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Abstract. Recently it was reported that the location of a reference point has a
dominant effect on the optimal distribution of solutions for hypervolume max-
imization when multiobjective problems have inverted triangular Pareto fronts.
This implies that the use of an appropriate reference point is indispensable when
hypervolume-based EMO (evolutionary multiobjective optimization) algorithms
are applied to such a problem. However, its appropriate reference point speci-
fication is difficult since it depends on various factors such as the shape of the
Pareto front (e.g., triangular, inverted triangular), its curvature property (e.g.,
linear, convex, concave), the population size, and the number of objectives. To
avoid this difficulty, we propose an idea of using two reference points: one is the
nadir point, and the other is a point far away from the Pareto front. In this paper,
first we demonstrate that the effect of the reference point is strongly problem-
dependent. Next we propose an idea of using two reference points and its simple
implementation. Then we examine the effectiveness of the proposed idea by
comparing two hypervolume-based EMO algorithms: one with a single refer-
ence point and the other with two reference points.
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1 Introduction

The hypervolume indicator [25] has been used for performance comparison in the
EMO (evolutionary multiobjective optimization) community [26] due to its Pareto
compliant property [24]. The hypervolume indicator has also been used in indicator-
based EMO algorithms such as SMS-EMOA [3, 8], HypE [2], and FV-MOEA [18]. In

© Springer Nature Switzerland AG 2018
A. Auger et al. (Eds.): PPSN 2018, LNCS 11101, pp. 384–396, 2018.
https://doi.org/10.1007/978-3-319-99253-2_31

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-99253-2_31&amp;domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-99253-2_31&amp;domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-99253-2_31&amp;domain=pdf


this paper, these algorithms are referred to as the hypervolume-based EMO algorithms.
Their high performance on many-objective problems has been reported in the literature
[10, 21, 22] in comparison with Pareto dominance-based EMO algorithms (e.g.,
NSGA-II [6]). Whereas the Pareto dominance-based selection pressure towards the
Pareto front is severely weakened by the increase in the number of objectives, the
hypervolume indicator can drive the population towards the Pareto front (usually at the
cost of large computation load for many-objective problems [10]).

Properties of the hypervolume indicator can be visually examined by using the
optimal distribution of solutions for hypervolume maximization. The optimal distri-
bution has been theoretically derived for two-objective problems [1, 4] and empirically
shown for multiobjective problems with three or more objectives [12–14]. Let us
consider a two-objective minimization problem whose Pareto front is a straight line
between (0, 1) and (1, 0) in a two-dimensional objective space. In Fig. 1, the Pareto
front is shown by the red line. The optimal distribution of l solutions for hypervolume
maximization is the equidistant distribution including (0, 1) and (1, 0) if the reference
point r = (r, r) for hypervolume calculation satisfies r� 1þ 1=ðl� 1Þ [1, 4]. This
condition is r� 1:25 in Fig. 1 with l = 5. Thus the optimal distribution includes the
two extreme points (0, 1) and (1, 0) of the Pareto front when r� 1:25 as shown in
Fig. 1(c) and (d). When r < 1.25, these two points are not included in the optimal
distribution as shown in Fig. 1(a) and (b). It should be noted that the location of the
reference point has no effect on the optimal distribution of solutions in Fig. 1 when
r� 1:25. This observation suggests the use of a reference point which is far away from
the Pareto front. Actually, the use of an infinitely large (i.e., distant) reference point in
SMS-EMOA was mentioned in [8]. The reference point in SMS-EMOA in [3] was
specified by adding 1.0 to the estimated nadir point in each generation (i.e., 2.0 in
Fig. 1 if the true nadir point is correctly estimated).

The above discussions imply that the reference point specification is not important
in the hypervolume-based EMO algorithms. When the reference point is far away from
the Pareto front of the two-objective minimization problem as in Fig. 1(d), the
hypervolume-based EMO algorithms work well. In this case, the two extreme points (0,
1) and (1, 0) have much larger hypervolume contributions than the other three inside
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(a) r = 1.0 (nadir point).         (b) r = 1.1.                     (c) r = 1.25.                    (d) r = 1.5. 

Fig. 1. The optimal distribution of five solutions (l = 5) for each specification of the reference
point r = (r, r). The shaded area shows the corresponding hypervolume. (Color figure online)
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solutions. As a result, the two extreme points of the Pareto front are likely to be found.
When the two extreme points are included in the current population, the location of the
reference point has no effect on the hypervolume contributions of the other inside
solutions. For example, the three inside solutions have the same hypervolume contri-
butions in Fig. 1(c) with r = 1.25 and Fig. 1(d) with r = 1.5.

A large reference point (which is far away from the Pareto front) can also be used
for multiobjective minimization problems with triangular Pareto fronts such as the
DTLZ1-4 [7] and WFG4-9 [9]. For example, in the case of three objectives, the
hypervolume contributions of only the three extreme points of the Pareto front depend
on the location of the reference point when they are included in the current population.
Figure 2 shows approximately optimal distributions of 50 solutions of the three-
objective DTLZ1 for two settings of the reference point r = (r, r, r): r = 0.5 (i.e., nadir
point) in Fig. 2(a) and r = 20 in Fig. 2(b). These two distributions were obtained by
SMS-EMOA with a large computation load (i.e., 1,000,000 generations) in our former
study [12]. In Fig. 2(a) with r = 0.5, the three extreme points are not included in the
obtained distribution since the nadir point is used as the reference point (i.e., since the
hypervolume contributions of the three extreme points are zero when the nadir point is
used as the reference point). In Fig. 2(b) with r = 20, the entire Pareto front is covered
by the 50 solutions. Moreover, the two distributions in Fig. 2 are similar to each other
whereas the totally different reference points are used. Figure 2 suggests that the use of
a large reference point (which is far away from the Pareto front) works well on the
three-objective DTLZ1. Figure 2 also suggests that the reference point specification is
not important (since the similar results are obtained from the totally different reference
points). Similar results are also obtained from the totally different reference points for
the three-objective DTLZ2-4 and WFG4-9. It should be noted that the information of
the true nadir point is used in those computational experiments (e.g., Fig. 2) to search
for the optimal distribution of solutions.

Our discussions on Figs. 1 and 2 suggest the use of a large reference point in the
hypervolume-based EMO algorithms. This is a good idea for two-objective mini-
mization problems and multiobjective minimization problems with triangular Pareto
fronts. However, this is not a good idea for multiobjective minimization problems with
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(a) r = 0.5 (nadir point).                                     (b) r = 20. 

Fig. 2. An approximately optimal distribution of 50 solutions (l = 50) of the three-objective
DTLZ1 test problem for each specification of the reference point r = (r, r, r) [12].
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inverted triangular Pareto fronts such as the inverted DTLZ1 [17], Minus-DTLZ1-4
[16] and Minus-WFG4-9 [16]. Figure 3 shows approximately optimal distributions of
50 solutions of the three-objective inverted DTLZ1 for the two settings of the reference
point: r = 0.5 (i.e., nadir point) in Fig. 3(a) and r = 20 in Fig. 3(b). These two dis-
tributions were obtained by SMS-EMOA after 1,000,000 generations in our former
study [12]. Figure 3(b) clearly shows that the use of a large reference point is not
appropriate in the hypervolume-based EMO algorithms. The use of the nadir point is
not appropriate as shown in Fig. 3(a), either.

An appropriate specification of the reference point was discussed from a viewpoint
of fair performance comparison of EMO algorithms in our former studies [13, 14]. The
basic idea is to specify the reference point so that uniformly distributed solutions over
the entire Pareto front have similar hypervolume contributions (i.e., any solution should
not have a dominantly large or negligibly small contribution). For the two-objective
minimization problem with the linear Pareto front in Fig. 1, the suggested reference
point in [13, 14] is r ¼ 1þ 1=ðl� 1Þ where l is the population size. In Fig. 1 with the
population size 5, r is calculated as r = 1.25. This specification is used in Fig. 1(c)
where each solution has exactly the same hypervolume contribution. By using an
integer parameter H which denotes the number of intervals determined by l solutions
(i.e., H = l − 1), the suggested specification is rewritten as r = 1 + 1/H. The integer
parameter H in this formulation is the same as H in the weight vector specification
mechanism in MOEA/D [23]. Using this fact, the reference point specification method
by r = 1 + 1/H was extended to multiobjective minimization problems with linear
Pareto fronts in [13, 14] where the value of H was determined from the number of
objectives M and the population size l using the following formulation:

HþM�1CM�1 � l\HþMCM�1: ð1Þ

In this formulation, nCm denotes the number of combinations of selecting m ele-
ments from a set of n elements (n�m): nCm = n!/m!(n − m)!.

The reference point specification method of r = 1 + 1/H with (1) is a good
guideline for performance comparison of EMO algorithms. However, it does not
always work well in the hypervolume-based EMO algorithms as we will show later in
this paper. It is difficult to appropriately specify the reference point in the hypervolume-
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(a) r = 0.5 (nadir point).                                      (b) r = 20. 

Fig. 3. An approximately optimal distribution of 50 solutions (l = 50) of the three-objective
inverted DTLZ1 test problem for each specification of the reference point r = (r, r, r) [12].
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based EMO algorithms especially for multiobjective problems with nonlinear inverted
triangular Pareto fronts (e.g., Minus-DTLZ2-4 and Minus-WFG4-9 [16]). This is
because the appropriate reference point specification depends on various factors such as
the shape of the Pareto front and its curvature property in addition to the number of
objectives (M) and the population size (l) used in (1). This is also because the true
Pareto front is unknown (i.e., because the reference point specification should be based
on the estimation nadir point, which is not always accurate).

To avoid the difficulty in appropriately specifying the reference point, we propose
an idea of using two reference points. One is the estimated nadir point and the other is
far away from it. Our idea is motivated by a simple intuition from Fig. 3: A good
solution set would be obtained by combining the two solution sets in Fig. 3.

This paper is organized as follows. First, we demonstrate the difficulty in appro-
priately specifying the reference point in Sect. 2. Experimental results are explained
using the hypervolume contributions of uniformly distributed solutions. Next, we
propose an idea of using two reference points and its simple implementation in Sect. 3.
Then, we examine the effectiveness of our idea in Sect. 4. Our two-point approach is
compared with the standard single-point approach. Finally, we conclude this paper in
Sect. 5 where a number of future research directions are suggested.

2 Empirical Discussions on Reference Point Specification

In this section, we show experimental results by FV-MOEA [18] on the three-objective
DTLZ1 [7], DTLZ2 [7], Minus-DTLZ1 [16], Minus-DTLZ2 [16] and the car-side
impact problem [17]. FV-MOEA is a recently-proposed fast hypervolume-based EMO
algorithm. We use FV-MOEA in the same specifications as SMS-EMOA. Thus the
same experimental results are obtained from FV-MOEA and SMS-EMOA. We use FV-
MOEA because it is faster than SMS-EMOA (whereas we used SMS-EMOA in our
former studies [12–14]).

FV-MOEA is applied to each three-objective minimization problem. During its
execution, the objective space is normalized using non-dominated solutions in each
generation as follows (e.g., see [11]). First, non-dominated solutions in the current
population are selected. Next, the minimum and maximum values of each objective are
found in the selected non-dominated solutions. Then, each objective is normalized so
that the minimum and maximum values are 0 and 1, respectively. FV-MOEA with
various specifications of the reference point is used under the following settings.

Population size (l): 100,
Termination condition: 100,000 solution evaluations,
Crossover: SBX (Crossover probability: 1.0, Distribution index: 20),
Mutation: PM (Mutation probability: 1/(String length), Distribution index: 20),
Number of runs: 11 runs.

Among the 11 runs for each specification of the reference point, a single run with
the median hypervolume is selected and shown as the experimental result in this paper.

Since the population size is 100 for the three-objective problems (i.e., l = 100 and
M = 3), the suggested reference point in [13, 14] is calculated from (1) as r = 1 + 1/
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H = 13/12. In addition to this specification, we also examine the following values:
r = 1.0 (the estimated nadir point), 1.05 (closer to the estimated nadir point than
13/12), 1.2 (slightly larger than 13/12), 1.5 (larger than 13/12) and 10 (far away from
the Pareto front: much larger than the others). Experimental results are shown in
Figs. 4, 5, 6, 7 and 8.

In Fig. 4 on DTLZ1 and Fig. 5 on DTLZ2, almost the same results are obtained
when r� 1:05. These results suggest the use of a large reference point for multiob-
jective minimization problems with triangular Pareto fronts. These results also show
that the reference point specification is not important for such a multiobjective problem
as long as the reference point is not too close to the estimated nadir point.

However, in Figs. 6, 7 and 8, totally different results are obtained from different
specifications of the reference point. When the reference point is far away from the
estimated nadir point (i.e., r = 10), many solutions are around the boundary of the
Pareto front. In this case, only a small number of solutions are obtained inside the
Pareto front. Thus we can see from Figs. 6, 7 and 8 that a large reference point is not
appropriate.

(a) r = 1.0.        (b) r = 1.05.       (c) r = 13/12.      (d) r = 1.2.        (e) r = 1.5.        (f) r = 10. 

Fig. 4. Experimental results on DTLZ1 (median results over 11 runs).

(a) r = 1.0.        (b) r = 1.05.       (c) r = 13/12.      (d) r = 1.2.        (e) r = 1.5.        (f) r = 10. 

Fig. 5. Experimental results on DTLZ2 (median results over 11 runs).

(a) r = 1.0.        (b) r = 1.05.       (c) r = 13/12.      (d) r = 1.2.        (e) r = 1.5.        (f) r = 10. 

Fig. 6. Experimental results on Minus-DTLZ1 (median results over 11 runs).
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Independent of the shape of the Pareto front, the use of the estimated nadir point
(i.e., r = 1.0 in Figs. 4, 5, 6, 7 and 8(a)) is not advisable since the diversity of the
obtained solution sets is very small. It should be noted that the obtained solution sets in
Figs. 4(a) and 5(a) are totally different from the approximately optimal solution sets in
Figs. 1(a) and 2(a), respectively. This is because the true nadir point is used in Figs. 1
and 2 while the estimated nadir point is used in Figs. 4, 5, 6, 7 and 8.

As shown in Figs. 4 and 5, for multiobjective problems with triangular Pareto
fronts, the reference point specification is not important since almost the same solution
sets are obtained from different specifications of the reference point as far as it is not too
close to the estimated nadir point. On the contrary, for multiobjective problems with
inverted triangular Pareto fronts, the reference point specification is important (see
Figs. 6 and 7). However, it is difficult to appropriately specify the reference point for
such a problem. For example, whereas the suggested reference point by r = 1 + 1/
H = 13/12 works well on Minus-DTLZ1 in Fig. 6, it is too small for Minus-DTLZ2 in
Fig. 7. In Fig. 7, r = 1.5 seems to be appropriate. However, it seems to be too large in
Fig. 6 (compare Fig. 6(e) with Fig. 6(c) and (d)).

Our experimental results in Figs. 4, 5, 6, 7 and 8 can be explained using the
hypervolume contributions of uniformly distributed solutions. In Figs. 9, 10, 11 and
12, we show the hypervolume contributions of 21 uniformly distributed solutions on
the Pareto fronts. Each test problem in Figs. 9, 10, 11 and 12 is normalized so that the
ideal and nadir points are (0, 0, 0) and (1, 1, 1), respectively. The 21 solutions are
generated in the same manner as the weight vector generation mechanism in MOEA/D
with H = 5. The suggested reference point by r = 1 + 1/H is 1.2. In each figure, the
size (i.e., area) of the closed circle is proportional to the hypervolume contribution of
the corresponding solution. When the hypervolume contribution is zero, the corre-
sponding solution is not shown.

(a) r = 1.0.        (b) r = 1.05.       (c) r = 13/12.      (d) r = 1.2.        (e) r = 1.5.        (f) r = 10. 

Fig. 7. Experimental results on Minus-DTLZ2 (median results over 11 runs).

   (a) r = 1.0.        (b) r = 1.05.       (c) r = 13/12.      (d) r = 1.2.        (e) r = 1.5.        (f) r = 20.  

Fig. 8. Experimental results on the car-side impact problem (median results over 11 runs).
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          (a) r = 1.0.                      (b) r = 1.1.                      (c) r = 1.2.                     (d) r = 1.5. 

Fig. 9. Hypervolume contribution of each solution of DTLZ1.
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          (a) r = 1.0.                      (b) r = 1.1.                      (c) r = 1.2.                     (d) r = 1.5. 

Fig. 10. Hypervolume contribution of each solution of DTLZ2.
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Fig. 11. Hypervolume contribution of each solution of Minus-DTLZ1.
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Fig. 12. Hypervolume contribution of each solution of Minus-DTLZ2.
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In Figs. 9, 10, 11 and 12(a) with r = 1.0, the hypervolume contributions of the
three extreme points are zero. When the estimated nadir point is used as the reference
point (i.e., r = 1.0) in the hypervolume-based EMO algorithms, the hypervolume
contributions of the extreme points in the current population are zero. Thus they are
likely to be removed from the current population through generation update. Then the
diversity of the population gradually decreases, which increases the inaccuracy of the
nadir point estimation. This is the reason for the very small diversity in Figs. 4, 5, 6, 7
and 8(a) with r = 1.0.

In Fig. 9 on DTLZ1 and Fig. 10 on DTLZ2, the hypervolume contributions of only
the three extreme points depend on the reference point specification. This is the reason
why almost the same results are obtained in Figs. 4 and 5 independent of the reference
point specification except for the case where the reference point is too small. On the
contrary, in Fig. 11 on Minus-DTLZ1 and Fig. 12 on Minus-DTLZ2, the reference
point specification affects the hypervolume contributions of all boundary solutions.
When the nadir point is used as the reference point in Figs. 11(a) and 12(a), the
hypervolume contributions of all boundary solutions are zero. By increasing the dis-
tance between the reference point and the nadir point (i.e., by moving the reference
point far away from the Pareto front), their hypervolume contributions increase. When
the reference point is far away from the Pareto front, boundary solutions have large
hypervolume contributions. This is the reason why only a small number of inside
solutions are obtained in Figs. 6(f) and 7(f) with r = 10. The upper-right half of the
Pareto front of the car-side impact problem in Fig. 8 has a similar property to the
inverted triangular Pareto fronts of Minus-DTLZ1 and Minus-DTLZ2. Thus many
solutions are obtained along the upper-right boundary of the Pareto front in Fig. 8(f).

When the suggested reference point (i.e., r = 1.2) is used for DTLZ1 in Fig. 9 and
Minus-DTLZ1 in Fig. 11, all solutions in each figure have the same hypervolume
contribution. This is the reason why the well-distributed solution sets are obtained for
those test problems in Figs. 4(c) and 6(c). However, in Fig. 10 on DTLZ2 and Fig. 12
on Minus-DTLZ2, each solution has a different hypervolume contribution due to the
nonlinearity of their Pareto fronts. As a result, well-distributed solution sets are not
obtained in Figs. 5 and 7 independent of the reference point specification.

3 Proposed Idea and Its Simple Implementation

Our idea is to use two reference points in order to avoid the difficulty in appropriately
specifying a single reference point for multiobjective problems with inverted triangular
Pareto fronts. As the first attempt, we specify the two reference points as r = 1.0 and
r = 10, respectively. That is, one reference point is the estimated nadir point, and the
other is far away from it. The population is divided into two subpopulations of the same
size. A hypervolume-based EMO algorithm (FV-MOEA [18] in this paper) is applied
to each subpopulation using a different reference point: r = 1.0 for one subpopulation
and r = 10 for the other. The final result of the proposed idea is the merged solution set
of the two subpopulations. The execution of FV-MOEA is performed in each sub-
population separately except for the following two procedures.
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(i) Normalization: The normalization of the objective space is performed in each
generation using non-dominated solutions among all solutions in the two subpop-
ulations. This is for accurately estimating the nadir point in each generation. If the
normalization is performed separately, good results are not obtained from r = 1.0 as
we have already shown in Figs. 4, 5, 6, 7 and 8(a) in the previous section.

(ii) Periodical Subpopulation Comparison: If the two subpopulations are similar, a
good merged solution set cannot be obtained from them. In this case, it may be a
good idea to merge them into a single population during the execution of FV-
MOEA instead of merging them after its separate execution on each subpopula-
tion. In this paper, we examine the similarity of the two subpopulations four times
during its execution (after 20%, 40%, 60%, and 80% use of the available com-
putation load, i.e., after 20,000th, 40,000th, 60,000th, and 80,000th solution
evaluations). If the two subpopulations are similar, we merge them into a single
population and FV-MOEA is applied to the merged population. The reference
point is specified as r = 1 + 1/H. Once the two subpopulations are merged, the
merged population is not divided again.

One important issue is how to measure the similarity of the two subpopulations. In
this paper, we use the IGD+ indicator [15] where the subpopulation with r = 10 is used as
the IGD+ reference points to calculate IGD+ of the other subpopulation with r = 1.0.
When the calculated IGD+ is smaller than 21/2/5H, we merge the two subpopulations.
The threshold value is specified as 21/2/5H based on the following consideration. In the
normalized three-objective DTLZ1, the length of each side of the triangular Pareto front
is 21/2 (e.g., the distance of the line between (1, 0, 0) and (0, 1, 0)). When l = H+M−1CM−1

solutions are uniformly distributed over the entire Pareto front, each side was divided
intoH intervals. Thus the distance between adjacent solutions on each side is 21/2/H. The
threshold value 21/2/5H is 1/5 of the distance between adjacent solutions on each side in
the uniformly distributed solutions. Of course, other indicators (e.g., IGD [5, 20] and Dp

[19]) and/or other specifications of the threshold value can be used, which is an important
future research topic.

4 Experimental Results by the Proposed Idea

Using the same parameter specifications as in Sect. 2, we apply FV-MOEA with two
reference points (r = 1.0 and r = 10) to the five test problems. Median experimental
results among 11 runs are shown in Fig. 13.

(a) DTLZ1.         (b) DTLZ2.     (c) Minus-DTLZ1.  (d) Minus-DTLZ2.         (e) Car-side. 

Fig. 13. Experimental results by FV-MOEA with two reference points.
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In Fig. 13(c)–(d), we obtain the intended results. Many solutions around the
boundary of the Pareto front of each test problem are obtained from r = 10. At the
same time, many inside solutions are also obtained from r = 1.0. The effectiveness of
the proposed idea is clearly shown in Fig. 13(d) for Minus-DTLZ2. In Fig. 14, we
compare the obtained solution set by the proposed idea (i.e., Fig. 14(a) which is the
same as Fig. 13(d)) with the results by the standard FV-MOEA with a single reference
point (i.e., Fig. 14(b)–(f) which are the same as Fig. 7(b)–(f)). The solution set in
Fig. 14(a) is similar to the solution set in Fig. 14(e) with r = 1.5. However, the
boundary solutions in Fig. 14(a) are much closer to the boundary of the Pareto front
than Fig. 14(e). That is, the solution set in Fig. 14(a) covers the wider region of the
Pareto front than Fig. 14(e). Similar observations can be obtained from Fig. 13(c) and
(e) by comparing them with the corresponding results of the standard FV-MOEA with
a single reference point in Figs. 6 and 8, respectively.

The obtained solution set of DTLZ1 in Fig. 13(a) is almost the same as the solution
sets in Fig. 4(c)–(f). This is because the two subpopulations are merged into a single
population during the execution of FV-MOEA as intended. Once the two subpopula-
tions are merged, FV-MOEA with the two reference points is exactly the same as FV-
MOEA with r = 1 + 1/H. The obtained solution set of DTLZ2 in Fig. 13(b) seems to
be inferior to the results in Fig. 5(b)–(f). This is because the two subpopulations are not
merged in Fig. 13(b). By changing the threshold value from 21/2/5H to 21/2/2H, almost
the same solution set as Fig. 5(b)–(f) is obtained from FV-MOEA with the two ref-
erence points. This is because the two subpopulations are merged and FV-MOEA with
r = 1 + 1/H is used. This result suggests the necessity of further examinations about the
parameter setting in the proposed idea.

5 Conclusions

In this paper, we proposed an idea of using two reference points in hypervolume-based
EMO algorithms to avoid the difficulty in appropriately specifying a single reference
point for multiobjective problems with inverted triangular Pareto fronts. Whereas
promising results were obtained by a simple implementation of the proposed idea, a
number of issues are left for future research to design a competent hypervolume-based
EMO algorithm with two reference points. Among them are the choice of a similarity
indicator and a threshold value, the timing of similarity check, and the specification of
the two reference points (e.g., the use of an infinitely large reference point). Information
exchange mechanisms between the two subpopulations should be further addressed.

(a) r = 1 & 10.    (b) r = 1.05.       (c) r = 13/12.      (d) r = 1.2.        (e) r = 1.5.        (f) r = 10. 

Fig. 14. Comparison of the proposed idea with the standard single reference point approach.
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Discussions are also needed on the estimation of the nadir point, the normalization of
the objective space (e.g., see [11]), and the computational complexity of the proposed
idea. Of course, performance comparison of the proposed idea with other EMO
algorithms is needed. Another important future research topic is to examine the shape
of the Pareto fronts of real-world multiobjective problems (e.g., triangular, inverted
triangular or others; linear, concave or convex).
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