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Abstract. For multiobjective optimization problems with uncertain
parameters in the objective functions, different variants of minmax
robustness concepts have been defined in the literature. The idea of min-
max robustness is to optimize in the worst case such that the solutions
have the best objective function values even when the worst case hap-
pens. However, the computation of the minmax robust Pareto optimal
solutions remains challenging. This paper proposes a simple indicator
based evolutionary algorithm for robustness (SIBEA-R) to address this
challenge by computing a set of non-dominated set-based minmax robust
solutions. In SIBEA-R, we consider the set of objective function values in
the worst case of each solution. We propose a set-based non-dominated
sorting to compare the objective function values using the definition of
lower set less order for set-based dominance. We illustrate the usage
of SIBEA-R with two example problems. In addition, utilization of the
computed set of solutions with SIBEA-R for decision making is also
demonstrated. The SIBEA-R method shows significant promise for find-
ing non-dominated set-based minmax robust solutions.
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1 Introduction and Background

The need to simultaneously consider multiple objectives and the existence of
uncertainty from various sources complicate real-world optimization problems.
Uncertainty due to for example imprecise data or uncertain future developments
usually reflects as parameters in the objective functions. Traditional multiobjec-
tive optimization methods concentrate on optimizing multiple objectives simul-
taneously and finding a set of Pareto optimal or non-dominated solutions for
deterministic formulations of problems. Different approaches can be used to find
this set, for example with scalarization techniques (see e.g., [21]) or with evolu-
tionary multiobjective optimization methods (see e.g., [8]). However, the involved
uncertainty can affect deterministic Pareto optimal or non-dominated solutions
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with undesired degradation in their objective function values. Thus, considering
uncertainty in the optimization process is as important as optimizing multiple
objectives simultaneously.

The goal of handling uncertainty and multiple objectives simultaneously is
finding robust solutions that are sufficiently immune to the uncertainty and with
trade-offs among the objectives. Different concepts of robustness and measures of
robustness have been proposed in the literature. Typically, robustness measures
are incorporated into evolutionary multiobjective optimization methods to quan-
tify the effects of uncertainty on the objective function values (e.g., [4,9,12,17]).
Different robustness concepts alter the definition of dominance. Based on the
concepts, uncertain multiobjective optimization problems can be transformed
to deterministic ones (as summarized in [14,25]). In addition, different possi-
ble values of uncertain parameters can be considered simultaneously during the
optimization process (as e.g., in [22,24]).

Among the robustness concepts, the most widely used ones belong to the
family of minmax robustness (e.g., [5,11,16]). Due to different possible values of
the uncertain parameters, a solution in the decision space can correspond to a
set of outcomes (i.e., objective function values). We refer to a set of outcomes
corresponding to a solution as the outcome set of the solution. Minmax robust-
ness compares the worst outcomes in the outcome sets and finds the best possible
ones. The worst outcomes are referred to as the worst case outcome set.

Set-based minmax robustness [11] finds the solutions with the best worst
case outcome sets by utilizing set-based dominance [23]. For feasible solutions
considered, we need to identify their worst case outcome sets by maximizing the
multiple objectives simultaneously in their outcome sets and compare them with
set-based dominance. This series of tasks makes the computation of set-based
minmax robust solutions challenging. Methods from robust optimization and
mathematical optimization can only address the challenge partially.

Some solution methods via scalarizing and reformulating the scalarized sub-
problems have been proposed e.g., in [5,16]. However, typically the reformula-
tions are based on some (strict) assumptions on the characteristics of the problem
which cannot be always guaranteed in practical problems. If no assumptions on
the characteristics can be made, using samples to replace the uncertainty set has
been explored e.g., in [27]. The shortcoming is that the resulting solutions might
not be or near to minmax robust. The needs of obtaining a more accurately
approximated set of set-based minmax robust solutions have motivated us for
further developments.

Different types of evolutionary multiobjective optimization methods have
been able to approximate solutions for many challenging problems. For compar-
ing worst case outcome sets, methods which combine non-dominated sorting and
crowding distance are not suitable since defining the crowding distance between
the worst case outcome sets is not possible. Decomposition based methods cannot
be directly applied since we cannot directly associate worst case outcome sets to
the weighting vectors. Set-based dominance has been utilized in the evolutionary
multiobjective optimization community e.g., in [3,30]. The population is treated
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a whole set and set-based dominance is used to improve the population. Very
recently, using set-based dominance to solve problems involving uncertainty has
also attracted interest. In [15], a genetic algorithm has been proposed for solving
combinatorial bi-objective optimization problems with a set of discrete values of
the uncertain parameters. In [13], an evolutionary algorithm has been proposed
for solving problems with interval uncertainty (i.e., the uncertain parameters
stem from some intervals) with reformulated objective functions. A specific defi-
nition of set-based dominance has been used to compare the worst case outcomes
in [2]. These earlier research demonstrates potential to address the challenges.

In this paper, we propose utilizing an evolutionary multiobjective optimiza-
tion approach SIBEA-R to tackle the challenge of approximating set-based min-
max robust Pareto optimal solutions. We extend SIBEA [28] for this purpose.
We incorporate the definition of set-based minmax robustness into the SIBEA
method and develop a non-dominated sorting procedure based on the lower set
less order. We also utilize the hypervolume of the worst case outcome sets in the
environmental selection process.

The rest of the paper is organized as follows: Sect. 2 presents some concepts
we use in this paper. Section 3 presents SIBEA-R followed by some numerical
examples of how it can be used in Sect. 4. Finally, Sect. 5 concludes the paper
and identifies some future research directions.

2 Preliminaries

In this paper, we consider multiobjective optimization problems with uncertainty
reflected in the parameters of the objective functions in the following form:

(
minimize (f(x, ξ) = f1(x, ξ), · · · , fk(x, ξ))T

subject to x ∈ X

)
ξ∈U

, (1)

where x = (x1, · · · , xn)T is the decision vector from the feasible set X in the
decision space R

n whose components are called decision variables and ξ consists
of the uncertain parameters which are assumed to stem from an uncertainty
set U . With ξ stemming from U , a solution x ∈ X is mapped in the objective
space as a set-valued map [23] under the objective functions f1, · · · , fk to the
objective space. We call this set-valued map the outcome set and denote by
fU (x) = {f(x, ξ), ξ ∈ U}. In the outcome set, a specific objective vector f(x, ξ)
is called an outcome.

The set-based minmax robust counterpart of (1) is presented in [11] as:

minimize
x∈X

maximize
ξ∈U

f(x, ξ) = (f1(x, ξ), · · · , fk(x, ξ))T . (2)

We say that a solution x∗ ∈ X is set-based minmax robust Pareto optimal for
problem (1), if there does not exist another solution x ∈ X such that fU (x) ⊆
fU (x∗) −R

k
≥, where R

k
≥ = {x ∈ R

k : xi ≥ 0, i = 1, · · · , k} [11]. This definition is
based on the concept of lower set less order: let A and B be arbitrary closed sets,
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then A �l B implies A ⊆ B − R
k
≥. Thus, when we compare two sets of vectors,

we say A �l B if for all a ∈ A there exists b ∈ B such that ai ≤ bi, i = 1, · · · , k.
Figure 1 illustrates an example of set-based minmax robustness with two

objective functions to be minimized. In the example, we have a feasible set
X = {x1, x2, x3, x4} and an arbitrary uncertainty set U . We plot the outcome
set of the three solutions in the figure fU (x1) (bold solid curve), fU (x2) (bold
dotted line), fU (x3) (bold dashed line), and fU (x4) (bold dash-dotted line). The
gray thin lines help us to identify the borders of the outcome sets. Solution x1

is a set-based minmax robust Pareto optimal solution, since fU (x1) − R
2
≥ does

not contain fU (x2) nor fU (x3). Similarly, we can see that x2 and x3 are also
set-based minmax robust Pareto optimal solutions. However, x4 is not set-based
minmax robust Pareto optimal since fU (x4) − R

2
≥ contains fU (x1) and fU (x3).

The formulation (2) minimizes the worst case outcomes. As mentioned before,
we need to first find the worst case outcomes and compare them as a whole. So,
finding set-based minmax robust Pareto optimal solutions requires us to address
these two challenges in a systematical way. Finding the worst case outcome set
of a fixed solution x ∈ X requires solving a multiobjective optimization problem
with the objective functions to be maximized as follows:

maximize
ξ∈U

(f1(x, ξ), · · · , fk(x, ξ))T . (3)

0 1 2 3 4
f
1

0

1

2

3

4

f 2

Fig. 1. Example of set-based minmax robustness

3 The SIBEA-R Method

In this section, we introduce SIBEA-R for approximating set-based minmax
robust Pareto optimal solutions. We first introduce the steps of SIBEA-R. Then,
we discuss details of the steps with a concentration on the further developments
on SIBEA for set-based minmax robustness.

The SIBEA-R method takes the population size (NP) and the number of
generations (NG) as the input and produces a set of non-dominated set-based
minmax robust solutions A as the output. The basic steps are as follows:
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Step 1. (Initialization) Generate an initial set of decision vectors P of size
NP and find their worst case outcome sets by solving (3). Set the generation
counter m = 1.
Step 2. (Mating) Create an offspring population Q using crossover and muta-
tion operators and find their worst case outcome sets. Set P = P ∪ Q.
Step 3. (Environmental selection) Rank the population P using lower set
less order and sort the individuals into different fronts F i, i = 1, 2, · · · . and
do the following:

• Set a new population P 1 = ∅. Set i = 1 and P 1 = P 1 ∪ F 1. As long as
|P 1| < NP , set i = i+1, P 1 = P 1 ∪F i. The notation |P 1| represents the
cardinality of P 1.

• if |P 1| = NP , set P = P 1 and go to Step 4. Otherwise, do the following
until |P 1| = NP : identify the solutions with the worst rank P ′ ⊂ P 1.

• For each solution x ∈ P ′, determine the loss of the value of the hypervol-
ume indicator d(x) if it is removed from the set P ′. Remove the solution
with the smaller loss from P ′, i.e., set P ′ = P ′ \ {x}

Step 4. (Termination) If m > NG, set A = P 1 and stop. Otherwise, set
m = m + 1 and go to Step 2.

In Steps 1 and 2, we consider the worst case outcome sets of the individuals
and their offspring. We have mentioned earlier that for a fixed solution, finding
its worst case outcomes is a multiobjective optimization problem with objectives
to be maximized in the uncertainty set. We can solve the maximization prob-
lem with an evolutionary multiobjective optimization method to approximate a
set of outcomes in the worst case. However, doing so requires a lot of compu-
tation resources. Thus, we should find a representative set of solutions of the
maximization problem and use it to save the computation resource.

We propose to systematically solve a small number of scalarized subproblems
to obtain the representative worst case outcome sets. For example, we can utilize
the approach used in [6] to generate a set of evenly distributed points on a unit
hyperplane in the objective space. Then, we use them as the reference points
to optimize a series of the achievement scalarizing functions (see e.g., [26]). In
what follows we denote the number of worst case outcomes in the representative
worst case outcome set by W and the values of the uncertain parameters which
the objective functions reach their worst case values by ξw, w = 1, · · · ,W . The
number of function evaluations depends on the solver used to solve the scalarized
subproblems. In case of discrete scenarios in the uncertainty set, the number of
function evaluations is k × NP × NG× number of scenarios.

After we have found the representative worse case outcome sets of the indi-
viduals, we need to rank them and sort them into different fronts. We call this
step set-based non-dominated sorting, where we define the dominance between
two representative worst case outcome sets with lower set less order. The sort-
ing procedure is inspired by that presented in [10]. The steps of the set-based
non-dominated sorting are as follows:

Step 1. For each solution p ∈ P , set the domination count np = 0 and the
set of solutions dominated by p as an empty set Sp = ∅. Set P = P \ {p} and
carry out the following steps:
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(a) For each q ∈ P , do the following:
If for all f(q, ξw), w = 1, · · · ,W , there exists f(p, ξw) such that
f(q, ξw) ≤ f(p, ξw), set np = np + 1.
Otherwise if for all f(p, ξw), w = 1, · · · ,W , there exists f(q, ξw) such
that f(p, ξw) ≤ f(q, ξw), set Sp = Sp ∪ {q}

(b) If nq = 0, then prank = 1 and F 1 = F 1 ∪ {p}.
Step 2. Set front counter i = 1
Step 3. Do the following steps until F i = ∅

For each p ∈ F i

for each q ∈ Sp

set nq = nq − 1
if nq = 0, then qrank = i+1, and F i+1 = F i+1 ∪{q}, set i = i+1
and continue with Step 3 to the next front.

In the set-based non-dominated sorting, Step 2(a) is for checking if fU (p) �l

fU (q) or fU (q) �l fU (p). We pair-wise compare the solutions and go through the
outcomes in the representative worst case outcome sets.

After we have sorted the solutions into different fronts, we start the environ-
mental selection in Step 3. We fill the next generation population incrementally
starting from solutions that are in F 1 until the number of solutions exceeds the
population size NP . Then we delete the solutions from the last front based on
the loss of the value of the hypervolume indicator (see e.g., [1,28]). We calculate
the loss of the hypervolume when deleting a solution x′ as d(x′) = H(S)−H(S′),
where S = {f̃U (x) : x ∈ P ′} and S′ = S \ {f̃U (x′)}. Here, we use f̃U instead of
fU because we consider the representative worst case outcome sets.

After step 3, we have a new population. If the number of generations has
been exceeded, we terminate the solution process and take the set-based non-
dominated solutions of the last generation as the output set A. If the number of
generations has not been exceeded, we continue by going to Step 2.

After obtaining the set A, a decision maker should choose a final solution.
For example, [27] uses an interactive post-processing procedure to find the final
solution based on preference information. In the interactive process, we present
the outcome of a solution in the nominal case which is the undisturbed or usual
case. Then, the decision maker can specify her or his preferences for a more
desired solution until (s)he finds a satisfactory solution. The purpose is to help
the decision maker to find the final solution based on the nominal value and at
the same time the solution is the best possible when the worst case happens.

4 Numerical Results

In this section, we demonstrate the usage of the SIBEA-R method with two
example problems. The examples help us to test our proposal of using set-based
non-dominated sorting in an evolutionary algorithm. The first example problem
is a simple linear problem based on one of the examples presented in [25]:
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⎛
⎜⎜⎝

minimize
(

2ξ1x1 − 3ξ2x2

5ξ1x1 + ξ2x2

)

subject to 0 ≤ x1 ≤ 1.5
0 ≤ x2 ≤ 3

⎞
⎟⎟⎠

ξ∈U

, (4)

where U =
{( −1

2

)
,
(
2
3

)}
.

In the experiments, we used the default setting of parameters as in the imple-
mentation of SIBEA in [7]. For (4), we can compute the outcomes in both possible
sets of values for the uncertain parameters. We first illustrate the evolvement
of the population, we visualize the initial generation in the decision space in
Fig. 2a and in the objective space in Fig. 2b. In the figures, the solid lines are
the borders of the feasible set and we visualize 10 individuals because of limited
varieties of markers. In Fig. 2b, the same marker appears twice because of the
two possible cases in U . We use SIBEA-R to evolve the population by consider-
ing their outcome sets (each set consists of two outcomes with the same marker
in the figure). After 100 generations, the last generation is shown in Fig. 2c in
the decision space and in Fig. 2d in the objective space.

We then studied the final populations of 20 independent runs with NP = 30.
It is not even possible to compute a complete set of set-based robust Pareto
optimal solutions for linear problems like (4). To the best of our knowledge,
methods with similar ideas in the literature (e.g., [2]) had a different definition
of robust Pareto optimality. We cannot easily benchmark the example problems.
Thus, we first visually compare the solutions computed by SIBEA-R with 30
solutions computed by the weighted-sum approach proposed in [11]. The purpose
is to use the solutions computed by the weighted-sum approach as references.

Figures 3a and b illustrate the solutions computed by the weighted-sum app-
roach and SIBEA-R. The solutions computed by the weighted-sum approach are
marked as solid red circles in the figures and the solutions computed by SIBEA-
R are marked by the gray plus sings. In the figures, the gray cloud consists of
the solutions computed with 20 runs of the SIBEA-R method. We can see that
SIBEA-R was able to find the solutions found by the weighted-sum approach. In
addition, SIBEA-R also found other solutions in the interior of the feasible space.
The existence of set-based minmax Pareto optimal solutions in the interior of
the feasible space is proven in [20]. For example, the point (0.5, 2.4) is set-based
minmax robust Pareto optimal which can be checked by the definition. Based on
the visualizations, we can observe that SIBEA-R has considered the outcomes
concerning both sets of possible values of the uncertain parameters and found a
set of non-dominated set-based minmax robust solutions.

The second example problem is based on a standard benchmark problem,
ZDT2 (see, e.g., [8]). In this problem, we introduced two uncertain parameters
which stem from a polyhedral uncertainty set. A polyhedral uncertainty set is
given as the convex hull of a finite set of points. Even though modifying the
problem can cause the loss of the characteristics of the carefully designed test
problems, our purpose is to illustrate the solutions founds by SIBEA-R and
the usage of them for decision making. For the ZDT2-based problem, we set
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(a) Initial population in the decision space
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(b) Outcomes of the initial population
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(c) Final population in the decision space
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(d) Outcomes of the final population

Fig. 2. The evolvement of the population by SIBEA-R

NG = 100, NP = 30 and found six worst case outcomes to represent the worst
case outcome set. We run SIBEA-R 20 times to solve the problem.

We analyzed the results with the so-called average non-dominated objective
space (i.e., the percentage of the volume of objective space between the ideal
point and a reference vector which are not covered by the solutions) in each
generation in all the runs to observe the convergence (see details in [29]). We
also analyzed the attainment surface of the worst case outcome sets from mul-
tiple runs with the empirical attainment function graphical tools [18,19]. We
visualized the 25%, 50%, 75% attainment surfaces.

The average non-dominated objective space in each generation for the 20 runs
of the ZDT2-based problem is illustrated in Fig. 4. The figure shows that the non-
dominated objective space gradually reduced with generations and at the final
generations, the average non-dominated space stayed stable. This means that
the objective function values of solutions reduced along the generations. The
attainment surfaces of the results from the 20 runs are shown in Fig. 5. The
figure illustrates that the solutions tend to converge to the area bounded by the
intervals f1 = [0.5, 0.8], f2 = [0.2, 0.7]. Based on the experiment results, we can
observe that SIBEA-R was able to improve the populations with the generations
and the final populations of different runs were similar.
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(a) Solutions in the decision space
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(b) Solutions in the objective space

Fig. 3. Solutions computed by the weighted-sum approach and SIBEA-R

Fig. 4. Average non-dominated objec-
tive space, ZDT2-based problem

Fig. 5. Attainment surface, ZDT2-based
problem

After SIBEA-R has found a set of non-dominated set-based minmax robust
solutions, the set can be used for decision making. We illustrate the usage
with a reference point-based interactive approach (see e.g., [21] for a detailed
description). In a reference point-based approach, the decision maker specifies
the desired objective function values as a reference point. We find a solution
which satisfies the reference point as well as possible and present the solution to
the decision maker. This kind of interactive process continues until the decision
maker finds a most satisfactory solution. We used the final population of a run of
the ZDT2-based problem and helped a decision maker to choose a final solution
based on their outcomes in the nominal case. In the nominal case, the uncer-
tain parameters behave normally without disturbance. So, we used the original
ZDT2 problem as the nominal case. We carried out four iterations. The reference
points and the solutions found are illustrated in Table 1. The solutions are also
presented in Fig. 6 with different markers. The decision maker took the third
solution as the final solution since it is the nearest to her desired values.

In the examples, we observed that SIBEA-R was able to find set-based min-
max robust Pareto optimal solutions found by the weighted-sum approach. It was
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Table 1. Interactive post-processing

Ref. Solution Marker

(0.3, 0.7)T (0.43, 0.81)T Square

(0.3, 0.95)T (0.3, 0.91)T Up triangle

(0.5, 0.6)T (0.57, 0.67)T Diamond

(0.8, 0.6)T (0.61, 0.61)T Down triable

0 0.2 0.4 0.6 0.8
f
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0.9

1

1.1

f 2

Fig. 6. Solutions found based on refer-
ence points

also able to find some solutions that the weighted-sum approach was not able to
find. In the ZDT2-based problem, SIBEA-R was stable regarding finding similar
final populations in different runs. These observations suggested that SIBEA-R
has an appealing potential for approximating set-based minmax robust Pareto
optimal solutions, which can be then used for decision making.

5 Conclusions

In this paper, we proposed SIBEA-R to compute an approximated set of set-
based minmax robust Pareto optimal solutions. This is an initial study to explore
opportunities evolutionary multiobjective optimization methods can provide in
tackling challenges with robustness which are otherwise difficult. In SIBEA-R,
instead of considering single outcomes, we considered the worst case outcome
sets of solutions. We proposed a set-based non-dominated sorting procedure
based on the lower set less order to rank the solutions for environmental selec-
tion. We illustrated the utilization of SIBEA-R with two example problems. The
experiments on the example problems suggest that SIBEA-R can approximate
set-based minmax robust Pareto optimal solutions. We also illustrated how the
solutions found by SIBEA-R can be used in decision making.

Due to the set-based non-dominated sorting and the calculation of the hyper-
volume of outcome sets, SIBEA-R is computationally expensive and it tends to
work with small population sizes. Thus, an immediate future research direction
is to improve the computational efficiency and enable the calculation of a larger
number of non-dominated set-based minmax robust solutions. In this paper,
we only presented a limited amount of numerical experiments. It is necessary
to extend the numerical experiments to a wider range of problems to further
identify the strengths and limitations of SIBEA-R.

Acknowledgments. We thank Dr. Tinkle Chugh for useful discussions and providing
an implementation of SIBEA. This research is related to Decision Analytics (DEMO).
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