in the solution space on the SYM-PART1 problem. The horizontal and vertical axis
represent x1 and x2, respectively.

that by NSGA-II is uniform. Compared to the result of NSGA-II, nondominated
solutions obtained by MOEA/D-AD and MO Ring PSO SCD are not uniformly
distributed in the objective space. This is because they also take into account
the diversity of the population in the solution space.

The Pareto optimal solutions are on the nine lines in the SYM-PART1 prob-
lem. Figure 3 shows that Omni-optimizer, NSGA-II, MOEA/D, and MOEA/D-
DU fail to locate all the nine equivalent Pareto optimal solution sets. Solutions
obtained by the four methods are only on a few lines. In contrast, MOEA/D-
AD and MO Ring PSO SCD successfully find nondominated solutions on all the
nine lines. In particular, solutions obtained by MOEA/D-AD are more evenly
distributed on the nine lines. Similar results to Figs. 2 and 3 are observed in
other test problems. In summary, our results indicate that MOEA/D-AD is an
efficient method for multi-modal multi-objective optimization.

4.2 Analysis of MOEA/D-AD

Influence of L on the Performance of MOEA/D-AD. MOEA/D-AD
has the control parameter L, which determines the neighborhood size of the
child in the solution space. Generally speaking, it is important to understand
the influence of control parameters on the performance of a novel evolutionary
algorithm. Here, we investigate how L affects the effectiveness of MOEA/D-AD.

Table 2 shows results of MOEA/D-AD with six L values on the seven test
problems. Due to space constraint, only aggregations of statistical testing results
to MOEA/D-AD with L = �0.1μ� are shown here. Intuitively, MOEA/D-AD
with a large L value should perform well regarding the IGD metric because
large L values relax the restriction for the environmental selection and may



258 R. Tanabe and H. Ishibuchi

Table 2. Results of MOEA/D-AD with various L values on the seven MMOPs. The
tables (a) and (b) show aggregations of statistical testing results (+, −, and ≈) of the
IGD and IGDX metrics. Each entry in the table shows the number of problems where
the performance of MOEA/D-AD with each value of L is significantly better (worse)
or has no significant difference from that of MOEA/D-AD with L = 
0.1µ�.

0.1µ 0.05µ 0.2µ 0.3µ 0.4µ 0.5µ

(a) IGD

+ (better) 1 0 0 0 0

− (worse) 0 3 5 5 5

≈ (no sig.) 6 4 2 2 2

(b) IGDX

+ (better) 2 1 0 0 0

− (worse) 3 2 5 6 7

≈ (no sig.) 2 4 2 1 0

improve its ability for multi-objective optimization. However, Table 2(a) shows
that the performance of MOEA/D-AD with a large L value is poor, regarding
the IGD indicator. As pointed out in [15], the solution space diversity may help
MOEA/D-AD to approximate the Pareto front well.

Table 2(b) indicates that the best IGDX values are obtained by L = �0.05μ�
and L = �0.2μ� on two problems and one problem, respectively. Thus, the perfor-
mance of MOEA/D-AD depends on the L value. A control method of L is likely
to be beneficial for MOEA/D-AD. However, MOEA/D-AD with L = �0.1μ�
performs well on most problems. Therefore, L = �0.1μ� can be the first choice.

Adaptive Behavior of MOEA/D-AD. Unlike other MOEA/D-type algo-
rithms, the population size μ and the number of individuals belonging to each
subproblem are adaptively adjusted in MOEA/D-AD.

Figure 4(a) shows the evolution of μ of MOEA/D-AD on the seven prob-
lems. In Fig. 4(a), μ is increased as the search progresses. This is because the
diverse individuals in the solution space are iteratively added in the population.
Recall that the number of equivalent Pareto optimal solutions nsame is 45 for the
Omni-test problem, nine for the three SYM-PART problems, and two for other
problems. Figure 4(a) indicates that the trajectory of μ is problem-dependent.
Ideally, μ should equal nsame × N so that nsame Pareto optimal solutions are
assigned to each of N subproblems. However, the actual μ values are signifi-
cantly larger than the expected values. For example, while the ideal μ value is
200 (2 × 100) on the Two-On-One problem, the actual μ value at the end of the
search is 2 480.

To analyze the reason, we show the number of individuals assigned to each
subproblem at the end of the search on the Two-On-One, Omni-test, and
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SYM-PART1 problems in Fig. 4(b). Figure 4(b) indicates that the distribution
of individuals is not even. More extra individuals are allocated to subproblems
whose indices are close to 50. That is, MOEA/D-AD allocates unnecessary indi-
viduals to most subproblems. If individuals can be evenly assigned to each sub-
problem, the performance of MOEA/D-AD may be improved. An in-depth anal-
ysis of the adaptive behavior of MOEA/D-AD is needed.

Fig. 4. (a) Evolution of the population size µ of MOEA/D-AD. (b) Number of individ-
uals assigned to the j-th subproblem (j ∈ {1, ..., N}) at the end of the search, where
N = 100. Results of a single run with a median IGDX value among 31 runs are shown.

5 Conclusion

We proposed MOEA/D-AD, which is a novel MOEA/D for multi-modal multi-
objective optimization. In order to locate multiple equivalent Pareto optimal
solutions, MOEA/D-AD assigns one or more individuals that are far from
each other in the solution space to each subproblem. We examined the per-
formance of MOEA/D-AD on the seven two-objective problems having equiva-
lent Pareto optimal solutions. Our results indicate that MOEA/D-AD is capa-
ble of finding multiple equivalent Pareto optimal solutions. The results also
show that MOEA/D-AD performs significantly better than Omni-optimizer
and MO Ring PSO SCD, which are representative multi-modal multi-objective
optimizers.

Several interesting directions for future work remain. Any neighborhood cri-
terion (e.g., sharing and clustering [8]) can be introduced in MOEA/D-AD.
Although we used the relative distance-based neighborhood decision (Algo-
rithm 2) in this study, investigating the performance of MOEA/D-AD with
other neighborhood criteria is one future research topic. Also, the effectiveness of
MOEA/D-AD could be improved by using an external archive that stores diverse
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solutions [12]. A more efficient search can be performed by utilizing a decision-
maker’s preference [5]. Incorporating the decision-maker’s preference into the
search process of MOEA/D-AD is an avenue for future work. Since the exist-
ing multi-modal multi-objective test problems are not scalable in the number of
objectives and variables, this paper dealt with only two-objective problems with
up to five variables. Designing scalable test problems is another research topic.
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