
Towards Large-Scale Multiobjective
Optimisation with a Hybrid Algorithm

for Non-dominated Sorting

Margarita Markina and Maxim Buzdalov(B)

ITMO University, 49 Kronverkskiy prosp., Saint-Petersburg 197101, Russia
margaritam2706@gmail.com, mbuzdalov@gmail.com

Abstract. We present an algorithm for non-dominated sorting that is
suitable for large-scale multiobjective optimisation. This algorithm is a
hybrid of two previously known algorithms: the divide-and-conquer algo-
rithm initially proposed by Jensen, and the non-dominated tree algo-
rithm proposed by Gustavsson and Syberfeldt.

While possessing the good worst-case asymptotic behaviour of the
divide-and-conquer algorithm, the proposed algorithm is also very effi-
cient in practice. In our experimental study it is shown to outperform
both of its parents on the majority of problem instances, both sampled
uniformly from a hypercube and having a single front, with as large as
106 points and up to 15 objectives.

Keywords: Multiobjective optimisation · Non-dominated sorting
Large-scale optimisation

1 Introduction

Many real-world optimisation problems are inherently multiobjective, that is,
they require maximizing or minimizing not a single objective, but several ones,
which often conflict with each other. For this reason, there are typically many
optimal solutions which are incomparable and trade one objective for another.
Even in the conditions that only one of these solutions must be chosen, this choice
is often advised to be done lately, as the acquired knowledge of the problem can
influence the preferences of the decision maker [1].

According to the tutorial [1], most general-purpose evolutionary multiobjec-
tive algorithms that do not try to incorporate the prior knowledge or user pref-
erences belong to three categories: Pareto-based [5–7,26], indicator-based [25],
and decomposition-based [23] algorithms.

In turn, Pareto-based algorithms can be classified by how they rank or select
solutions. Some of them maintain an archive of non-dominated solutions [3,5,
13], others perform non-dominated sorting [6,7], use domination count [9] or
domination strength [26] to assign fitness values. In this paper, we consider non-
dominated sorting, as many popular algorithms rely on this procedure [6,7].
c© Springer Nature Switzerland AG 2018
A. Auger et al. (Eds.): PPSN 2018, LNCS 11101, pp. 347–358, 2018.
https://doi.org/10.1007/978-3-319-99253-2_28

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-99253-2_28&domain=pdf

348 M. Markina and M. Buzdalov

1.1 Non-dominated Sorting: Definition and Algorithms

From now on we assume, without loss of generality, that we need to minimize
all objectives. We also explicitly state that in this paper we consider only the
objective space and ignore the existence of decision variables and the questions
of genotype-to-phenotype mapping. Throughout the paper, we denote as M the
number of objectives.

To define non-dominated sorting, we first need to introduce the Pareto dom-
inance relation. A point p is said to dominate a point q, denoted as p ≺ q, if for
every objective index i, 1 ≤ i ≤ M , it holds that pi ≤ qi, and there exists an
index j such that pj < qj .

Non-dominated sorting assigns ranks to solutions from the solution set P
in the following way: every solution from P that is not dominated by any other
solution from P gets rank 0, and every solution which is dominated by at least one
solution of rank i gets rank i+1. A set of all points having the same rank is often
called a front, a level or a layer. In the work where this procedure was originally
proposed [20], it was performed in O(N3M), where N is the population size.
This was later improved to be O(N2M) in a subsequent work that introduced
the famous NSGA-II algorithm [7].

In NSGA-II, non-dominated sorting determines the computational complex-
ity of a single iteration, as all other parts of an iteration scale better as N grows.
This poses a problem either when fitness evaluation and variation operators are
cheap, or when the population size N is large. As a result, there is quite a num-
ber of works dedicated to reduction of either theoretical complexity or practical
running times of non-dominated sorting. Due to space limitations, we cannot
consider each work in detail, nor can we cite all of them, so we just briefly
describe the two prevailing directions.

The first direction aims at developing algorithms that work efficiently on
inputs common to evolutionary multiobjective optimisation, but their worst-
case time is still Ω(N2M). A remarkable number of papers belongs to this direc-
tion [8,11,16,18,22,24], where most of the algorithms have Θ(N2M) worst-case
complexity, while Deductive Sort [16] can be forced to run in Θ(N3M) time.
Among these, the best performing algorithms to date are Best Order Sort [18]
and the ENS-NDT algorithm [11].

The second direction tries to reduce not only the running times, but also the
computational complexity. Jensen [12] was the first to adapt the earlier result
of Kung et at. [14], who solved the problem of finding non-dominated solu-
tions in O(N(log N)max(1,M−2)), to non-dominated sorting. This algorithm has
the worst-case complexity of O(N(log N)M−1). However, this algorithm could
not handle coinciding objective values, which was later corrected in subsequent
works [2,10].

We shall also note that in a different community, where this problem is
called layers of maxima, an algorithm for M = 3 was found [17], whose com-
plexity is O(N(log log N)2) with the use of randomized data structures, or
O(N(log log N)3) for deterministic ones. Whether this algorithm is useful in
practice is still an open question.

Towards Large-Scale Multiobjective Optimisation with a Hybrid Algorithm 349

Finally, we should mention our own recent work [15], where we tried to unify
the benefits of the two directions above under the cover of a single algorithm.
Our current paper builds on some of the insights of that paper and pushes these
ideas towards a new level of quality.

1.2 Our Motivation and Contribution

Apart from a purely fundamental desire to develop efficient algorithms for hard
problems, our research is motivated by a very important practical problem: the
multiobjective in-core fuel management optimisation problem, instances of which
needs to be solved during the functioning of a nuclear reactor. This problem
is a hard combinatorial optimisation problem, the solutions of which need to
optimise a number of contradicting objectives, such as the power received from
the reactor, the amount of neutrons flying out from the reactor and more.

In a multiobjective setting, this problem attracted significant attention in the
recent years. Several approaches used in practice use algorithms that employ non-
dominated sorting. The reader is directed to the dissertation of Evert Schlünz
for further reading [19]. An application of simulated annealing to this problem
recommended numbers of samples up to 105 already in 1995 [21], which become
population sizes in multiobjective settings and can nowadays rise up to 106.

In this paper, we consider hybridising the divide-and-conquer approach, ini-
tially proposed by Jensen [12] and subsequently refined by Fortin et al. [10] and
Buzdalov and Shalyto [2], and the recently proposed ENS-NDT approach by
Gustavsson and Syberfeldt [11]. The latter algorithm is used to solve subprob-
lems, which are created by the divide-and-conquer algorithm and have small
enough sizes. This particular scheme resembles the production-ready implemen-
tations of the mergesort algorithm, which delegate small sub-arrays to the inser-
tion sort.

In the case of non-dominated sorting, however, the subproblems are not com-
pletely equivalent to the initial non-dominated sorting problem. The straightfor-
ward adaptation of the ENS-NDT algorithm to solving these subproblems has
rendered invalid a number of its invariants, which appear to be necessary for fast
operation of the algorithm. This forced us to develop a slightly different version
of ENS-NDT, which also appeared to be interesting on its own: in particular, it
appeared to be more efficient than the original version for smaller values of M .

Our experiments show that our hybrid algorithm tends to outperform both
its origins, namely, the ENS-NDT algorithm (including its variation developed
by us) and the divide-and-conquer algorithm, especially for large problem sizes
(N > 105). This claim is supported by experimental results on two types of data
(the “uniform hypercube”, also known as the “cloud dataset”, and the “uniform
hyperplane” that consists of a single front) with M up to 15 and N up to 106.

The rest of the paper is structured as follows. Section 2 describes the nec-
essary details of the divide-and-conquer algorithm, as well as of ENS-NDT.
Section 3 presents the modified version of the ENS-NDT algorithm, that is used
in the hybrid, as well as the hybrid itself. Experiments are presented and dis-
cussed in Sect. 4. Finally, Sect. 5 concludes.

350 M. Markina and M. Buzdalov

2 Preliminaries: The Algorithms to Hybridise

In this section, we describe the two algorithms, that we are going to use, in more
detail. We start with the divide-and-conquer approach by Jensen [12], however,
we use the version taken from [2] which is provably correct on every input unlike
the algorithm from [12] and unlike the algorithm from [10] has a provably fast
asymptotic behaviour. The second algorithm will be the non-dominated tree
approach from [11], which is also known as ENS-NDT.

We assume that we perform non-dominated sorting on a set of points P
from the M -dimensional objective space. Since non-dominated sorting is based
entirely on the Pareto dominance relation, we can safely assume that this objec-
tive space is R

M , as otherwise we can sort all points in every objective and
transform objectives into integers while preserving Pareto dominance.

2.1 The Divide-and-Conquer Algorithm

The divide-and-conquer algorithm is based on the following observation. Assume
we took some value q of the j-th objective and we split the set of points P into
two sets, the set PL = {p ∈ P | pj ≤ q} and PR = {p ∈ P | pj > q}. Then no
point from PR can dominate any point from PL, because every point from PL

is less than any point from PR in the j-th objective. So we can find the ranks
for points PL on their own, then perform the necessary comparisons between
points from PL and from PR, always having points from PL on the left side of
the dominance relation to be checked, and, finally, refine the ranks for points
from PR by comparing them one to another.

The operations on PL and PR alone can be implemented in mostly the same
way (again choosing an objective, splitting into halves and performing the same
actions on the halves), thus allowing a recursive implementation. The operation
on two arguments, PL and PR, is different, but it can also benefit from divide-
and-conquer: if we split both sets of points, using the same value q of the same
objective, into sets LL, LR, RL and RR, we can use the same procedure on pairs
LL and RL, LL and RR, LR and RR, but we can avoid calling it on LR and RL.

For performance reasons, the value q is always chosen to be a median of the
set of j-th objectives, and all sets are split into three parts (less than q, equal to
q and greater than q). What is more, the objective j is always chosen to be the
maximum objective in which the comparison still makes sense: in HelperA all
points have the same value for every objective greater than j, and in HelperB
every l ∈ L dominates every r ∈ R in all objectives greater than j.

To complete the algorithm, one needs to provide recursion terminators. There
are two types of them: the first ones trigger when one of the sets becomes too
small, the second ones are called when only two meaningful objectives remain.
The former case is solved straightforwardly. For the latter case, a special sweep-
line algorithm is used, which is described in detail in [12].

The outline of the algorithm is given in Algorithm1. The runtime of the
sweep line subroutines is known to be O(n log n) where n is the number of
points supplied. Using this fact, and by noticing that max(|PL|, |PR|) ≤ 1/2 · |P |

Towards Large-Scale Multiobjective Optimisation with a Hybrid Algorithm 351

Algorithm 1. The outline of the divide-and-conquer algorithm
function DivideConquerSorting(P , M)

HelperA(P , M)
end function
function HelperA(P , m)

if |P | ≤ 1 then
return

else if |P | = 2 then
Compare points in first m objectives

else if m = 2 then
Run the sweep line subroutine

else
q ← Median({pm | p ∈ P})
〈PL, PM , PR〉 ← Split(P,m, q)
HelperA(PL, m)
HelperB(PL, PM , m − 1)
HelperA(PM , m − 1)
HelperB(PL ∪ PM , PR, m − 1)
HelperA(PR, m)

end if
end function
function HelperB(L, R, m)

if |L| ≤ 1 or |R| ≤ 1 then
Compare all pairs of points in first m objectives

else if m = 2 then
Run the sweep line subroutine

else
q ← Median({pm | p ∈ L ∪ R})
〈LL, LM , LR〉 ← Split(L,m, q)
〈RL, RM , RR〉 ← Split(R,m, q)
HelperB(LL, RL, m)
HelperB(LR, RR, m)
HelperB(LL ∪ LM , RM ∪ RR, m − 1)

end if
end function

and max(|LL| + |RL|, |LR| + |RR|) ≤ 1/2 · (|L| + |R|), one can use the Master
theorem for solving recurrence relations [4] and prove the O(|P | · (log |P |)M−1)
worst-case running time bound.

Note that even the HelperA function solves a more general problem than
non-dominated sorting: this function must cope with the existing lower bounds
on ranks, arising from comparisons of points from the set P with points outside
this set. From this point of view, HelperB can be seen as the function that
upgrades ranks of points from the set R by comparing them with points from
the set L, whose ranks are known and will not subsequently change. It is possible
to switch to other algorithms instead of HelperA and HelperB, for instance
on smaller sizes to improve performance, if they produce the expected result.

352 M. Markina and M. Buzdalov

2.2 The ENS-NDT Algorithm

This algorithm belongs to another family of algorithms for non-dominated sort-
ing, termed Efficient Non-dominated Sorting, or ENS [24]. The main idea is to
first sort all points lexicographically (by comparing the first objectives, move
on to the second objectives if the first are equal, and continuing this way).
A point cannot dominate any other point which comes before in the lexico-
graphical order. The algorithm then traverses the points in the sorted order,
while maintaining some data structure that makes comparisons with the pre-
vious points faster. For each point, first a rank query is performed against the
data structure, then the point with the determined rank is added to that data
structure.

Two algorithms from this family, ENS-SS and ENS-BS [24], maintain a list
of already ranked points for each rank value, and for each such list the domi-
nance check is performed, starting with the most recently added point. They are
different in that ENS-SS performs the sequential search for a rank, starting with
the first one, and ENS-BS performs binary search for a rank.

The ENS-NDT algorithm proposed by Gustavsson and Syberfeldt [11],
instead of a list, uses a k-d tree (this name comes from a “k-dimensional tree”) to
store points of each rank. To do this efficiently, the objective space is partitioned
in advance: first all points are split by the M -th objective into two approximately
equal parts (using the median similarly to the divide-and-conquer algorithm),
then every such part is further partitioned into halves using the (M−1)-th objec-
tive and so on. After the second objective, the M -th objective comes again, as
splitting in the first objective never makes sense. Every tree that stores the points
will subsequently use this space partitioning scheme.

Ranking a newly inserted point is performed by running binary search for
the rank, and for each rank a query to the k-d tree is made. The tree is traversed
from the root towards the leaves. When the branching node is visited, its child
corresponding to smaller objective values is always visited, while its other child
is visited only if the splitting value stored in the node is not greater than the
corresponding objective of the query point. Dominance comparisons in leaves are
made straightforwardly, and if one of them succeeds, the procedure terminates.

The possibility of skipping entire subtrees determines the impressive perfor-
mance of this algorithm. In particular, for many distributions of input points
one can show a constant upper bound α on the probability of entering a node
child corresponding to a higher objective value. This immediately gives the upper
bound of O(M ·N log2(1+α)) per one query and O(M ·N1+log2(1+α)) for the entire
run, which is strictly faster than Θ(N2M) when α < 1.

It is, however, possible to observe the Θ(N2M) running time of this algorithm
on an input described by three numbers N , M and k, where N is the number
of points, M is the number of objectives and 1 ≤ k ≤ M is the index of the
“special” objective. The point P (i), 1 ≤ i ≤ N , of this input will have the
objective value P

(i)
j = i for all j �= k and P

(i)
k = N − i. The choice of k that

degrades the performance most prominently depends on the implementation,
but k = 1 or k = M may be good choices. With this input, there will always be
one front, and each ranking query will visit almost the entire tree.

Towards Large-Scale Multiobjective Optimisation with a Hybrid Algorithm 353

3 The Proposed Algorithms

In this section, we first explain the problems which arise when adapting ENS-
NDT, and many more algorithms, to serve as the replacements for HelperA
and HelperB of the divide-and-conquer algorithm. Then we introduce ENS-
NDT-ONE, a modification of ENS-NDT that uses only one k-d tree instance
and is capable of working as HelperA and HelperB. Finally, we describe the
hybrid algorithm.

3.1 Loss of Monotonicity in HelperB

At the first glance, it should be trivial to adapt ENS-NDT, as well as other
algorithms from the ENS family, to serve as HelperB. Given the point sets
L and R, one has to traverse their union in the lexicographical order. When a
point from L is encountered, it is added to the data structure with its already
known rank. When a point from R is encountered, one needs to query the data
structure for the rank of this point, but one must not add this point to the data
structure. This way, all necessary comparison between the points from L and
from R will be performed.

The problem with this approach is that, in order to work correctly, the imple-
mentations of the algorithms shall stop relying on certain invariants that improve
performance, and, as a result, the performance can significantly degrade. In the
case of ENS-NDT and ENS-BS, this important invariant is monotonicity, which
enables binary search. The invariant can be formulated as follows: if the front
k +1 dominates the point, then the front k also dominates it. We now show that
this invariant can be violated inside HelperB.

Consider points p0 = (1, 3, 9, 1), p1 = (1, 5, 5, 3), p2 = (1, 6, 2, 4), p3 = (1, 6,
7, 4), p4 = (1, 6, 7, 7), p5 = (1, 9, 1, 5), p6 = (2, 1, 6, 7), p7 = (2, 6, 5, 6), p8 =
(4, 8, 2, 7), p9 = (5, 3, 3, 8). The first call to HelperA splits them into PL =
{p0, p1, p2, p3}, PM = {p5}, PR = {p4, p6, p7, p8, p9}. By the time HelperB(PL∪
PM , PR, 3) is called, p0 will have rank 0 and p3 will have rank 1. This call will
partition these sets around the median of the third objective, which is 5, such
that LR = {p0, p3} and RR = {p4, p6}. Once HelperB(LR, RR, 3) is called,
the point p4 will be found to be dominated by p3 of rank 1, but the front
corresponding to rank 0 will consist only of point p0, which does not dominate
p4. This means that there is no monotonicity anymore, and binary search for
the rank is no longer valid.

The same problem makes it impossible for ENS-SS to test ranks in the
increasing order. The original ENS-SS stops once a front is found that does
not dominate the point. We now know that inside HelperB this can result in a
preliminary termination. The valid strategy in these conditions is to test ranks
in the decreasing order, and to stop once the front is found that does dominate
the point. Again, this reduces the performance of the ENS-SS algorithm, as,
unlike the original version, most fronts are now traversed to their very end.

We overcome this problem by adapting ENS-NDT in such a way that it does
not have to rely on monotonicity of fronts, while retaining a decent performance.

354 M. Markina and M. Buzdalov

Rank 0 tree Rank 1 tree Rank 2 tree

Fig. 1. The way ENS-NDT uses its k-d trees. Each tree is associated with a rank value,
and stores only points with that rank.

0 1 0 2

1 2

2 2

2 1

1 1

1 0 0 1

2

Fig. 2. The way ENS-NDT-ONE uses its only k-d tree. All points reside in the same
tree, and each node additionally stores the maximum rank of a point in its subtree.

3.2 The ENS-NDT-ONE Algorithm

We propose a new algorithm for non-dominated sorting, termed ENS-NDT-ONE,
that is based on ENS-NDT, however, unlike its ancestor, it does not maintain
separate trees for storing points of different ranks. Instead, all points now reside
in a single k-d tree.

One of the performance advantages of ENS-NDT is that, while completing
the rank query for a point p, once a point in a tree is found to dominate p, it is
possible to quit that tree immediately, since no more points from that tree can
influence the rank of p. This is not so in ENS-NDT-ONE, as there can be points
with the same or a greater rank compared to the updated rank of p.

To compensate for this performance loss, we propose to store in each tree
node the value of the maximum rank among all points in the subtree rooted
at this node. With this information in hand, we can now refrain from visiting
the node (and all nodes in its subtree) if the maximum rank is less than the
current rank of the point p being queried. The maximum ranks of nodes are
also straightforwardly updated on insertion of a point. See Figs. 1 and 2 for
comparison of the principles beneath ENS-NDT and ENS-NDT-ONE.

Towards Large-Scale Multiobjective Optimisation with a Hybrid Algorithm 355

The worst-case running time of this algorithm is Θ(N2M), which is demon-
strated by the same construction as we used for ENS-NDT. However, for
many cases the running time is much smaller. For instance, if the points to
be sorted are sampled uniformly from a hypercube [0; 1]M , then we can see
that Θ(N) points will have a probability of at most 1/2 to enter both chil-
dren of every particular branching node of the tree. This immediately gives the
O(MN1+log2(3/2)) ≈ O(MN1.585) runtime bound. Similar results can be shown
for other distributions, and the bounds can be further reduced by considering
the distribution of ranks.

3.3 The Hybrid Algorithm

We can now formulate the hybrid algorithm. We take the divide-and-conquer
algorithm as a basis, however, before we enter the main parts of HelperA or
HelperB, we check whether the subproblem is small enough. If it is, we use the
ENS-NDT-ONE algorithm to solve this subproblem. Since ENS-NDT-ONE is
immune to the features of these subproblems, such as the loss of monotonicity,
the resulting algorithm will always produce correct results.

More formally, we define, for every number of objectives, a threshold which
signifies that every subproblem with this number of objectives and the size below
the threshold should be delegated to ENS-NDT-ONE. For HelperA, the size
of the problem is the size of the set P , while for HelperB this is the sum of
sizes of the sets L and R.

We shall note that, since we define thresholds to be constants, the asymp-
totic estimation of the running time of this algorithm is still O(N(log N)M−1).
However, we note that more careful choices for thresholds, that possibly depend
on the number of objectives or on other properties of the subproblems, may
possibly result in smaller runtime bounds. Due to the complexity of this issue,
including strong dependency on inputs, we leave this for possible future work.

4 Experiments and Discussion

All mentioned algorithms were implemented in Java within the same algorithmic
framework, which enabled sharing large code amounts between the algorithms.
These implementations are available on GitHub1 along with performance plots.

All the algorithms, except for the original divide-and-conquer algorithm, fea-
ture parameters that influence their performance. In particular, the ENS-NDT
algorithm and its derivatives have the split threshold parameter which regulates
the maximum possible size of the terminal node. In [11] this parameter was fixed
to the value of 2, however, our preliminary experiments found that the value of
8 brings generally better performance. This difference can be attributed to the
differences in implementations. We used the split threshold of 8 for ENS-NDT,
ENS-NDT-ONE, as well as in the ENS-NDT-ONE part of the hybrid algorithm.

1 https://github.com/mbuzdalov/non-dominated-sorting/releases/tag/v0.1.

https://github.com/mbuzdalov/non-dominated-sorting/releases/tag/v0.1

356 M. Markina and M. Buzdalov

Table 1. Average running times of the algorithms in seconds. The smallest running
time, for each category, is marked grey. All standard deviations are less than 2%.

N M Divide&Conquer ENS-NDT ENS-NDT-ONE Hybrid
hypercube hyperplane hypercube hyperplane hypercube hyperplane hypercube hyperplane

5 · 105 3 1.52 0.85 1.95 0.73 1.66 0.76 1.17 0.67
106 3 2.82 1.60 5.25 1.61 4.25 1.65 2.63 1.50

5 · 105 5 22.7 16.6 8.31 2.01 6.25 2.22 6.43 4.68
106 5 45.2 33.0 26.3 5.22 18.2 5.82 17.2 12.8

5 · 105 7 89.6 55.1 17.1 6.96 15.5 6.78 9.29 7.02
106 7 191.5 120.2 55.4 19.4 46.1 18.9 26.8 20.1

5 · 105 10 197.7 99.9 27.6 15.9 36.7 17.7 14.5 11.5
106 10 478.8 228.6 84.8 48.1 104.8 55.0 41.0 33.0

5 · 105 15 190.0 116.1 40.8 23.0 62.1 25.9 22.6 15.7
106 15 587.9 337.5 135.4 76.3 206.8 85.4 64.5 46.0

The hybrid algorithm also depends on the switch-to-tree threshold values.
Based on our preliminary investigations, we chose this threshold for three objec-
tives to be 100, and for more than three objectives to be 20 000.

We have investigated the performance of all these algorithms, including the
ENS-NDT-ONE alone, on several artificial inputs. We used two types of data.
The first one is the “uniform hypercube”, which is also known as the “cloud
dataset” in the literature, where points are sampled uniformly at random from
the [0; 1]M hypercube. The second one is the “uniform hyperplane”, where points
are sampled uniformly at random from the piece of a hyperplane, such that all
coordinates are non-negative and sum up to 1. The following values of N were
tested: {1, 2, 5} × {10, 102, 103, 104, 105} and 106. We considered M to be from
the set {3, 5, 7, 10, 15}, which covers the most widely used range.

For every input configuration, 10 instances were created with different but
fixed random seeds. We measured the total times on all these instances and
divided them by 10 to achieve an approximation of the average time. The time
measurements were done using the Java Microbenchmark Harness suite with one
warmup iteration of at least 6 seconds, which was enough for the entire bytecode
to be translated to the native code, and one measurement iteration of at least
one second. For each pair of algorithm and input, five measurement runs were
conducted. A high-performance server with AMD OpteronTM 6380 processors
and 512 GB of RAM was used, and the code was run with the OpenJDK virtual
machine 1.8.0 141.

The already mentioned GitHub release features the plots of the running
times, which could not fit in this paper due to space restrictions. In Table 1,
we show only the average results for two largest N , 5 · 105 and 106. One can see
that the hybrid algorithm wins in all cases except for M = 5 and the hyperplane
instance of M = 7. One more insight is that ENS-NDT-ONE runs faster than
ENS-NDT on hypercube instances with M ≤ 7, which means that the maxi-
mum subtree rank heuristic is indeed efficient. The implementation constant of
ENS-NDT-ONE seems to be slightly larger, however.

Towards Large-Scale Multiobjective Optimisation with a Hybrid Algorithm 357

5 Conclusion

We proposed a highly efficient algorithm for non-dominated sorting based on
hybridisation of two previously known algorithms, the divide-and-conquer algo-
rithm by Jensen and the non-dominated tree (ENS-NDT) by Gustavsson and
Syberfeldt. It typically outperforms both of its parents on large population sizes,
except for certain ranges of population sizes in several dimensions. Our modifica-
tion of ENS-NDT is also of interest, as it can outperform the original ENS-NDT.

We are probably the first to report results on 106 solutions. Some industrial
applications of evolutionary multiobjective optimisation already require pop-
ulation sizes that are this large. As divide-and-conquer algorithms often offer
parallelisation benefits, and our algorithm is not an exception, we hope to get
further speed-ups by adapting our algorithm to multicore computers.

The optimal choice of thresholds to decide when to switch to ENS-NDT is
an open and difficult question. We expect that adaptation of thresholds while
running the algorithm can overcome this issue.

Acknowledgment. We would like to acknowledge the support of this research by the
Russian Scientific Foundation, agreement No. 17-71-20178.

References

1. Brockhoff, D., Wagner, T.: GECCO 2016 tutorial on evolutionary multiobjective
optimization. In: Proceedings of Genetic and Evolutionary Computation Confer-
ence Companion, pp. 201–227 (2016)

2. Buzdalov, M., Shalyto, A.: A provably asymptotically fast version of the generalized
jensen algorithm for non-dominated sorting. In: Bartz-Beielstein, T., Branke, J.,
Filipič, B., Smith, J. (eds.) PPSN 2014. LNCS, vol. 8672, pp. 528–537. Springer,
Cham (2014). https://doi.org/10.1007/978-3-319-10762-2 52

3. Coello Coello, C.A., Toscano Pulido, G.: A micro-genetic algorithm for multiobjec-
tive optimization. In: Zitzler, E., Thiele, L., Deb, K., Coello Coello, C.A., Corne,
D. (eds.) EMO 2001. LNCS, vol. 1993, pp. 126–140. Springer, Heidelberg (2001).
https://doi.org/10.1007/3-540-44719-9 9

4. Cormen, T.H., Leiserson, C.E., Rivest, R.L., Stein, C.: Introduction to Algorithms,
2nd edn. MIT Press, Cambridge (2001)

5. Corne, D.W., Jerram, N.R., Knowles, J.D., Oates, M.J.: PESA-II: Region-based
selection in evolutionary multiobjective optimization. In: Proceedings of Genetic
and Evolutionary Computation Conference, pp. 283–290. Morgan Kaufmann Pub-
lishers (2001)

6. Deb, K., Jain, H.: An evolutionary many-objective optimization algorithm using
reference-point-based nondominated sorting approach, part I: solving problems
with box constraints. IEEE Trans. Evol. Comput. 18(4), 577–601 (2013)

7. Deb, K., Pratap, A., Agarwal, S., Meyarivan, T.: A fast and elitist multi-objective
genetic algorithm: NSGA-II. IEEE Trans. Evol. Comput. 6(2), 182–197 (2002)

8. Fang, H., Wang, Q., Tu, Y.C., Horstemeyer, M.F.: An efficient non-dominated
sorting method for evolutionary algorithms. Evol. Comput. 16(3), 355–384 (2008)

https://doi.org/10.1007/978-3-319-10762-2_52
https://doi.org/10.1007/3-540-44719-9_9

358 M. Markina and M. Buzdalov

9. Fonseca, C.M., Fleming, P.J.: Nonlinear system identification with multiobjective
genetic algorithm. In: Proceedings of the World Congress of the International Fed-
eration of Automatic Control, pp. 187–192 (1996)

10. Fortin, F.A., Grenier, S., Parizeau, M.: Generalizing the improved run-time com-
plexity algorithm for non-dominated sorting. In: Proceedings of Genetic and Evo-
lutionary Computation Conference, pp. 615–622. ACM (2013)

11. Gustavsson, P., Syberfeldt, A.: A new algorithm using the non-dominated tree to
improve non-dominated sorting. Evol. Comput. 26(1), 89–116 (2018)

12. Jensen, M.T.: Reducing the run-time complexity of multiobjective EAs: the NSGA-
II and other algorithms. IEEE Trans. Evol. Comput. 7(5), 503–515 (2003)

13. Knowles, J.D., Corne, D.W.: Approximating the nondominated front using the
pareto archived evolution strategy. Evol. Comput. 8(2), 149–172 (2000)

14. Kung, H.T., Luccio, F., Preparata, F.P.: On finding the maxima of a set of vectors.
J. ACM 22(4), 469–476 (1975)

15. Markina, M., Buzdalov, M.: Hybridizing non-dominated sorting algorithms: divide-
and-conquer meets best order sort. In: Proceedings of Genetic and Evolutionary
Computation Conference Companion, pp. 153–154 (2017)

16. McClymont, K., Keedwell, E.: Deductive sort and climbing sort: new methods for
non-dominated sorting. Evol. Comput. 20(1), 1–26 (2012)

17. Nekrich, Y.: A fast algorithm for three-dimensional layers of maxima problem. In:
Dehne, F., Iacono, J., Sack, J.-R. (eds.) WADS 2011. LNCS, vol. 6844, pp. 607–618.
Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-22300-6 51

18. Roy, P.C., Islam, M.M., Deb, K.: Best Order Sort: a new algorithm to non-
dominated sorting for evolutionary multi-objective optimization. In: Proceedings
of Genetic and Evolutionary Computation Conference Companion, pp. 1113–1120
(2016)

19. Schlünz, E.B.: Multiobjective in-core fuel management optimisation for nuclear
research reactors. Ph.D. thesis, Stellenbosch University, December 2016

20. Srinivas, N., Deb, K.: Multiobjective optimization using nondominated sorting in
genetic algorithms. Evol. Comput. 2(3), 221–248 (1994)

21. Stevens, J., Smith, K., Rempe, K., Downar, T.: Optimization of pressurized water
reactor shuffling by simulated annealing with heuristics. Nucl. Sci. Eng. 121(1),
67–88 (1995)

22. Wang, H., Yao, X.: Corner sort for pareto-based many-objective optimization.
IEEE Trans. Cybern. 44(1), 92–102 (2014)

23. Zhang, Q., Li, H.: MOEA/D: a multiobjective evolutionary algorithm based on
decomposition. IEEE Trans. Evol. Comput. 11(6), 712–731 (2007)

24. Zhang, X., Tian, Y., Cheng, R., Jin, Y.: An efficient approach to nondominated
sorting for evolutionary multiobjective optimization. IEEE Trans. Evol. Comput.
19(2), 201–213 (2015)

25. Zitzler, E., Künzli, S.: Indicator-based selection in multiobjective search. In: Yao,
X., Burke, E.K., Lozano, J.A., Smith, J., Merelo-Guervós, J.J., Bullinaria, J.A.,
Rowe, J.E., Tiňo, P., Kabán, A., Schwefel, H.-P. (eds.) PPSN 2004. LNCS, vol.
3242, pp. 832–842. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-
540-30217-9 84

26. Zitzler, E., Laumanns, M., Thiele, L.: SPEA2: improving the strength pareto evo-
lutionary algorithm for multiobjective optimization. In: Proceedings of the EURO-
GEN 2001 Conference, pp. 95–100 (2001)

https://doi.org/10.1007/978-3-642-22300-6_51
https://doi.org/10.1007/978-3-540-30217-9_84
https://doi.org/10.1007/978-3-540-30217-9_84

	Towards Large-Scale Multiobjective Optimisation with a Hybrid Algorithm for Non-dominated Sorting
	1 Introduction
	1.1 Non-dominated Sorting: Definition and Algorithms
	1.2 Our Motivation and Contribution

	2 Preliminaries: The Algorithms to Hybridise
	2.1 The Divide-and-Conquer Algorithm
	2.2 The ENS-NDT Algorithm

	3 The Proposed Algorithms
	3.1 Loss of Monotonicity in HelperB
	3.2 The ENS-NDT-ONE Algorithm
	3.3 The Hybrid Algorithm

	4 Experiments and Discussion
	5 Conclusion
	References

