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Abstract. The Speed-constrained Multi-objective PSO (SMPSO) is an
approach featuring an external bounded archive to store non-dominated
solutions found during the search and out of which leaders that guide
the particles are chosen. Here, we introduce SMPSO/RP, an extension of
SMPSO based on the idea of reference point archives. These are external
archives with an associated reference point so that only solutions that
are dominated by the reference point or that dominate it are considered
for their possible addition. SMPSO/RP can manage several reference
point archives, so it can effectively be used to focus the search on one or
more regions of interest. Furthermore, the algorithm allows interactively
changing the reference points during its execution. Additionally, the par-
ticles of the swarm can be evaluated in parallel. We compare SMPSO/RP
with respect to three other reference point based algorithms. Our results
indicate that our proposed approach outperforms the other techniques
with respect to which it was compared when solving a variety of prob-
lems by selecting both achievable and unachievable reference points. A
real-world application related to civil engineering is also included to show
up the real applicability of SMPSO/RP.
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1 Introduction

Dealing with a multi-objective optimization problem involves finding its Pareto
front or a reasonably good approximation to it in case of using non-exact
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optimization techniques such as metaheuristics [1]. This accuracy is expressed, in
general, in terms of convergence and diversity, with the aim of offering the deci-
sion maker (DM) a set of optimal or quasi-optimal solutions evenly spread along
the Pareto front. In practice, the DM is usually only interested in a portion of
the Pareto front, which can be provided by integrating user’s preferences within
multi-objective metaheuristics [2]. The preference information can be given to
the algorithm a prori, before starting the search process, and/or in an interactive
way, during the search.

In this paper, we propose an extension of the SMPSO multi-objective par-
ticle swarm algorithm [3] to allow DMs to guide the search towards one or
more regions of interest by indicating preferences a priori and interactively.
SMPSO features a bounded-size external archive where a diverse subset of the
non-dominated solutions found during the search is kept and from which global
leaders are chosen to compute the speed of the particles. When the archive
becomes full, a density estimator (e.g., the crowding distance [4]) is applied in
order to remove the solution which least contributes in terms of diversity.

Our extension makes use of reference points as a mean for articulating DM’s
preferences. We associate an external archive to each reference point. Newly
solutions (i.e., every time a particle changes its position) are checked to be added
within each of these archives as follows: if the newly generated solution and the
archive reference point are non-dominated with respect to each other, nothing
is done; otherwise, the former is added to the archive using the same strategy
as in SMPSO. This way, reference point archives only keep the non-dominated
solutions of the selected preference region. Our proposal, called SMPSO/RP, also
modifies the leader selection strategy to select an external archive randomly and
then take the leader from it; this mechanism promotes diversity of the swarm
and avoids concentrating the search in a single region of interest.

As solving real-world problems might be highly time-consuming, adding the
capability of changing the reference points interactively is a basic feature that
allows the DM to adjust and focus the search towards the regions of inter-
est. On the contrary, approaches based on static reference points would require
re-starting the search from scratch every time the reference point is changed.
In SMPSO/RP, the strategy followed when a reference point is changed is to
remove all the solutions of the corresponding archive that are non-dominated
with respect the new reference point.

The main contributions of this paper are summarized as follows:

1. A new algorithm, SMPSO/RP, that extends SMPSO by incorporating inter-
active reference point preference articulation. SMPSO/RP has the following
features:

– Ability to deal with one or more DM preferences or regions of interest.
– Ability to interactively change DM preferences by means of changing the

desired reference points.
– Ability of parallel evaluations of particles.
– GUI for visualizing the computed front evolution for problems with two

and three objectives.
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2. Comparison against three reference point based multi-objective evolutionary
algorithms.

3. Application of SMPSO/SP to a real-world problem of the domain of civil
engineering.

4. Freely available implementation of SMPSO/RP within the jMetal [5] frame-
work1.

The rest of the paper is organized as follows. Section 2 contains background
concepts and our proposal is described in Sect. 3. We devote Sects. 4 and 5 for
assessing the performance of SMPSO/RP. A real-world application of our pro-
posal is included in Sect. 6. The conclusions and some possible paths of future
work are indicated in Sect. 7.

2 Background

Preference-based multi-objective metaheuristics aim at finding the most inter-
esting parts according the criteria of a DM instead of the full Pareto front. This
has been a relatively active research area in the last two decades [6–8].

In this work we are interested in the reference point method [9]. This method
constitutes a simple way to delimit an interest region of the objective space by the
definition of a user-defined point by the DM, as it requires no parameter defining
the width of the region of interest. Given a reference point P , the region of
interest is the subset of the Pareto front dominated by P if this is not achievable,
or the subset of the Pareto front dominating P if this is achievable. This approach
is very similar to the g-dominance concept [10]. Figure 1 illustrates an example
of the regions of interest delimited by an achievable and unachievable reference
point. Our purpose is to extend SMPSO to allow guiding the search according
to this kind of preference articulation mechanism.

P
Q

f1

f 2

Fig. 1. Examples of the regions of interest delimited by points P (unachievable) and
Q (achievable).

1 https://github.com/jMetal/jMetal.

https://github.com/jMetal/jMetal
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SMPSO [3] is an algorithm following the classic particle swarm algorithm
metaheuristic [11], so it manages a set of solutions or particles which are referred
to as the swarm. The position of particle x i at the generation t is updated with
Eq. (1):

x i(t) = x i(t − 1) + v i(t) (1)

where the factor v i(t) is known as velocity, and it is defined as:

v i(t) = w · v i(t − 1) + C1 · r1 · (x pi
− x i) + C2 · r2 · (x gi − x i) (2)

In Eq. (1), x pi
is the best solution that x i has viewed, x gi is the best particle

(known as the leader) that the entire swarm has viewed, w is the inertia weight
of the particle and controls the trade-off between global and local influence, r1
and r2 are two uniformly distributed random numbers in the range [0, 1], and
C1 and C2 are specific parameters which control the effect of the personal and
global best particles.

The motivation to develop SMPSO was originated after stating that the
MOPSO algorithm [12], a previously proposed multi-objective PSO based on
Eqs. 1 and 2, was able of efficiently solve parameter scalable problems [13] but
it had difficulties when dealing with the (multi-frontal) ZDT4 problem. We dis-
covered that by applying the constriction coefficient (Eq. (3)) obtained from
the constriction factor χ originally developed by Clerc and Kennedy (Eq. (2))
in [14], SMPSO could successfully solve that problem with up to 2048 variables.
The constriction coefficient is defined as:

χ =
2

2 − ϕ − √
ϕ2 − 4ϕ

(3)

where

ϕ =

{
C1 + C2 if C1 + C2 > 4

0 if C1 + C2 ≤ 4
(4)

Additionally, SMPSO further bounds the accumulated velocity of each vari-
able j (in each particle) by means of the following velocity constriction equation:

vi,j(t) =

⎧
⎪⎨

⎪⎩

δj if vi,j(t) > δj

−δj if vi,j(t) ≤ −δj

vi,j(t) otherwise

(5)

where

δj =
(upper limitj − lower limitj)

2
(6)

As commented beforehand, SMPSO adopts the use of an external archive to
store the non-dominated solutions and out of which leaders are chosen.
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3 Algorithm Proposal

The basic component of SMPSO/RP is the concept of reference point archive
(i.e., an external archive with an associated reference point). The basic idea is
to modify the strategy for adding new solutions to the external archive, in such
a way that only solutions within the area of interest defined by a reference point
P are kept. The basic approach is as follows: given a solution a to be inserted, it
is first compared with P . If either a dominates P or vice-versa, then a is checked
for insertion in the archive as done in the original SMPSO. However, if none of
them dominates the other, a is discarded.

P

f1

f 2

Fig. 2. Example illustrating how a point in the boundary of the region of interest can
remain in the reference point archive.

This strategy does not work properly in two scenarios. First, when the archive
is empty and only non-dominated solutions regarding P are generated by the
search. This scenario results in an empty archive which renders the working
behavior of SMPSO impossible, as it may need to select a global leaders from
this archive. Our solution is to incorporate the non-dominated solution if the
archive is empty. This solution is expected to be removed later by any other
solution dominating it.

The second situation has to do with a poor convergence of solutions on any
of the ends of the region of interest. The Fig. 2 illustrates this issue. The white
points are inside the region of interest defined by P , and the point with a gray
background is exactly in the boundary of this region. The gray point is non-
dominated regarding the white points and therefore always kept in the archive
as it is assigned an infinite crowding distance by the density estimator. However,
it is not close to the Pareto front, so convergence is negatively affected. This
would not happen if some of the black points on the left would belong to the
region of interest, because they dominate the gray point, which would have been
either removed or never inserted. Our approach, then, is to insert non-dominated
points which are outside the region of interest with a certain probability for the
sake of filtering these poorly converged points in the ends of the region of interest
(after some pilot tests, we have set this probability to 0.05). These points outside
the area of interest are removed later from the archive.
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SMPSO/RP can have more than one reference point archive, so the DM
can indicate several regions of interest. The working procedure of SMPSO/RP
resembles that of SMPSO, except for subtle yet very relevant differences: the
leader selection, which take a leader from a randomly selected reference point
archive, and all the archives are updated when any particle moves. SMPSO/RP
has been implemented in jMetal 5 [15], which provides parallelism support to
evaluate all the solutions in a population or swarm in parallel in multi-core sys-
tems. As only the evaluations are computed in parallel, linear speed-ups cannot
be expected given that the rest of the algorithm is sequential code. However,
these scheme has the advantage that no changes in the algorithm are needed.
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Fig. 3. Example of the front evolution when solving the ZDT1 problem indicating the
unachievable reference point P (0.1,0.5) and the achievable one Q (0.8,0.3). The plots
depicts the fronts at generations 10, 50, 80, and 120. The population and archive sizes
are set to 100.

To illustrate how SMPSO/RP works, Fig. 3 depicts an example of how the
computed front evolves over the generations when two reference points, one of
each type, have been indicated by the DM.

4 Experimental Setup

In this section, we detail the experimentation we have carried out to assess
the performance of SMPSO/RP. We describe first the selected algorithms to be
compared with our proposal and their parameter settings. Then, we present the
chosen benchmark problems and the reference points that have been specified.
Finally, we describe the experimentation methodology.

The regions of interest computed by SMPSO/RP are delimited by the dom-
inance relationship in relation to the reference point. Hence, we have consid-
ered three algorithms following the same principle. These algorithms are WASF-
GA [6], gSMS-EMOA, and gNSGA-II.

WASF-GA or Weighting Achievement Scalarizing Function Genetic Algo-
rithm uses an scalarization approach with weight vectors. In each generation
WASF-GA classifies individuals into fronts by taking into account the achieve-
ment scalarizing function and the reference point. It also requires to know the
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Table 1. Achievable and unachievable points selected for each of the ZDT, DTLZ, and
WFG problems.

Problem Achievable Unachievable Problem Achievable Unachievable

ZDT1 (0.80, 0.60) (0.20, 0.40) WFG1 (1.31, 1.61) (0.49, 0.88)

ZDT2 (0.80, 0.80) (0.50, 0.30) WFG2 (1.80, 2.91) (0.23, 0.20)

ZDT3 (0.30, 0.80) (0.20, 0.00) WFG3 (1.75, 2.55) (0.56, 1.61)

ZDT4 (0.99, 0.95) (0.08, 0.25) WFG4 (1.88, 3.71) (0.29, 2.93)

ZDT6 (0.78, 0.61) (0.39, 0.21) WFG5 (1.88, 2.46) (0.47, 1.98)

DTLZ1 (0.41, 0.36) (0.00, 0.02) WFG6 (1.46, 3.44) (0.28, 0.10)

DTLZ2 (0.83, 0.92) (0.07, 0.51) WFG7 (1.17, 3.74) (0.11, 3.03)

DTLZ3 (0.87, 1.00) (0.15, 0.42) WFG8 (1.92, 3.60) (0.29, 3.56)

DTLZ4 (0.97, 0.59) (0.41, 0.51) WFG9 (1.83, 3.92) (0.81, 2.15)

DTLZ5 (0.97, 0.59) (0.03, 0.27)

DTLZ6 (0.76, 0.84) (0.08, 0.48)

DTLZ7 (0.85, 3.88) (0.62, 1.27)

ranges of the objective solutions in the Pareto front from the ideal and nadir
points, which need to be estimated.

The other chosen algorithms, gNSGA-II and gSMS-EMOA, are variants of
the original NSGA-II and SMS-EMOA algorithms modified to incorporate the
concept of g-dominance [10]. NSGA-II [4] is by far the most well-known and
used multi-objective evolutionary algorithm, and it is characterized by following
a generational scheme which applies a non-dominated sorting algorithm and the
crowding distance density estimator to promote, respectively, convergence and
diversity. SMS-EMOA [16] is a typical representative of indicator-based multi-
objective evolutionary metaheuristics; it is based on a steady-state version of
NSGA-II but replacing the crowding distance by the hypervolume contribution.
None of the algorithms evaluated in this paper requires additional parameter
to determine the extent of the region of interest. Algorithms requiring so, like
R-NSGA-II [17] or RPSO-SS [18], are out of the scope of this initial analysis.

All the solvers share common parameter settings. The population/swarm size
is set to 100. The stopping condition is to compute 25,000 function evaluations.
The mutation operator (turbulence in SMPSO/RP) is the polynomial mutation,
applied with probability of 1/L (being L the number of decision variables of the
problem) and a distribution index of 0.20. gNSGA-II, gSMS-EMOA, and WASF-
GA apply SBX crossover with a probability of 0.9 and distribution index of 20.0.
As these three algorithms only allow indicating a reference point, SMPSO/RP is
configured with an external archive with capacity for 100 solutions. WASF-GA
generates 100 weight vectors with ε = 0.01.

As benchmark problems, we have selected the ZDT [19], DTLZ [20], and
WFG [21] families and we have solved them by indicating both an achiev-
able and an unachievable reference point. In this study, we have considered the
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Table 2. Median and interquartile range of the hypervolume quality indicator when
solving the problems indicating achievable reference points.

SMPSO/RP gSMS-EMOA gNSGAII WASF-GA
ZDT1 5.58e − 017.6e−05 5.58e − 016.6e−05 5.55e − 018.9e−04 5.57e − 014.7e−04
ZDT2 4.48e − 016.9e−05 4.48e − 019.4e−05 4.43e − 011.2e−03 4.46e − 015.7e−04
ZDT3 3.60e − 013.9e−05 3.59e − 019.7e−05 3.57e − 015.4e−04 3.57e − 013.2e−04
ZDT4 6.43e − 012.3e−04 6.40e − 014.3e−03 6.35e − 014.9e−03 6.38e − 014.2e−03
ZDT6 4.16e − 016.3e−05 4.12e − 011.4e−03 3.95e − 017.3e−03 4.03e − 012.4e−03
DTLZ1 4.94e − 017.7e−05 0.00e + 000.0e+00 0.00e + 000.0e+00 4.88e − 017.3e−03
DTLZ2 3.96e − 011.2e−04 3.96e − 011.5e−05 3.94e − 013.9e−04 3.96e − 012.2e−05
DTLZ3 2.85e − 018.7e−05 0.00e + 000.0e+00 0.00e + 000.0e+00 1.41e − 012.0e−01
DTLZ4 4.11e − 019.1e−05 4.11e − 012.8e−05 4.09e − 017.2e−04 4.10e − 014.1e−01
DTLZ5 4.12e − 019.0e−05 4.13e − 011.4e−05 4.11e − 015.1e−04 4.12e − 014.5e−05
DTLZ6 4.48e − 018.3e−05 0.00e + 000.0e+00 0.00e + 000.0e+00 5.25e − 029.0e−02
DTLZ7 3.05e − 012.7e−05 3.04e − 011.1e−01 3.03e − 011.1e−01 3.03e − 018.1e−05
WFG1 0.00e + 000.0e+00 0.00e + 000.0e+00 0.00e + 001.3e−02 0.00e + 003.5e−03
WFG2 4.74e − 013.4e−04 4.74e − 011.2e−03 4.73e − 011.2e−03 4.72e − 011.1e−03
WFG3 4.94e − 012.3e−04 4.94e − 011.1e−03 4.91e − 011.2e−03 4.93e − 017.4e−04
WFG4 3.51e − 018.8e−03 3.53e − 013.1e−05 3.51e − 017.0e−04 3.52e − 013.2e−04
WFG5 2.52e − 012.9e−05 2.52e − 012.5e−05 2.51e − 012.0e−04 2.51e − 012.6e−05
WFG6 4.48e − 011.1e−04 3.02e − 012.4e−01 3.10e − 011.8e−01 3.68e − 019.6e−02
WFG7 4.42e − 011.8e−04 4.43e − 012.6e−04 4.40e − 017.8e−04 4.42e − 014.2e−04
WFG8 2.56e − 017.5e−02 2.26e − 011.3e−03 2.26e − 011.2e−03 2.26e − 015.8e−04
WFG9 3.27e − 012.3e−04 3.26e − 013.7e−03 3.23e − 013.1e−03 3.25e − 013.4e−03

two-objective formulations of the DTLZ and WFG problems. As reference points,
we have chosen the ones defined in [6], summarized in Table 1.

To compare the four metaheuristics, we have executed 30 independent runs
per configuration and computed the hypervolume [22] as a quality indicator
to measure both the convergence and diversity of the obtained Pareto front
approximations. As this indicator needs a reference point to be calculated and
the Pareto fronts of all the problems are known, we have removed from the
reference fronts all the solutions that fall out of the region delimited by the
reference points.

We report in the tables summarizing the results the median and interquartile
range (IQR) as measures of central tendency and dispersion, respectively. With
the aim of providing these results with statistical confidence (in this study, p-
value = 0.05), we have applied Friedman’s ranking and Holm’s post-hoc multi-
compare tests [23] to know which algorithms are statistically worse than the
control one (i.e., the one with the best ranking).

5 Results and Discussion

Table 2 summarizes the obtained results when the indicated reference point is
achievable. The cells with dark and light gray background indicate the best and
second best hypervolume values, respectively. We observe that SMPSO/RP out-
performed the other techniques in 14 out of the 21 evaluated problems, followed
by gSMS-EMOA which obtained the best indicator values in 6 problems.

The results yielded when indicating unachievable reference points are
included in Table 3. SMPSO/RP is again the best performing algorithm since it
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Table 3. Median and interquartile range of the hypervolume quality indicator when
solving the problems indicating unachievable reference points.

SMPSO/RP gSMS-EMOA gNSGAII WASF-GA
ZDT1 5.19e − 017.5e−05 5.19e − 012.5e−04 5.14e − 011.1e−03 5.17e − 016.8e−04
ZDT2 4.53e − 013.7e−05 4.53e − 011.2e−04 4.48e − 019.5e−04 4.51e − 014.6e−04
ZDT3 4.91e − 012.9e−05 4.90e − 016.2e−04 4.87e − 012.7e−03 4.88e − 014.3e−04
ZDT4 5.69e − 012.6e−04 5.62e − 015.9e−03 5.58e − 017.4e−03 5.62e − 015.5e−03
ZDT6 4.30e − 014.5e−05 4.25e − 017.9e−04 4.10e − 013.5e−03 4.16e − 012.4e−03
DTLZ1 4.95e − 014.9e−05 4.87e − 012.3e−02 4.80e − 017.9e−02 4.89e − 015.8e−03
DTLZ2 3.10e − 016.9e−05 3.10e − 014.0e−05 3.07e − 014.5e−04 3.09e − 012.1e−05
DTLZ3 3.19e − 012.0e−04 0.00e + 000.0e+00 0.00e + 000.0e+00 1.67e − 012.4e−01
DTLZ4 3.91e − 012.4e−04 3.91e − 015.6e−05 3.89e − 014.4e−04 3.91e − 013.3e−05
DTLZ5 2.66e − 011.9e−04 2.66e − 013.6e−05 2.64e − 013.2e−04 2.66e − 011.6e−05
DTLZ6 3.11e − 011.6e−05 0.00e + 000.0e+00 0.00e + 000.0e+00 1.55e − 015.6e−02
DTLZ7 5.85e − 012.1e−05 5.85e − 014.3e−05 5.83e − 015.2e−04 5.59e − 014.8e−05
WFG1 0.00e + 006.8e−04 3.28e − 021.1e−01 1.66e − 011.3e−01 4.77e − 013.2e−01
WFG2 5.56e − 014.5e−04 5.54e − 012.4e−03 5.54e − 012.3e−03 5.53e − 013.2e−03
WFG3 4.95e − 013.4e−04 4.93e − 011.1e−03 4.90e − 012.2e−03 4.91e − 011.9e−03
WFG4 3.59e − 014.7e−03 3.66e − 015.9e−05 3.62e − 016.8e−04 3.65e − 014.6e−04
WFG5 2.20e − 011.1e−05 2.20e − 013.7e−05 2.18e − 013.8e−04 2.18e − 016.8e−06
WFG6 0.00e + 000.0e+00 0.00e + 000.0e+00 0.00e + 000.0e+00 0.00e + 000.0e+00
WFG7 3.70e − 016.0e−04 3.70e − 011.1e−04 3.67e − 019.6e−04 3.68e − 015.5e−04
WFG8 3.04e − 011.4e−02 2.87e − 013.3e−03 2.87e − 014.7e−03 2.87e − 013.2e−03
WFG9 2.85e − 015.1e−04 2.84e − 013.3e−03 2.81e − 013.3e−03 2.81e − 012.3e−03

obtained the best hypervolume values in 12 out of 21 the problems. Meanwhile,
the second best, gSMS-EMOA, only achieved the best results in 7 problems.

Table 4. Average Friedman’s rankings with Holm’s Adjusted p-values (0.05) of com-
pared algorithms when solving the problems indicating achievable (left) and unachiev-
able (right) reference points.

Achievable (IHV ) Unachievable (IHV )

Algorithm FriRank HolmAp Algorithm FriRank HolmAp

*SMPSO/RP 1.52 - *SMPSO/RP 1.59 -

gSMS-EMOA 2.09 1.51e−01 gSMS-EMOA 2.16 1.51e−01

WASF-GA 2.76 3.77e−03 WASF-GA 2.71 9.94e−03

gNSGAII 3.62 4.34e−07 gNSGAII 3.52 3.88e−06

As shown in Table 4, SMPSO/RP is the best ranked algorithm according
to Friedman’s test for achievable, as well as for unachievable reference points.
SMPSO/RP is then established as the control algorithm in the post-hoc Holm
tests. The adjusted p-values (HolmAp in Table 4) resulting from these compar-
isons are lower than the confidence level (0.05) for WASF-GA and gNSGAII,
which means that differences between SMPSO/RP and these two algorithms are
statistically significant.

To have an insight of the time reductions when running SMPSO/RP in
a multi-core system, we have executed it on a machine featuring a quad-core
Intel i7 at 2.2. GHz and 16 GB of 1600 MHz DDR3 RAM with hyper-threading
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enabled. In particular we have performed these execution using 1, 2, 4 and 8
threads when solving the ZDT4 problem and reference point (0.5, 0.5). We have
added an idle loop inside the objective functions to increase their computing.
The times obtained are 61.5, 45.5, 30.85 and 19.45 s, which mean speed-ups of
1.3, 1.99 and 3.16 with 2, 4, and 8 threads respectively. These speed-ups are
expected because, as commented in Sect. 3, only the function evaluations are
performed in parallel. Nevertheless, the time reductions are significant and have
been achieved with neither major changes in the code nor extra configuration.

6 Use Case

This section describes the application of SMPSO/RP to a real-world problem in
the field of structural design. The selected problem aims to optimize the design
of a cable stayed-bridge having two objectives (total weight and deformation),
encompassing 26 decision variables and 68 constraints [24].

We assume here that a civil engineer is interested in finding the region of the
front including solutions with the lowest weights. Without any initial knowledge
regarding the weight of different solutions, the starting reference point for the
civil engineer is set to (0.0, 0.0) and he/she interactively changes it during the
search as information about different computed structures is obtained. A possible
execution is shown in Fig. 4 and is described next:

1. Generation 14: Reference point: (0.0, 0.0). The algorithm is looking for a first
feasible solution.

2. Generation 64: SMPSO/RP has found a feasible region and a set of non-
dominated solutions.
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Fig. 4. Example of guiding the search in the structural design problem. Each plot
depicts the front at generation 14, 64, 104, 208, 278, 465, 534, and 599, respectively.
The reference point changes from (0.0, 0.0) to (0.2, 0.05), (0.18, 0.042), and (0.17, 0.039).
The x-axis represents the weight and the y-axis the deformation.
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3. Generation 104. The reference point is changed to (0.2, 0.05), which currently
is unfeasible.

4. Generation 208. The front is evolving towards the current reference point.
5. Generation 278. The current reference point is feasible and the computed

front of solutions is spreading.
6. Generation 465. The reference point is changed to (0.18, 0.042), which is cur-

rently unfeasible.
7. Generation 534. The current reference point is feasible and the computed

front of solutions is spreading.
8. Generation 599. The reference point is changed to (0.17, 0.039), which is cur-

rently unfeasible. At this stage, the engineer is satisfied with the solutions
obtained and the optimization process is stopped.

7 Conclusions and Future Research Lines

We introduced SMPSO/RP, an extension of the SMPSO incorporating a prefer-
ence articulation mechanism based on indicating reference points. Our approach
allows changing the reference points interactively and evaluating particles of the
swarm in parallel. SMPSO/RP is implemented within the jMetal framework and
its source code is freely available.

We have compared our proposal against three other related algorithms on a
benchmark composed of 21 problems. Our results indicate that SMPSO/RP
achieved the best overall performance when indicating both achievable and
unachievable reference points. We have also measured the time reductions
that have been achieved when running the algorithm in a multi-core processor
platform.

As a line of future work, we are working on adapting SMPSO/RP to efficiently
deal with many-objective problems. This implies to rethink the archiving policy
and derive novel Pareto density metrics suitable for such problem formulations.
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