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Antonio J. Nebro1,2, Kaisa Miettinen2, and José F. Aldana-Montes1
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Abstract. Over the years, many interactive multiobjective optimiza-
tion methods based on a reference point have been proposed. With a
reference point, the decision maker indicates desirable objective function
values to iteratively direct the solution process. However, when analyzing
the performance of these methods, a critical issue is how to systematically
involve decision makers. A recent approach to this problem is to replace
a decision maker with an artificial one to be able to systematically evalu-
ate and compare reference point based interactive methods in controlled
experiments. In this study, a new artificial decision maker is proposed,
which reuses the dynamics of particle swarm optimization for guiding the
generation of consecutive reference points, hence, replacing the decision
maker in preference articulation. We use the artificial decision maker
to compare interactive methods. We demonstrate the artificial decision
maker using the DTLZ benchmark problems with 3, 5 and 7 objectives to
compare R-NSGA-II and WASF-GA as interactive methods. The exper-
imental results show that the proposed artificial decision maker is useful
and efficient. It offers an intuitive and flexible mechanism to capture the
current context when testing interactive methods for decision making.

Keywords: Multiobjective optimization · Preference articulation
Multiple criteria decision making · Particle swarm optimization

1 Introduction

Interactive multiobjective optimization methods based on a reference point are
very popular techniques [1–3] not only in current research, but also in industry, as
they allow decision makers (DMs) to specify information about their preferences
in an intuitive manner to direct the operation of the optimization algorithms. As
a consequence, the DM is able to learn progressively (at each iteration) about the
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set of (approximated) solutions in the Pareto front of a complex problem, hence
reducing one’s cognitive load [2]. A second advantage of applying interactive
multiobjective optimization methods is that they only need to generate those
solutions interesting for the DM, i.e., that are in the region of interest.

Nevertheless, a critical issue arises when testing and comparing interactive
methods [1,4], since they require the DMs to be involved in the solution process.
Therefore, this involvement makes experiments much more costly than testing by
computational means. In addition, other human factors take part, such as incon-
sistency and variability among decisions, learning curve when facing problems,
and different times in solution processes.

In order to cope with this deficiency, a useful approach is to use artificial
DMs (ADMs) as mechanisms to generate preference information when comparing
interactive methods. Because interactive methods utilize different types of pref-
erence information [3,5], appropriate ADMs are demanded for each type. Indeed,
in comparison with the amount and diversity of existing interactive methods, the
number of ADMs is limited [1]. Interactive methods can be divided into non ad
hoc and ad hoc methods depending on whether the DM can be replaced by a
value function or not, respectively (see, e.g., [1,6]). Reference point based meth-
ods belong to the latter group. However, many popular interactive methods are
based on reference points [2,3], where the DM represents the region of interest
as a vector of desirable objective values.

Recently, in [7] a new ADM has been developed for testing reference point
based interactive methods. It is able to adjust reference points based on informa-
tion about solutions derived so far. The adjustment involves randomness and the
amount of noise decreases during the interactive solution process. The overall
procedure is based on a pre-defined neighborhood of a most preferred solution.

Following this line of research, a novel ADM is proposed here that reuses
the dynamics of particle swarm optimization (PSO) to guide the generation of
reference points, hence, replacing the DM in preference articulation. The idea is
to derive reference points by particle’s movements in the swarm, which evolves
in the objective space. The main contributions of the proposed ADM in this
paper are as follows:

– It offers an intuitive, bio-inspired and flexible mechanism to capture the cur-
rent context in interactive solution processes when tackling multiobjective
optimization problems. At each iteration of the process, nondominated solu-
tions derived so far can be used in generating the new reference point.

– It avoids dependence on the pre-defined target levels for objectives.
– It allows different parameter settings to enhance diversification/intensification

in the generation of new reference points.

The new ADM is tailored for comparing interactive evolutionary reference
point based methods. We demonstrate it on the DTLZ benchmark problems with
3, 5 and 7 objectives and two reference point evolutionary methods R-NSGA-
II [8] and WASF-GA [9]. Thus, we use them as examples of interactive EMOs
(iEMOs). The experimental results show that the proposed ADM is useful and
efficient when compared to the previous one.
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The rest of this paper is organized as follows. Section 2 contains background
concepts and related work. The proposed ADM is described in Sect. 3. Section 4
summarizes experimental results, analysis and discussions. Finally, conclusions
and lines of future work are outlined in Sect. 5.

2 Background

Evolutionary multiobjective optimization methods have been shown to perform
successfully when finding a set of trade-off solution approximations representing
a Pareto front to complex multiobjective optimization problems. Nevertheless,
a common requirement in real-world problems arises in solution process where
not only Pareto front approximations are demanded, but it is desirable to find
preferred solutions or regions that reflect human DM’s desires or tendencies.

Interactive methods are able to focus on an area of interest in the objective
space, in order to find preferred solutions [1]. Examples of ways how a DM
can provide preference information are comparisons of small sets of solutions,
classification or indicating desired trade-offs [1,3,6]. Furthermore, as mentioned
in the introduction, an intuitive type of preference articulation in interactive
methods is based on reference points [2,3], which consist of desirable objective
function values.

The difficulty arises when trying to evaluate and compare interactive methods
based on reference points, since a human DM is required to take part in the
solution process to specify reference points. On the other hand, as stated in
[4], there exists a strong necessity of creating automatic DMs to facilitate the
comparison of different methods.

We consider multiobjective optimization problems of the form

minimize f(x) = (f1(x), . . . , fk(x))T

subject to x = (x1, . . . , xn)T ∈ S,
(1)

where we minimize1 k (k ≥ 2) objective functions fi : S → R on the set S ⊂ R

of feasible solutions (decision vectors). The elements in the objective space R
k

are the objective (function) values z = f(x) = (f1(x), . . . , fk(x))T , usually called
objective vectors. We denote the set of feasible objective vectors by Z = f(S).
The so-called Pareto optimal set of solutions to the problem is defined as:

E =
{
x ∈ S :� ∃ x

′ ∈ S | fi(x
′
) ≤ fi(x), i = 1, · · · , k and f(x

′
) �= f(x)

}
(2)

and the corresponding objective vectors form a Pareto front.

Artificial Decision Maker: In what follows, we refer to the ADM proposed
in [7] as the original ADM. It consists of three main components: steady part,
current context and preference information. We need the concepts of ideal (z∗)
and nadir (znad) objective vectors of the problem to find reference points.

1 Without loss of generality, we use minimization in definitions.
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The former is defined as z∗ = (z∗
1 , . . . , z∗

k)T , where z∗
i = minx∈Sfi(x) for

i = 1, . . . , k, whereas the later is defined as znad = (znad1 , . . . , znadk )T , where
znadi = maxx∈Efi(x) for i = 1, . . . , k. If these vectors are not known a priori,
the ideal objective vectors can be calculated and the nadir estimated [3]. When
applying iEMOS, they can e.g. be estimated from the current population. The
three main components of the ADM are:

– Steady part : This part includes experience and knowledge available at the
beginning of the solution process and remains unchanged in the solution pro-
cess. As an example, the steady part can consist of a region of interest or of
target levels specific to objective functions that are desired to be achieved.

– Current context : This part includes all the knowledge about the problem
which is gained during the solution process by the ADM, for instance, shape
of the Pareto front, trade-offs between the objectives, obtainable objective
function values (e.g., z∗ and znad), etc.

– Preference information: With this part, the ADM expresses its knowledge
during the solution process in order to guide the method towards solutions
that are more preferred by the ADM. Preference information is method-
specific and in this research we consider reference points q = (q1, . . . , qk)T .

3 Artificial Decision Maker Driven by PSO

As mentioned before, we propose an ADM that enables testing interactive meth-
ods, where preference information is given in the form of a reference point. The
proposed ADM utilizes PSO in modifying the current context of the original
ADM and we call it ADM-PSO.

Given an iteration counter t, a reference point is denoted by qt =
(qt,1, . . . , qt,k)T . It is said to be achievable for problem (1), if qt ∈ Z + R

k
+

(where R
k
+ = {y ∈ R

k | yi ≥ 0 for i = 1, . . . , k}), that is, if either qt ∈ Z or
if qt is dominated by a Pareto optimal objective vector in Z. Otherwise, the
reference point is said to be unachievable, that is, not all of its components can
be achieved simultaneously.

By using a reference point qt in the iteration t, an ADM is able to feed
an interactive multiobjective optimization method with preferences. Then the
method can direct the solution process accordingly. If the method is evolution-
ary, it can generate approximations of Pareto optimal solutions oriented to this
specific region of interest. This new set of nondominated solutions can be in turn
used to generate a new reference point qt+1 for the next iteration of the method.
This process can be repeated until a stopping criterion is valid. In our case, we
use a pre-defined point asp to be called ADM-aspiration point and stop once we
get a reference point close enough to it. Intuitively, an additional (single objec-
tive) optimization problem arises in this process, since the new reference point
is to be generated, with a minimum distance to asp. In our case, the current
Pareto front approximation is used as a population to train the implicit learning
model of the optimization method, i.e., the ADM. In this way, the new ADM is
able to operate on the objective space by taking advantage of all the information
provided by the interactive method.



278 C. Barba-González et al.

Keeping this idea in mind, the proposed approach focuses on the use of a
canonical PSO to carry out the generation of new reference points, hence acting
as an ADM which is able to interact with the underlying interactive multiobjec-
tive optimization method. As mentioned earlier, in this study we consider iEMO
methods. The aim is to reuse the biological inspiration modeling a particle’s
dynamics in PSO, to replace DMs when managing their preferences.

A conceptual sketch of this approach is illustrated in Fig. 1, where the new
reference point qt+1 is generated in one movement step of the PSO. It takes into
account the previous reference point qt as well as the objective vectors of the
nondominated solutions in the current Pareto front approximation, provided by
the underlying iEMO.

Fig. 1. Conceptual sketch of an ADM-PSO operation. The new reference point qt+1 is
generated by means of PSO particle’s movement operators.

Among the many existing PSO variants, for simplicity, ADM-PSO is based on
the standard version 2007 [10]. It provides the canonical equations to model the
particle’s movements, which have been adapted to cope with the reference point
generation as follows: Each particle’s position vector p (codifying an objective
vector) is updated at each iteration t as

pt+1 = pt + vt+1, (3)

where pt+1 is a new candidate reference point (pt+1 = qt+1) and vt+1 is the
velocity vector of the particle given by

vt+1 = ω · vt + U t[0, ϕ1] · (lt − pt) + U t[0, ϕ2] · (bt − pt). (4)

In (4), lt is the local best position the particle pt has ever stored and bt is
the position found by the member of its neighborhood that has had the best
performance so far. In ADM-PSO, bt = qt, i.e., it is set as the reference point.

Acceleration coefficients ϕ1 and ϕ2 control the relative effect of the personal
and social best particles and U t is a diagonal matrix with elements distributed
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in the interval [0, ϕi], uniformly at random. Finally, ω ∈ (0, 1) is called the
inertia weight and influences the trade-off between exploitation and exploration.
These parameters can be used to induce additional preference information into
the ADM. In particular, ADM-PSO is able to set the current context (defined
in Sect. 2) by using not only the nearest point to asp (as done by the original
ADM), but all the points (objective vectors of nondominated solutions) in the
Pareto front approximation provided by the iEMO. Consequently, this allows
the ADM-PSO to explore thoroughly the Pareto front in the objective space.

In order to asses the adequacy of the new generated reference points, the
following single objective fitness function is used by ADM-PSO:

d(xq) =

√√√√ k∑
i=1

(fi(xq) − aspi). (5)

In short, the function d(xq) calculates the Euclidean distance between the near-
est point (solution xq) of the Pareto front approximation obtained with the
reference point q, and the point asp, where k is the number of objectives. As
commented before, ADM-PSO aims at minimizing this distance.

Algorithm of ADM-PSO

For the sake of a better understanding, the pseudo-code of ADM-PSO is shown
in Algorithm 1. The first phase corresponds to initialization of parameters, pop-
ulations and initial Pareto set approximations (from line 1 to 11). In this phase,
an initial reference point is also generated (line 12) as done in the original ADM
(see Sect. 3 in [7]). After this, the iterative solution process (line 13) starts with
multiple rounds of the interactive multiobjective optimization method (line 14)
and the corresponding generation of new reference points, by means of PSO (line
16). Each ADM round (lines 13-18) entails a maximum number of iterations
(Imax) in which the iEMO algorithm in question is run until reaching a maxi-
mum number of generations Gmax (line 14). The PSO is then invoked to obtain
a new reference point, which uses the last obtained Pareto set approximation
from the previous step. Before that, an intermediate step (line 15) is computed
to “accommodate” objective vectors in the Pareto front approximation (or non-
dominated points) to the swarm (St+1). At the end, the approximation of the
region of interest found is returned (line 19) and the whole algorithm ends.

ADM-PSO has been developed in the jMetal library of EMOs and following
its architectural style [11] with the aim of taking advantage of all the functionali-
ties provided in this framework: solution types, operators, algorithms, problems,
etc. It is worth noting that the core algorithm has been designed to provide
a general (software) template, so that iEMOs to be tested can be easily con-
figured. As mentioned, the current configuration contains iEMOs R-NSGA-II
and WASF-GA. In this way, a framework for the evaluation and comparison of
iEMOs is available2.
2 https://github.com/KhaosResearch/admpso.

https://github.com/KhaosResearch/admpso
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Algorithm 1. Pseudo-code of ADM-PSO
1: Imax // Maximum number of ADM iterations
2: Gmax // Maximum number of iEMO generations
3: c, m // Genetic operators
4: t ← 0 // ADM iteration counter
5: A // Multiobjective optimization problem
6: S // Maximum swarm size of ADM-PSO
7: ϕ1, ϕ2, ω // PSO specific parameters
8: M // iEMO algorithm(s) tested
9: Pt ← initializePopulation(N) // where N is Population size

10: evaluate(Pt, A)
11: Et ← initializeParetoSet(Pt)
12: qt ← initializeReferencePoint(asp, z∗, znad, wr, pr) // As in original ADM
13: while (t < Imax) AND (asp �= qt) do
14: (Pt+1, Et+1) ← computeiEMO(M,qt, c, m, Pt, A, Gmax) // Evolves iEMO
15: St+1 ← setNewSwarm(S, Et+1) // Generate new swarm from Et+1

16: qt+1 ← computePSO(asp,qt, St+1, ϕ1, ϕ2, ω) // Generate new reference point
17: t ← t + 1
18: end while
19: return Et+1 // Notify Pareto front approximation

4 Experimental Results

In order to demonstrate the validity of the proposed approach, a series of experi-
ments has been conducted to test two iEMOs called WASF-GA [9] and R-NSGA-
II [8]. In the experiments, ADM-PSO generates reference points for the meth-
ods, hence enabling automatic tests and comparisons. For these experiments, a
common framework has been used that comprises of a family of seven DTLZ
benchmark problems [12] with 3, 5 and 7 objectives, summing up to 21 different
problems. For each combination of algorithms and problems, 31 independent
runs were performed.

In these experiments, a set of fixed ADM-aspiration points (asp) was con-
figured for each problem. They are all achievable and calculated by taking into
account the estimated ideal and nadir objective vectors for each problem as
aspi = 2/3 × znadi + z∗

i . It is worth noting that for these problems the ideal
objective vectors are always at the origin (0, . . . , 0), whereas nadir objective vec-
tors were obtained from the worst solutions (ranges) found so far in preliminary
experiments, where algorithmic parameters were tuned as described below. In
this regard, Table 1 shows the nadir objective vectors used with the correspond-
ing asp for each problem, as well as the number of objective functions (k).

In order to enable fair comparisons, WASF-GA and R-NSGA-II were set
using a common parameter setting that consists of a population size N = 100,
external archive size E = 100, a maximum number of (iEMO) generations
Gmax = 20, 000, a crossover SBX with a probability c = 0.9 and a distribu-
tional index 20, a polynomial mutation with a probability m = 0.1, a mutation
distributional index 20, and a binary tournament selection. In the case of R-
NSGA-II, the epsilon parameter was set to 0.0045.
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Table 1. Achievable ADM-aspiration points (asp) and nadir objective vectors used.

Problem k asp znad

DTLZ1 3 (6.7, 26.7, 133.4) (10.0, 40.0, 200.0)

5 (7.0, 26.7, 133.7, 33.6, 100.4) (10.0, 40.0, 200.5, 50.5, 150.5)

7 (7.0, 26.7, 133.7, 33.6, 100.4, 31.0, 67.7) (10.0, 40.0, 200.5, 50.5, 150.5, 46.5, 101.5)

DTLZ2 3 (2.6, 1.4, 1.4) (4.0, 2.0, 2.0)

5 (2.6, 1.4, 1.4, 1.4, 1.4) (4.0, 2.0, 2.0, 2.0, 2.0)

7 (2.6, 1.4, 1.4, 1.4, 1.4, 1.4, 1.4) (4.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0)

DTLZ3 3 (17.0, 122.0, 38.7) (25.5, 183.0, 58.0)

5 (1.0, 19.0, 1.0, 667.0, 668) (1.5, 28.5, 1.5, 999.0, 999.5)

7 (17.0, 122.0, 40.0, 40.0, 667.0, 668.0, 667.0) (25.5, 183.0, 60.0, 60.0, 999.0, 999.5, 999.0)

DTLZ4 3 (1.4, 1.4, 1.4) (2.0, 2.0, 2.0)

5 (1.4, 1.4, 1.4, 1.4, 1.4) (2.0, 2.0, 2.0, 2.0, 2.0)

7 (1.4, 1.4, 1.4, 1.4, 1.4, 1.4, 1.4) (2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0)

DTLZ5 3 (1.4, 1.4, 1.4) (2.0, 2.0, 2.0)

5 (1.4, 1.4, 3.0, 3.0, 1.7) (2.0, 2.0, 3.0, 3.0, 2.5)

7 (1.4, 1.4, 1.4, 1.4, 1.0) (2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 1.5)

DTLZ6 3 (3.0, 2.7, 4.4) (4.5, 4.0, 6.5)

5 (3.0, 2.7, 4.4, 4.4, 5.4) (4.5, 4.0, 6.5, 6.5, 8.0)

7 (3.0, 2.7, 4.4, 4.4, 4.4, 3.7, 3.4) (4.5, 4.0, 6.5, 6.5, 6.5, 5.5, 5.0)

DTLZ7 3 (1.4, 1.4, 13.4) (2.0, 2.0, 20.0)

5 (1.4, 1.4, 1.4, 1.4, 21.7) (2.0, 2.0, 2.0, 2.0, 32.5)

7 (1.4, 1.4, 1.4, 1.4, 1.4, 1.4, 42.7) (2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 55.0)

For ADM-PSO, parameters were set by following the previous work and
standard settings of PSO 2007 [10]. It comprised of a maximum number of
iterations Imax = 11, an objective consideration probability p = 0.5, a weight
w = 1/k and a tolerance θ = 10−3 (see [7] for a further explanation of ADM
parameters). For PSO, we set ϕ1 = ϕ2 = 1/(2 + log(2)) and inertia ω = 1/(2 ·
log(2)). Since the swarm is fed with those non-dominated points of the external
archive of the iEMO, the maximum swarm size was set accordingly, i.e., S =
E = 100 each time the ADM-PSO is started. It conducted only 3 generations to
assure that particles are able to move accordingly with new data.

In addition, with the aim of keeping track of the original ADM [7], it was also
applied by following the same procedure. The results of ADM and ADM-PSO
are arranged in Tables 2 and 3, respectively. In these tables, WASF-GA and R-
NSGA-II are compared using the DTLZ problems, where for brevity the number
of objectives is limited to 3, 5 and 7. The mean, standard deviation (STD) and
minimum (MIN) distances of the nearest point (in the resulting Pareto front
approximation) to the ADM-aspiration point asp are reported, together with
the number of iterations (ITER) the ADM used on the average.

The first observation can be made from Tables 2 and 3 with regards to ADM
and ADM-PSO. They performed in a similar way when guiding the underly-
ing iEMOs (WASF-GA and R-NSGA-II) to find solutions close to the ADM-
aspiration point. In this sense, no statistical differences could be found when
comparing the mean distance distributions of all the combinations of ADMs
with iEMOs. To be more specific, according to Friedman’s test [13] with χ2 and
3 degrees of freedom, a value of 6.07 was obtained (<7.81 from a χ2 distribution
table α = 0.05), so the null hypothesis could not be rejected.
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Table 2. WASF-GA versus R-NSGA-II with the original ADM.

Pro k WASF-GA R-NSGA-II
blem MEAN STD MIN ITER MEAN STD MIN ITER

DTLZ1 3 3.54E-02 3.33E-02 1.08E-02 7.70E+00 4.53E-01 1.57E-01 2.46E-01 8.40E+00
DTLZ1 5 1.60E+00 4.82E-01 4.83E-01 8.10E+00 2.15E+00 2.48E-01 1.56E+00 8.00E+00
DTLZ1 7 3.15E-01 1.48E-01 8.95E-02 9.00E+00 7.33E-02 2.82E-02 4.16E-02 7.50E+00
DTLZ2 3 1.75E-01 3.84E-01 2.42E-02 9.40E+00 7.11E-02 3.33E-02 1.82E-02 8.40E+00
DTLZ2 5 4.24E-01 3.14E-01 2.23E-01 7.30E+00 3.90E-01 6.22E-02 3.01E-01 7.90E+00
DTLZ2 7 1.68E-01 4.22E-02 1.10E-01 6.60E+00 1.43E-01 9.09E-02 4.07E-02 8.80E+00
DTLZ3 3 4.78E+00 1.23E+00 3.41E+00 7.00E+00 1.29E+01 2.33E+00 1.02E+01 7.00E+00
DTLZ3 5 3.74E+01 4.41E+00 2.91E+01 7.70E+00 2.77E+01 2.17E+01 1.06E+00 9.50E+00
DTLZ3 7 2.23E+02 3.33E+01 1.73E+02 6.60E+00 3.25E+02 2.78E+01 2.81E+02 8.10E+00
DTLZ4 3 6.01E-01 5.16E-04 6.01E-01 9.20E+00 6.06E-01 3.92E-03 6.02E-01 8.00E+00
DTLZ4 5 6.97E-01 1.17E-01 5.49E-01 7.30E+00 3.70E-01 6.40E-02 3.18E-01 6.90E+00
DTLZ4 7 7.03E-01 2.64E-02 6.51E-01 8.10E+00 6.25E-01 2.81E-02 5.80E-01 8.20E+00
DTLZ5 3 1.70E-01 3.16E-04 1.70E-01 9.10E+00 1.62E-01 5.86E-03 1.51E-01 7.90E+00
DTLZ5 5 9.51E-03 5.27E-03 4.92E-03 9.30E+00 1.29E-01 2.69E-02 9.67E-02 7.10E+00
DTLZ5 7 1.51E-01 2.54E-02 1.15E-01 7.70E+00 1.13E-01 3.74E-02 4.85E-02 7.00E+00
DTLZ6 3 4.52E-01 4.72E-01 1.60E-01 7.20E+00 1.48E+00 1.29E-01 1.25E+00 8.10E+00
DTLZ6 5 1.46E+00 1.25E+00 1.52E-01 7.50E+00 2.83E+00 1.37E+00 9.00E-01 5.20E+00
DTLZ6 7 4.87E+00 1.52E-01 4.63E+00 7.70E+00 4.60E+00 1.72E-01 4.20E+00 8.60E+00
DTLZ7 3 2.16E-02 1.96E-02 4.12E-03 9.90E+00 4.85E-01 1.10E-01 2.92E-01 7.60E+00
DTLZ7 5 2.90E+00 6.02E-01 1.88E+00 7.10E+00 2.80E+00 7.16E-01 1.75E+00 8.80E+00
DTLZ7 7 2.05E+01 1.52E+00 1.78E+01 7.10E+00 1.24E+01 9.65E-01 1.06E+01 4.70E+00

Nevertheless, ADM-PSO was able to obtain solutions in a lower number of
iterations, which means an advantage in the computational effort. This can be
observed in columns ITER of Tables 2 and 3, where ADM-PSO with WASF-GA
used a lower number of iterations than the original ADM with WASF-GA in
15 out of 21 problems. Furthermore, ADM-PSO with R-NSGA-II required fewer
iterations than the original ADM with R-NSGA-II for all the problems except
for DTLZ7 with 7 objectives. Overall, the number of iterations can be used as
an indicator for the solution process even though a smaller number does not
directly mean a good performance. The ADM may be e.g. tailored to focus first
on learning where very different reference points are used for scanning the Pareto
front.

In this sense, it is worth noting that the aim of iEMOs is not to obtain
a complete coverage of the Pareto front, but to focus on a specific region of
interest relevant for a DM. WASF-GA and R-NSGA-II usually generate a set of
solutions in that region, so that ADM-PSO uses them when forming the swarm.
In this way, it is able to take advantage of information in the current context
while experimenting a fast convergence (typical in PSO) to the ADM-aspiration
point, i.e., to generate better reference points.

A special case was registered for problem DTLZ3 in Tables 2 and 3 since the
performances of the iEMOs involved usually deteriorated as the ADM did not
achieve the ADM-aspiration points consistently. Probably, the heterogeneity in
the ranges observed when calculating the nadir objective vectors for this problem
made the ADMs to generate the points asp close to unachievable regions, hence
leading the iEMO to require extra effort to reach it.

In general, the performance of the iEMOs got worse as the number of objec-
tive functions increased. This is not surprising, since the complexity of DTLZ
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Table 3. WASF-GA versus R-NSGA-II with ADM-PSO.

Pro k WASF-GA R-NSGA-II
blem MEAN STD MIN ITER MEAN STD MIN ITER

DTLZ1 3 1.29E-02 5.41E-03 4.69E-03 6.80E+00 2.01E-01 1.34E-01 6.06E-02 5.80E+00
DTLZ1 5 1.73E+00 3.39E-01 1.11E+00 7.90E+00 2.18E+00 2.01E-01 1.95E+00 5.30E+00
DTLZ1 7 1.89E-01 7.71E-02 6.18E-02 7.60E+00 6.70E-02 1.37E-02 4.64E-02 6.10E+00
DTLZ2 3 2.50E-02 5.67E-04 2.44E-02 8.10E+00 5.51E-02 2.62E-02 2.98E-02 6.60E+00
DTLZ2 5 4.65E-01 3.75E-01 1.26E-01 6.00E+00 4.44E-01 1.92E-01 3.62E-01 6.40E+00
DTLZ2 7 1.51E-01 4.08E-02 1.06E-01 7.00E+00 9.11E-02 9.77E-02 2.88E-02 7.00E+00
DTLZ3 3 4.00E+00 1.28E+00 1.70E+00 7.50E+00 1.02E+01 2.35E+00 6.78E+00 6.10E+00
DTLZ3 5 2.59E+01 1.15E+01 1.35E+01 5.90E+00 4.60E+00 2.59E+00 1.88E+00 7.20E+00
DTLZ3 7 1.95E+02 5.60E+01 1.22E+02 7.50E+00 3.30E+02 1.78E+01 2.98E+02 7.80E+00
DTLZ4 3 6.01E-01 0.00E+00 6.01E-01 7.20E+00 6.03E-01 3.07E-03 6.01E-01 4.60E+00
DTLZ4 5 4.39E-01 4.80E-02 3.24E-01 8.30E+00 3.17E-01 9.62E-03 3.03E-01 6.80E+00
DTLZ4 7 6.99E-01 3.37E-02 6.27E-01 7.30E+00 5.87E-01 6.96E-03 5.77E-01 7.30E+00
DTLZ5 3 1.70E-01 2.93E-17 1.70E-01 6.10E+00 1.64E-01 3.84E-03 1.56E-01 7.10E+00
DTLZ5 5 8.96E-03 3.92E-03 2.54E-03 7.00E+00 1.14E-01 2.75E-02 8.81E-02 6.00E+00
DTLZ5 7 1.25E-01 2.48E-02 9.47E-02 5.10E+00 7.54E-02 2.44E-02 4.22E-02 6.20E+00
DTLZ6 3 2.57E-01 6.94E-02 1.54E-01 6.80E+00 1.47E+00 1.16E-01 1.24E+00 7.60E+00
DTLZ6 5 1.07E+00 1.37E+00 1.54E-01 8.30E+00 2.51E+00 1.02E+00 1.29E+00 5.10E+00
DTLZ6 7 4.87E+00 1.23E-01 4.72E+00 7.10E+00 4.56E+00 1.17E-01 4.39E+00 6.50E+00
DTLZ7 3 9.95E-03 2.86E-03 4.28E-03 6.70E+00 3.79E-01 1.05E-01 2.18E-01 6.20E+00
DTLZ7 5 2.34E+00 4.31E-01 1.74E+00 6.10E+00 2.76E+00 6.04E-01 1.99E+00 6.20E+00
DTLZ7 7 2.12E+01 1.81E+00 1.80E+01 8.00E+00 1.01E+01 4.26E+00 2.18E+00 5.40E+00

problems is higher with more objectives, and the number of dimensions tackled
by both ADMs is also larger, while the number of evaluations was set similarly for
all the problems and numbers of objectives. In this regard, an interesting obser-
vation is that R-NSGA-II performed usually better than WASF-GA for 5 and
7 objectives, even when employing a lower number of iterations of ADM/ADM-
PSO (ITERs).

From the point of view of ADM-PSO’s specific performance, it can be seen
from Table 3 that it enabled the comparison between WASF-GA and R-NSGA-
II and also allowed to capture certain differences in their search strategies. To
be more concrete, WASF-GA obtained a better mean (denoted with a grey
background in 11 values out of 21 problems) and a minimum distances (11 out
of 21 problems) than R-NSGA-II, although the latter needed a slightly lower
number of iterations.

To illustrate the behaviour of ADM-PSO with these two iEMOs, Fig. 2 shows
representative examples of trajectories walked by the reference points generated,
when guiding WASF-GA (left) and R-NSGA-II (right) to solve DTLZ5 with 3
objectives. It can be observed that ADM-PSO with R-NSGA-II resulted with a
more spread out trajectory than WASF-GA, whereas the latter algorithm was
more concentrated to the area around the ADM-aspiration point (red square
symbol). These reference points are in turn generated according to their prece-
dent Pareto front approximations, which are used by ADM-PSO to constitute
contextual information. This is indeed illustrated in Fig. 3, where Pareto front
approximations are plotted with regards to the 3 closest reference points to the
ADM-aspiration point (of ADM-PSO). Accordingly, Pareto front approxima-
tions of R-NSGA-II are scattered, whereas WASF-GA showed more concentrated
fronts to the ADM-aspiration point area.
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Fig. 2. Search paths of ADM-PSO when guiding WASF-GA (left) and R-NSGA-II
(right) to solve DTLZ5 with 3 objectives. (Color figure online)
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Fig. 3. Pareto front approximations of WASF-GA (left) and R-NSGA-II (right) accord-
ing to the reference points of ADM-PSO (the 3 closest reference points to the asp),
when solving DTLZ5 with 3 objectives.

5 Conclusions and Future Work

We have introduced ADM-PSO, a new variant of an ADM for preference artic-
ulation in the form of reference points guided by PSO. Our approach enables
comparing interactive reference point based EMOs without involving human
DMs. ADM-PSO has been implemented following the jMetal architecture and
its source codes are freely available.

The proposed approach was demonstrated on the DTLZ benchmark problems
with 3, 5 and 7 objectives and using R-NSGA-II and WASF-GA as interactive
reference point based methods to be compared. The experimental results show
that ADM-PSO is useful and efficient in comparison with the previous ADM. It
offers a bio-inspired and flexible mechanism to capture the current context of an
ADM in interactive solution processes.

ADM-PSO is conceptually intuitive and straightforward, although it opens
a promising line of future research as follows. First, exploring the possibilities
of using different metaheuristics like DE, CMA-ES and GA for the generation
of reference points instead of PSO. Second, testing parameter tunning in PSO
(and other metaheuristics), e.g., ϕ1 and ϕ2, to control the influence of the current
reference point (global best) and/or local history of particles, hence to induce the
ADM’s behavior in terms of intensification/diversification mechanisms. Third,
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carrying out further comparisons of multiple state-of-the art iEMOs, to test their
performances in a controlled and computationally fair execution framework.
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Grant BES-2015-072209 (Spanish MICINN) and University of Jyväskylä. J. Garćıa-
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