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Abstract. The multiobjective evolutionary algorithm based on decompo-
sition (MOEA/D) converts a multiobjective optimization problem (MOP)
into a set of simple subproblems, and deals with them simultaneously to
approximate the Pareto optimal set (PS) of the original MOP. Normally
in MOEA/D, a set of weight vectors are predefined and kept unchanged
during the search process. In the last few years, it has been demonstrated
in some cases that a set of predefined subproblems may fail to achieve a
good approximation to the Pareto optimal set. The major reason is that
it is usually unable to define a proper set of subproblems, which take full
consideration of the characteristics of the MOP beforehand. Therefore,
it is imperative to develop a way to adaptively redefine the subproblems
during the search process. This paper proposes a tree-structured decom-
position and adaptation (TDA) strategy to achieve this goal. The basic
idea is to use a tree structure to decompose the search domain into a
set of subdomains that are related with some subproblems, and adap-
tively maintain these subdomains by analyzing the search behaviors of
MOEA/D in these subdomains. The TDA strategy has been applied to
a variety of test instances. Experimental results show the advantages
of TDA on improving MOEA/D in dealing with MOPs with different
characteristics.

1 Introduction

Decomposition based multiobjective evolutionary algorithms (MOEAs) [1–3]
have recently been attracting much attention for dealing with multiobjective opti-
mization problems (MOPs). A main difference between the decomposition based
MOEAs and the other two major MOEA paradigms, i.e., the Pareto domination
based approaches [4,5] and the indicator based approaches [6–8], lies in the envi-
ronmental selection. To differentiate solutions in the environmental selection, the
Pareto domination based approaches use the Pareto domination relationship and
a density estimation strategy to define a complete ranking order of the solutions,
and the indicator based approaches utilize a performance indicator to score a
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solution or a subpopulation. Since the decomposition based approaches convert
an MOP into a set of subproblems, the environmental selection is implemented
for each subproblem [9], i.e., if the subproblem is a scalar-objective problem,
the subproblem objective value can be directly used to do selection; if the sub-
problem is a multiobjective problem, the above two selection approaches can be
used. For both scalar-objective and multiobjective subproblems, they are tackled
simultaneously.

The multiobjective evolutionary algorithm based on decomposition (MOEA/D)
is a typical decomposition based MOEA [10]. The combination of the found
optimal solutions of the subproblems will constitute an approximation to the
Pareto optimal set of the original MOP. A variety of methods have been pro-
posed to decompose an MOP into a set of subproblems in MOEA/D [10,11].
Let minx∈Ω F (x) = {f1(x), · · · , fm(x)} be a general MOP, where x is a decision
variable vector, Ω denotes the feasible region of the search space, and fi(x) is the
ith objective. This paper considers the Tchebycheff approach [10] that defines a
parameterized scalar-objective subproblem g(x|w, z∗) = max1≤j≤m wi|fi(x)−z∗

j |
with reference point z∗ = (z∗

1 , · · · , z∗
m) and weight vector w = (w1, · · · , wm),

which is required that wi ≥ 0, for i = 1, · · · ,m, and
∑m

i=1 wi = 1. It is clear
that all the weight vectors are from an (m − 1)-dimensional simplex. For sim-
plicity, we use gi to denote g(x|wi, z∗) in the sequel.

The approximation quality is determined by the weight vectors and the ref-
erence point. In different MOEA/D variants, the reference point is adaptively
updated by the best solutions found so far and this strategy works well. However,
when the Pareto Front (PF) shape of an MOP is complicated (e.g. disconnected,
ill-scaled), the uniform sampling strategy may fail to find a good approximation
of the PF. A natural way to deal with this problem is to adaptively adjust the
weight vectors during the search process. Several works have been done along
this direction [12–16]. This paper proposes a new way to adjust the weight vec-
tors dynamically, called tree-structured decomposition and adaptation (TDA),
and name MOEA/D with TDA as MOEA/D-TDA. The basic idea is to main-
tain a tree structure to decompose the search domain into a set of subdomains
that are related to some subproblems, and adaptively adjust the subdomains to
find the Pareto optimal solutions of an MOP. The search domain, in both the
objective and decision spaces, is recursively decomposed into a set of simplexes
through a set of weight vectors in the weight space. The simplex is regarded
as a basic unit of the search process. Each simplex is represented as a node in
the tree structure. The sparseness of the simplexes is measured along the search
process. According to the measurement, some new simplexes are added in the
sparse areas and some old ones are removed from the dense areas. And a tree
structure makes it efficient for these operations. Since it is hard to find a good
approximation to both the PF and the PS, we utilize two populations: an inter-
nal working population that approximates the PS and an external archive that
approximates the PF.

The rest of the paper is organized as follows. Section 2 presents the proposed
method in detail. Sections 3 and 4 study the major components in the new app-
roach. Section 5 gives the experimental studies. Finally, the paper is concluded
in Sect. 6 with some suggestions for future work.
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2 The Proposed Method

In this section, we introduce the strategy tree-structured decomposition and adap-
tation (TDA) in details. Firstly, the framework of the algorithm is given. After
that, we explain how to partition the decision, the objective, and the weight
domains into some subdomains by using a tree structure named decomposition
tree. Last but not least, we depict the approach to adaptively change the weight
vectors by adding or removing subdomains according to the search behaviors.

2.1 Algorithm Framework

MOEA/D-TDA maintains a set of scalar-objective subproblems, and the ith
(i = 1, · · · , N) subproblem is with (a) its weight vector wi and objective function
gi(x), (b) its current solution xi and its objective vector F i = F (xi), and (c)
the index set of its neighboring subproblems, Bi, of which the weight vectors are
closest to wi.

With TDA, the domains are decomposed recursively using a Tree-structured
DT = {Dk}, k = 1, · · · ,K, which is called the decomposition tree. Each node in
DT represents a subdomain and is defined as Dk = <p,O,W,E> where p is the
index of its parent node, O contains the indices of its child nodes, W contains
the weight vectors of the subproblems that are directly related to the domain,
and E is the set of all the edges of the simplex that forms the subdomain. It
should be noted that

– Each domain is with m subproblems, i.e., |W | = m, in which m is the number
of objectives.

– O = ∅ if Dk is a leaf node or |O| = 2m−1 otherwise.
–

⋃
D∈DT D.W contains the weight vectors of all the subproblems.

– Let N = |⋃D∈DT D.W | and K be the number of subproblems and the
number of subdomains respectively. D.W denotes the weight vectors for the
domain D. Neither N nor K is fixed throughout the run, and we discuss this
in the next section.

Algorithm 1. Main Framework of MOEA/D-TDA
1 Initialize a decomposition tree DT .

2 Initialize all the subproblems according to the weight vectors
⋃

D∈DT D.W with DT .

3 Initialize the reference point z∗ = (z∗
1 , · · · , z∗

m) as z∗
j = min

i=1,··· ,N
fj(x

i) for j = 1, ..., m.

4 while not terminate do

5 Update the decomposition tree DT .

6 Update the neighborhood structure according to the weight vectors.

7 foreach subproblem i ∈ {1, · · · , N} do

8 Generate a new solution y = Generate(i).

9 Update the reference point z∗ by resetting z∗
j = fj(y) if z∗

j ≥ fj(y) for j = 1, ..., m.

10 Update the population by the new trial solution y.

MOEA/D-TDA also needs to maintain a reference point z∗ = (z∗
1 , · · · , z∗

m).
The main framework of MOEA/D-TDA is shown in Algorithm 1. We would make
the following comments on the framework.
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– In Line 2, the weight vectors are generated in the decomposition tree initial-
ization process. Each solution is initialized by a randomly sampled point from
Ω and is assigned to subproblems according to the weight vectors.

– The reference point z∗ is initialized in Line 3 and updated in Line 9.
– In Line 4, a maximum number of generations is used as the termination

condition.
– In Line 6, the neighborhood structure needs to be updated since the weight

vectors may change in Line 5.
– In Line 7, each subproblem is selected for offspring generation and population

update in each generation.

Basically, the above algorithm framework is following the original MOEA/D
framework [17]. Line 8 generates a new solution y. There are various ways to
implement it. It should be noted that, in this paper, this procedure is the same
generation procedure as in MOEA/D-DE [17]. Line 10 tries to replace one solu-
tion in the current population by the trial solution y. In this paper, we use the
approach defined in [18]. In the next section, we emphasize the decomposition
tree initialization in Line 1, the decomposition tree update in Line 5.

2.2 Domain Decomposition

Let N0 be the desired population size. The domain decomposition process starts
by setting the decomposition tree as the weight domain, then recursively decom-
poses the subdomains until the number of weight vectors exceeds N0. Figure 1
illustrates the decomposition tree initialization process in the case of tri-objective
problems. Each edge of the weight simplex is cut into two equal-length edges and
some subdomains with equal size are generated. It can be deduced easily that
when decomposing a subdomain, 2m−1 new subdomains and 2m−1−1 new weight
vectors are generated.

Fig. 1. An illustration of decomposition tree initialization in the case of tri-objective
problems.

Let ei = (ei,1, ei,2, · · · , ei,m) denote the unit vector in the coordinate system
where ei,j = 0 if j �= i, and ei,i = 1. The decomposition tree initialization process
is shown in Algorithm 2.
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Algorithm 2. Decomposition Tree Initialization
1 Set DT = {D1} where D1.p = 0, D1.O = ∅, and D1.W = {e1, · · · , em}.
2 while | ⋃

D∈DT D.W | < N0 do

3 Let D ∈ DT be a randomly chosen leaf node that has the lowest depth.

4 Decompose domain D into a set of subdomains, set the child nodes of D be these

subdomains, and add them to DT .

In Algorithm 2, we define the depth of the root node as 1, and the depth of
a child node is the depth of its parent node plus 1. Line 3 makes sure that it is
always a leaf node, which is most closet to the root node, to be decomposed. It
should also be noted that in Line 3, to keep the population size, not all the leaf
nodes with the same depth will be decomposed.

2.3 Domain Adaptation

As discussed previously, MOEA/D can obtain a set of well-distributed solutions
by setting proper weight vectors. To this end, we adaptively change the weight
vectors by adding some nodes in sparse areas and removing some nodes in dense
areas. This idea is implemented in TDA by adding some new subdomains and
removing some old nodes respectively.

(a) (b)

Fig. 2. An illustration of (a) deleting old domains and (b) inserting new domains in
the case of tri-objective problems.

Figure 2(a) illustrates, in the case of tri-objective problems, how to remove a
subdomain. It should be noted that not all subdomains can be removed, and a
removable subdomain is the one that contains only one level of child subdomains.
Once a subdomain is removed, some of the corresponding weight vectors and
subproblems are removed as well. Since a weight vector may be shared by several
subdomains, only the unused weights can be removed. Figure 2(b) illustrates, in
the case of tri-objective problems, how to add some subdomains. Some new
weight vectors and subproblems are added as well.

Let d(D) be a function that measures the search behavior, which is the
density in this paper, of subdomain D. We assume a lower d(D) value denotes
that subdomain D is dense while a higher d(D) value denotes that subdomain
D is sparse. The decomposition tree adaptation process is shown in Algorithm 3.
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Algorithm 3. Decomposition Tree Adaptation
1 Let D1 ⊂ DT be the set of removable nodes, and sort them by an increasing order of their

d(·) values.

2 Let D2 ⊂ S be the set of leaf nodes, and sort them by a decreasing order of their d(·) values.

3 Set d1 = first(D1) and d2 = first(D2).

4 while |D1| > 0 and |D2| > 0 and d(d1) < d(d2) do

5 Delete node d1 from DT, and set D1 = D1\{d1}.
6 Decompose d2, add new nodes to DT, and set D2 = D2\{d2}.
7 Remove the parent node of d2 from D1 by setting D1 = D1\{parent(d2)}.
8 Resort D1 and D2, set d1 = first(D1) and d2 = first(D2).

We would like to make some comments on the algorithm.

– The process stops in Line 4 when there is no removable subdomain to delete,
or no subdomain to decompose, or the density of the subdomain to delete is
bigger than that of the one to decompose. The target is to make all subdo-
mains have the same density values and thus to obtain a set of well-distributed
final solutions.

– In each step, one subdomain is removed and one is decomposed. The target is
to keep a stable population size although the number of added weight vectors
may not be the same as the number of removed weight vectors.

– When a subdomain is deleted from DT in Line 5, the corresponding weight
vectors and subproblems are deleted as well if the weight vectors are not used
by other subdomains.

– When a subdomain is added to DT in Line 6, some new weight vectors
and subproblems are also added. Each new subproblem is initialized with a
randomly generated solution and with infinite objective values.

– In Line 7, the parent node of d2 is removed from D1 to prevent the newly
added subdomains to be deleted again in the next steps.

– d(·) is a function to measure subdomain by measuring its density. How to
define the function will be discussed later.

3 Subdomain Measurement

To implement MOEA/D-TDA, a key issue is on how to measure the subdomain.
Density might be a good choice in this case. We define the density of a simplex
as follows.

df(s) =
∑

wiwj∈s.E

||F (xi) − F (xj)||2
dx(s) =

∑

wiwj∈s.E

||xi − xj ||2
dw(s) =

∑

wiwj∈s.E

||wi − wj ||2
(1)

where wiwj is an edge in the simplex s, and || · ||2 denotes the L2 norm, xi and
xj are two solutions with wi and wj respectively. df(·), dx(·), and dw(·) measure
the density of the subdomain in the objective space, in the decision space, and
in the weight space respectively. It is clear that, if dw(·) is used, MOEA/D-TDA
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is actually the original MOEA/D because the initial weight vectors are well-
distributed; otherwise if df(·) or dx(·) is used, MOEA/D-TDA will emphasize
the search behavior in either the objective space or the decision space. If we
attach more importance to the objective space, we name this version as TDA-F
while TDA-X for the version underlines the decision space.

It should be noted that the above measurements are just examples and other
subdomain measurements could be defined and used in MOEA/D-TDA. In fol-
lowing, we study the influence of the three subdomain measurements defined in
(1). We choose two problems, i.e., LZ3 [17] and its variant SLZ31, as examples in
the study. The parameter settings are as follows: the population size N = 300,
the number of decision variables n = 30, and the neighborhood size T = 20.
The parameters in offspring reproduction are δ = 0.9, F = 0.5, and η = 20. The
maximum FE number is 3 × 105 for all the algorithms. Each algorithm is exe-
cuted in each problem with 50 independent runs. For quantitative comparison,
the Inverted Generational Distance (IGD) metric [19] is used and the reference
point set has 1000 points.

0 200 400 600 800 1000
10−3

10−2

10−1

100

gen

IG
D

LZ3

dw
df
dx

0 200 400 600 800 1000
10−3

10−2

10−1

gen

IG
D

SLZ3

dw
df
dx

Fig. 3. The mean IGD metric values versus generations for MOEA/D-TDA with dif-
ferent density measurements on LZ3 and SLZ3.

The experimental results are shown in Fig. 3. From the figure, we can con-
clude that (a) it is hard to balance the population diversity in both the decision
and the objective spaces if the diversity maintains strategy is used only in one
space, and (b) in some cases, to keep the population diversity in the objective,
it is necessary to keep the population diversity in the decision space.

4 External Population

As discussed in the above section, in order to balance population diversity in
both the objective and decision spaces we need an external population (archive)
to MOEA/D-TDA. A step to maintain the external population should be added
to Algorithm 1 after Line 10. The two populations are with different usages: the

1 The LZ test instances are scaled by replace the original f1(x) function by 0.1f1(x).
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internal population tries to approximate the PS in the decision space, and the
external population tries to approximate the PF in the objective space.

In the new approach, the offspring generation operation is based on the inter-
nal population, and the density measurement dx is applied to tune the subprob-
lems and thus to maintain the diversity of the internal population. The external
population is initialized as the internal population. The newly generated solu-
tions are used to update the external population. The solutions in the external
population will not be used for offspring generation, but they will be output as
the approximation result. It should be noted that any archive strategy can be
integrated into MOEA/D-TDA. In the following experiment, we consider the
following strategies: (a) NDS: the nondomination sorting scheme from NSGA-
II [5], (b) HBS: the hypervolume based selection from SMS-EMOA [8], and (c)
DBS: the population maintain strategy introduced in this paper with the density
measurement df(·).

A B C D

10−2

gen

IG
D

LZ3

A B C D

10−3

gen

IG
D

SLZ3

Fig. 4. Box-plots of IGD values of the final results obtained by the four algorithms
over 50 independent runs.

To demonstrate the contribution of external population the corresponding
maintain strategies, we empirically compare the following four algorithms on LZ3
and SLZ3: (a) A: MOEA/D-TDA with dw and without an external population,
i.e., the original MOEA/D, (b) B: MOEA/D-TDA with dx and with an external
population maintained by NDS, (c) C: MOEA/D-TDA with dx and with an
external population maintained by HBS, and (d) D: MOEA/D-TDA with dx
and with an external population maintained by DBS.

Figure 4 shows the box-plots of the IGD metric values of the final results
obtained by the four algorithms. From the figure, we can see that by using
external population, the approximation quality can be significantly improved.
Comparing the three external population maintain strategies, the experimental
results suggest that MOEA/D-TDA with NDS performs the best. The reason
might be that it is more suitable to approximate the PF especially when the PF
is scaled.
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Table 1. The mean and standard deviation of IGD values obtained by five algorithms
over 50 runs on the LZ and SLZ suites.

LZ1 TDA-X 1.407e − 031.681e−05[4] SLZ1 TDA-X 8.847e − 041.384e−05[1]

TDA-F 1.403e − 031.288e−05[3] TDA-F 9.476e − 041.955e−05[2]

DE 1.280e − 033.029e−06[1] DE 3.339e − 031.113e−05[4]

M2M 1.391e − 035.464e−05[2] M2M 3.411e − 031.655e−04[5]

AWA 1.809e − 037.184e−05[5] AWA 1.017e − 031.511e−05[3]

LZ2 TDA-X 2.243e − 031.688e−04[1] SLZ2 TDA-X 9.417e − 042.946e−05[1]

TDA-F 2.539e − 031.767e−04[3] TDA-F 1.117e − 037.294e−05[2]

DE 2.429e − 032.395e−04[2] DE 3.709e − 032.853e−04[3]

M2M 3.157e − 037.434e−04[4] M2M 5.760e − 032.057e−03[4]

AWA 3.109e − 028.845e−03[5] AWA 1.219e − 025.529e−03[5]

LZ3 TDA-X 2.128e − 031.131e−04[1] SLZ3 TDA-X 9.521e − 042.799e−05[1]

TDA-F 2.160e − 031.674e−04[2] TDA-F 1.420e − 039.339e−04[2]

DE 2.549e − 031.241e−03[4] DE 3.518e − 031.934e−04[3]

M2M 2.327e − 031.821e−04[3] M2M 3.774e − 032.733e−04[4]

AWA 7.092e − 032.240e−03[5] AWA 5.082e − 032.638e−03[5]

LZ4 TDA-X 2.010e − 039.338e−05[1] SLZ4 TDA-X 9.371e − 043.229e−05[1]

TDA-F 2.192e − 032.031e−04[2] TDA-F 1.273e − 033.375e−04[2]

DE 3.016e − 031.512e−03[4] DE 3.544e − 031.481e−04[4]

M2M 2.966e − 036.310e−04[3] M2M 3.767e − 033.099e−04[5]

AWA 3.119e − 032.191e−04[5] AWA 1.457e − 032.386e−04[3]

LZ5 TDA-X 7.867e − 032.919e−03[4] SLZ5 TDA-X 2.967e − 038.921e−04[1]

TDA-F 6.872e − 031.391e−03[2] TDA-F 3.858e − 031.192e−03[2]

DE 7.091e − 031.537e−03[3] DE 4.185e − 038.924e−04[3]

M2M 4.240e − 034.501e−04[1] M2M 4.728e − 036.535e−04[4]

AWA 1.163e − 022.879e−03[5] AWA 6.727e − 032.693e−03[5]

LZ6 TDA-X 1.764e − 014.460e−02[4] SLZ6 TDA-X 1.787e − 019.593e−02[4]

TDA-F 2.587e − 014.757e−02[5] TDA-F 2.015e − 018.980e−02[5]

DE 3.015e − 025.592e−03[1] DE 8.681e − 021.326e−02[3]

M2M 6.748e − 022.449e−02[3] M2M 7.559e − 029.218e−03[2]

AWA 5.286e − 024.625e−03[2] AWA 3.230e − 029.002e−03[1]

LZ7 TDA-X 2.410e − 019.336e−02[5] SLZ7 TDA-X 5.807e − 025.907e−02[3]

TDA-F 2.342e − 018.378e−02[4] TDA-F 6.217e − 025.097e−02[4]

DE 8.053e − 028.047e−02[3] DE 3.842e − 022.723e−02[2]

M2M 5.082e − 026.167e−02[2] M2M 1.037e − 016.527e−02[5]

AWA 2.452e − 031.740e−04[1] AWA 1.087e − 032.781e−05[1]

LZ8 TDA-X 1.774e − 021.737e−02[3] SLZ8 TDA-X 3.048e − 031.409e−03[2]

TDA-F 2.086e − 022.080e−02[4] TDA-F 2.696e − 031.727e−03[1]

DE 3.653e − 035.015e−03[1] DE 5.008e − 037.817e−04[3]

M2M 1.060e − 024.170e−03[2] M2M 5.383e − 037.574e−04[4]

AWA 6.847e − 022.812e−02[5] AWA 1.444e − 021.589e−02[5]

LZ9 TDA-X 2.499e − 035.715e−04[2] SLZ9 TDA-X 1.080e − 039.872e−05[1]

TDA-F 3.998e − 031.559e−03[3] TDA-F 1.484e − 031.236e−04[2]

DE 2.311e − 031.561e−04[1] DE 6.135e − 031.927e−03[3]

M2M 4.874e − 031.894e−03[4] M2M 6.569e − 031.232e−03[4]

AWA 1.844e − 011.558e−02[5] AWA 3.887e − 022.324e−02[5]

Mean rank TDA-X 2.8 Mean rank TDA-X 1.7

TDA-F 3.1 TDA-F 2.4

DE 2.2 DE 3.1

M2M 2.7 M2M 4.1

AWA 4.2 AWA 4.7
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Table 2. The mean and standard deviation of IGD values obtained by five algorithms
after different percentages of function evaluations over 50 runs on the GLT suite.

20% 60% 100%

GLT1 TDA-X 1.909e − 021.528e−02[4] 3.881e − 034.800e−03[4] 2.785e − 033.607e−03[4]

TDA-F 7.517e − 044.872e−05[1] 6.961e − 043.897e−05[1] 6.619e − 043.406e−05[1]

DE 1.259e − 033.918e−04[3] 1.178e − 034.929e−07[3] 1.177e − 031.519e−07[3]

M2M 1.182e − 038.326e−06[2] 1.160e − 035.941e−06[2] 1.146e − 036.267e−06[2]

AWA 4.146e − 011.495e−01[5] 3.395e − 022.862e−02[5] 1.612e − 022.325e−02[5]

GLT2 TDA-X 1.730e − 011.445e−01[3] 5.778e − 024.546e−02[2] 4.960e − 023.610e−02[3]

TDA-F 5.411e − 026.426e−02[1] 1.187e − 023.297e−03[1] 1.024e − 021.009e−03[1]

DE 1.506e − 011.592e−02[2] 1.524e − 015.333e−03[3] 1.527e − 013.876e−03[4]

M2M 1.962e − 015.300e−02[4] 1.654e − 016.687e−04[4] 1.656e − 012.359e−04[5]

AWA 2.040e + 001.076e+00[5] 2.386e − 012.329e−01[5] 1.569e − 021.060e−03[2]

GLT3 TDA-X 2.482e − 027.303e−03[4] 1.417e − 029.307e−03[4] 9.753e − 038.699e−03[4]

TDA-F 1.943e − 029.349e−03[3] 6.295e − 036.039e−03[2] 3.197e − 033.577e−03[1]

DE 1.607e − 021.004e−02[2] 8.553e − 035.942e−03[3] 8.115e − 035.284e−03[3]

M2M 6.466e − 034.056e−04[1] 5.982e − 032.015e−04[1] 5.881e − 039.950e−05[2]

AWA 2.151e − 014.782e−02[5] 1.094e − 014.817e−02[5] 6.073e − 022.317e−02[5]

GLT4 TDA-X 3.734e − 028.125e−02[4] 2.913e − 028.167e−02[4] 2.225e − 026.917e−02[4]

TDA-F 2.487e − 032.644e−03[1] 1.891e − 034.997e−05[1] 1.874e − 033.510e−05[1]

DE 1.218e − 024.398e−02[3] 5.185e − 031.110e−04[2] 5.167e − 031.129e−04[3]

M2M 5.550e − 034.575e−04[2] 5.217e − 032.316e−04[3] 5.155e − 031.298e−05[2]

AWA 4.843e − 011.649e−01[5] 6.700e − 025.839e−02[5] 2.883e − 025.044e−02[5]

GLT5 TDA-X 3.749e − 029.307e−03[2] 2.302e − 023.629e−03[3] 2.177e − 021.744e−03[3]

TDA-F 4.794e − 029.241e−03[3] 2.279e − 024.658e−03[2] 2.086e − 029.415e−04[1]

DE 2.589e − 021.601e−03[1] 2.187e − 021.618e−03[1] 2.098e − 021.171e−03[2]

M2M 5.220e − 026.313e−03[4] 5.402e − 026.722e−03[4] 5.471e − 026.731e−03[4]

AWA 2.404e − 012.345e−02[5] 1.917e − 012.291e−03[5] 1.860e − 011.156e−03[5]

GLT6 TDA-X 1.632e − 018.498e−03[3] 1.617e − 017.846e−03[3] 1.616e − 017.832e−03[3]

TDA-F 1.631e − 011.011e−03[2] 1.618e − 014.125e−04[4] 1.616e − 013.808e−04[4]

DE 1.636e − 014.821e−02[4] 1.496e − 015.359e−02[2] 1.436e − 015.559e−02[2]

M2M 3.800e − 025.870e−03[1] 3.813e − 026.428e−03[1] 4.077e − 026.389e−03[1]

AWA 3.375e − 014.023e−02[5] 2.354e − 011.011e−02[5] 2.301e − 019.980e−03[5]

Mean rank TDA-X 3.3 3.3 3.5

TDA-F 1.8 1.8 1.5

DE 2.5 2.3 2.8

M2M 2.3 2.5 2.7

AWA 5.0 5.0 4.5

5 Comparison Study

In this section, we study the performance of the proposed strategy with some
state-of-the-art algorithms on some test suites. The following algorithms are
compared: (a) TDA: MOEA/D-TDA with dx and with an external population
maintained by NDS, (b) DE : MOEA/D-DE [20], which is a conceptual MOEA/D
algorithm and is similar to MOEA/D-TDA with dw, (c) AWA: MOEA/D-
AWA [13], which is a variation of MOEA/D by adapting weight vectors in evo-
lution, and (d) M2M : MOEA/D-M2M [15], which decomposes an MOP into a
set of MOPs and tackle these MOPs simultaneously.

The first five instances in the LZ test suite [17], their variants, in which f1
is scaled to 10f1, and the GLT test suite [21] are used in the comparison study.
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The variants of LZ1-LZ5 are called SLZ1-SLZ5 respectively. The experimental
settings are as follows. For MOEA/D-TDA and MOEA/D-DE the experimental
settings are the same as it is in Sect. 3. And for MOEA/D-AWA and MOEA/D-
M2M, the experimental settings are the same as it is in the original paper.

Table 1 presents the mean and variance of IGD values obtained over 50 runs
on LZ and SLZ test suites. On the LZ test suite, DE works the best and TDA-X
achieves the best performance on LZ2, LZ3, and LZ4. In the SLZ test suite,
TDA-X performs the best on all problems. The rank values obtained by the
algorithms also indicate similar results. Comparing to LZ, the SLZ problems
have more complex PF. This might be the reason that maintaining a well dis-
tributed population in the decision space is helpful for approximating the PF in
the objective space especially when problems are with complicated PFs. Table 2
presents the mean and variance of IGD values obtained by the algorithms with
different percentages of function evaluations. TDA-F achieves the best perfor-
mance on all problems except on GLT6. Besides, TDA-F always gains the best
rank value in every stage. The results indicate that TDA-F has better perfor-
mance in the problems complicated in objective space than other state-of-art
evolutionary algorithms.

6 Conclusions

This paper proposed a new adaptive strategy, called domain decomposition and
adaptation (TDA), to tune the weight vectors online in MOEA/D so as to find
good approximations to both PF and PS. The empirical studies indicated that
the search behavior measurement in the decision space is helpful and necessary to
maintain a good approximation to the PS. Since it is hard to approximate both
PS and PF well with a single population, an external archive is added to main-
tain a good approximation to the PF. Therefore, the proposed algorithm, called
MOEA/D-TDA, has two populations: an internal population, which is with the
subproblems that are adjusted by TDA, to approximate PS, and an external
population to approximate PF. Comparing to the basic algorithm MOEA/D-
DE, MOEA/D-TDA does not introduce additional control parameters.

The experimental study has demonstrated: (a) MOEA/D with a single pop-
ulation is hard to approximate both PS and PF, and a good approximation to
the PS is necessary to find a good approximation to the PF; (b) TDA with
a search behavior measurement in the decision space is helpful to find a good
approximation to the PS; and (c) an external archive is helpful to find a good
approximation to PF. A further systematic comparison study on several test
suites has indicated the advantages of MOEA/D-TDA over some state-of-the-
art MOEAs.

The success of TDA depends on two key issues: one is the domain decom-
position strategy, and the other is the search behavior measurement. For the
former, we use a simplex to represent the domain, and for the latter, we give an
initial study based on L2 norm in the three domains. It is no doubt that there
might be better ways to do so, and this is the target for future work. Besides,
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in the proposed approach, the fineness of the weight vector distribution has a
fix pattern and the number of subdomains increases rapidly when the number
of objective increasing. These are the issues to be improved in the future.
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