
Introducing an Event-Based Architecture
for Concurrent and Distributed

Evolutionary Algorithms

Juan J. Merelo Guervós1(B) and J. Mario Garćıa-Valdez2

1 Universidad de Granada, Granada, Spain
jmerelo@geneura.ugr.es

2 Instituto Tecnológico de Tijuana, Tijuana, BC, Mexico
mario@tectijuana.edu.mx

Abstract. Cloud-native applications add a layer of abstraction to the
underlying distributed computing system, defining a high-level, self-
scaling and self-managed architecture of different microservices linked
by a messaging bus. Creating new algorithms that tap these architec-
tural patterns and at the same time employ distributed resources effi-
ciently is a challenge we will be taking up in this paper. We introduce
KafkEO, a cloud-native evolutionary algorithms framework that is pre-
pared to work with different implementations of evolutionary algorithms
and other population-based metaheuristics by using micro-populations
and stateless services as the main building blocks; KafkEO is an attempt
to map the traditional evolutionary algorithm to this new cloud-native
format. As far as we know, this is the first architecture of this kind
that has been published and tested, and is free software and vendor-
independent, based on OpenWhisk and Kafka. This paper presents a
proof of concept, examines its cost, and tests the impact on the algorithm
of the design around cloud-native and asynchronous system by comparing
it on the well known BBOB benchmarks with other pool-based architec-
tures, with which it has a remarkable functional resemblance. KafkEO
results are quite competitive with similar architectures.

Keywords: Cloud computing · Microservices
Distributed computing · Event-based systems · Kappa architecture
Stateless algorithms · Algorithm implementation
Performance evaluation · Distributed computing · Pool-based systems
Heterogeneous distributed systems · Serverless computing
Functions as a service

1 Introduction

Cloud computing is increasingly becoming the dominant way of running the
server side of most enterprise applications nowadays, the same as the browser
is the standard platform for the client side. Besides the convenience of the pay-
as-you-go model, it also offers a way of describing the infrastructure as part of
c© Springer Nature Switzerland AG 2018
A. Auger et al. (Eds.): PPSN 2018, LNCS 11101, pp. 399–410, 2018.
https://doi.org/10.1007/978-3-319-99253-2_32

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-99253-2_32&domain=pdf
http://orcid.org/0000-0002-1385-9741
http://orcid.org/0000-0002-2593-1114

400 J. J. Merelo Guervós and J. M. Garćıa-Valdez

the code, so that it is much easier to reproduce results and has been a boon for
scientific computing. However, programming the cloud means that monolithic
applications, that is, applications built on a single stack of services that com-
municate by layers, are no longer an efficient architectural design for scientific
workflows. Cloud architectures favor asynchronous communication over hetero-
geneous resources, and shifting from mostly sequential and monolithic to an
asynchronously parallel architecture will also imply important reformulation of
the algorithms in order to take full advantage of these technologies. Cloud-native
applications add a layer of abstraction to the underlying distributed computing
system, seamlessly integrating different elements in a single data flow, allow-
ing the user to just focus on code and service connections. Services are native
points in this new architecture, departing from a monolithic or even distributed
paradigm to become a loosely collection of services, in fact microservices [19],
which in many cases are stateless, reacting to some event and living only while
they are doing some kind of processing. Reactive systems not only allow mas-
sive scaling and independent deployment they are also more economical than
other monolithic options. Platform as a service (PaaS) or even Container as a
Service (CaaS) approaches need to be running all the time in order to maintain
their state, so they are paid for their size and time they remain active. At any
rate, while one of the main selling points of Functions as a Service (FaaS) is
their ultra-fast activation time, from our point of view their most interesting
feature is the fact that they provide stateless processing. An important caveat of
stateless processing is that algorithms must be adapted to this fact and turned,
at least in part, into a series of stateless steps working on a data stream. It is
also taken to an atomic extreme with the so-called serverless architectures [20],
which allow vendors and users to deploy code as single, stateless functions, that
get activated via rules, triggers or explicitly, reacting to events consumed from
a message queue. The first commercial implementation of this kind of architec-
ture was released by Amazon with its Lambda product, to be closely followed
by releases by Azure (Microsoft) and Google and OpenWhisk, an open source
implementation released by IBM [2].

In this paper we want to introduce KafkEO, a serverless framework for evolu-
tionary algorithms and other population-based systems. The main design objec-
tive is to leverage the scaling capabilities of a serverless framework, as well as
create a system that can be deployed on different platforms by using free soft-
ware. Our intention has also been to create an algorithm that is functionally
equivalent to an asynchronous, parallel, island-based, EA, which can use paral-
lelism and at the same time reproduce mechanisms that are akin to migration.
The island-based paradigm is relatively standard in distributed EA applications,
but in our case, we have been using it since it allows for better parallelism and
thus performance, at the same time it makes keeping diversity easier while need-
ing fewer parameters to tune.

We will examine the results of this framework using the first five functions of
the Noiseless Black-Box-Optimization-Benchmarking (BBOB) testbed [10] part
of the COCO (COmparing Continuous Optimisers) platform for comparisons

Introducing an Event-Based Architecture 401

of real-parameter global optimisers [10]. The framework is compared against
another cloud-ready parallel pool based implementation. The implementation is
also free software and can be downloaded from GitHub. The rest of the paper is
organized as follows. Next we present the state of the art in cloud implementation
of evolutionary algorithms, to be followed in Sect. 3 by an introduction to the
serverless architecture we will be using as well as our mapping of the evolutionary
algorithm to it. Section 4 will present the result of performing experiments with
this proof of concept; finally in Sect. 5 will discuss the results, present conclusions
and future lines of work.

2 State of the Art

In general, scientific computing has followed the trends of the computing indus-
try, with new implementations published almost as soon as new technologies
became commercially available, or even before. There were very early implemen-
tations of evolutionary algorithms on transputers [21], the world wide web [5] and
the first generation of cloud services [12,16,17]. However, every new computing
platform has its own view of computing, and in many cases that has made evo-
lutionary algorithms move in new directions in order to make them work better
in that platform while keeping the spirit of bio-inspiration. For instance, most
evolutionary algorithms work in a synchronous way; although there were very
early efforts to create asynchronous EAs [6], in general generations proceed one
after the other and migration happens in all islands at the same time. However,
this mode of working does not fit well with architectures that are heterogeneous
and dynamic, which is why there have been many efforts from early on to adapt
EAs to this kind of substrate [1,3,22].

This kind of internet-native applications later on transitioned to using
Service-Oriented Architectures (SoA) [14]. While monolithic, that is, including
all services in a single computing node and application, SoA were better adapted
to heterogeneous environments by distributing services across a network using
standard protocols. Several authors implemented evolutionary algorithms over
them [8,13,15]. However, scaling problems and the extension of cloud deploy-
ment and services had made this kind of architectures decline in popularity.

In general, frameworks based in SoA also tried to achieve functional equiv-
alence with parallel or sequential versions of EAs. There is the same tension
between functional equivalence and new design in new, cloud based approaches
to evolutionary algorithms. Salza and collaborators [16,17] explicitly and look-
ing to optimize interoperability claim that there is very little need to change
“traditional” code to port it to the cloud, implicitly claiming this functional
equivalence with sequential evolutionary algorithms.

Besides these implementations using well known cloud services, there are
new computation models for evolutionary algorithms that are not functionally
equivalent to a canonical EA, but have proved to work well in these new envi-
ronments. Pool based EAs, [4], with a persistent population that can be tapped
to retrieve single individuals or pools of them and return evaluated or evolved

402 J. J. Merelo Guervós and J. M. Garćıa-Valdez

sub-populations, have been used for new frameworks such as EvoSpace [9], and
proved to be able to accommodate all kinds of ephemeral and heterogeneous
resources.

In the serverless, event-based architectures we are going to be targeting in this
paper, there has been so far no work that we know of. Similar setups including
microservices have been employed by Salza et al. [17]; however, the proposed
serverless system adds a layer of abstraction to event-based queuing systems
such as the one employed by Salza by reducing it to functions, messages and
rules or triggers. We will explain in detail these architectures in the next section.

Fig. 1. Chart showing the general picture of the layers of a serverless architecture,
including the messages and services that constitute KafkEO, with labels indicating
message routes and the software components used for every part.

3 Event-Based Architectures and Implementing
Evolutionary Algorithms over Them

Microservice architectures share the common trait of consisting of several ser-
vices with a single concern, that is, providing a single processing value, in many
cases stateless, and coupled using lightweight protocols such as REST and mes-
saging buses that carry information from every service to the next. In this case,
we are going to be using IBM’s BlueMix service, which includes OpenWhisk as
a serverless framework and MessageHub, a vendor implementation of the Kafka
messaging service; this last one gives name to the framework we are presenting,
called KafkEO (EO stands for Evolving Objects).

Introducing an Event-Based Architecture 403

Fig. 2. A flow diagram of KafkEO, showing message routes, MessageHub topics and
the functions that are being used.

The main reason for choosing OpenWhisk and Kafka is availability of
resources, but also the fact that all parts of the implementation are open source
and can be deployed in desktop machines or other cloud providers by changing
the configuration. It is also a good practice to implement free software using free
software, making it widely available to the scientific community.

The layers and message flow in the application are shown in Fig. 1, which
also includes the evolutionary components. We will focus for the time being in
the general picture: a serverless architecture using a messaging service as a back-
bone, which in this case takes the shape of the Kafka/MessageHub service. These
messages are produced and consumed by a service, which can also store them
in an external database for their later use; in general, messaging systems are
configured to keep messages only for a certain amount of time, and they disap-
pear after that. Messaging queues are organized in topics and every topic uses a
series of partitions, which can be increased for bigger throughput; the functions,
hosted in OpenWhisk, execute actions triggered by the arrival of new messages;
these actions also produce new messages that go back to the MessageHub to
continue with the message loop. If all this is hosted in a cloud provider, as it is
the case, the MessageHub service will be charged according to a particular cost
structure, with partitions taking the most part of the cost, while messages have
a relatively small impact.

The evolutionary algorithm mapped over this architecture is represented in
Fig. 2. The main design challenge is to try and map an evolutionary algorithm
to a serverless, and then stateless, architecture. That part is done in points 1
through 5 of Fig. 2. The beginning of the evolution is triggered from outside
the serverless framework (1) by creating a series of Population objects, which
we pack (2) to a message in the new-populations topic. Population objects are
the equivalent to islands or samples in EvoSpace. If Population object is a self-
contained population of individuals, represented as a JSON structure.

404 J. J. Merelo Guervós and J. M. Garćıa-Valdez

The arrival of a new population package sets off the MessageArrived trigger
(3), that is bound to the actions that effectively perform a small number of
generations. In this case we give as an example a GA and a PSO algorithms,
although only the GA has been implemented for this paper. Any number of
GA algorithms (actions) can be triggered in parallel by the same message, and
new actions can be triggered while others are still working; this phase is then
self-scaling and parallel by design.

Population objects are extracted from the message and, for each, a call to
an evolve process is executed in parallel. The evolve process consists of two
sequential actions (5), first, the GA Service function that runs a GA for a certain
number of generations, producing a new evolved object, which is then sent to
the second action called Message Produce responsible of sending the object to
the evolved-population-objects message queue. The new Population object (6)
includes the evolved population and also metadata such as a flag indicating
whether the solution has been found, the best individual, and information about
each generation. With this metadata a posterior analysis of the experiment can
be achieved or simply generating the files used by the BBOB Post-processing
scripts.

This queue is polled by a service outside the serverless framework, called
Population-Controller. This service needs to be stateful, since it implements a
buffer that needs to wait until several populations are ready to then mix them
(in step #9 in Fig. 2) to produce a new population, that is the result of selection
and crossover between several populations coming from the evolved-population-
objects message queue. Eventually, these mixed populations are returned to the
initial queue to return to the serverless part of the application. Another task of
the Population-Controller is to start and stop the experiment. The service must
keep the number of Population objects received, then after a certain number is
reached, the controller stops sending new messages to the new-populations topic.
It is important to note, that because of the asynchronous nature of the system,
several messages could still arrived after the current experiment is over. The
controller must only accept messages belonging to the current process.

This merging step before starting evolution takes the place of the migra-
tion phase and allows this type of framework to work in parallel, since several
instances of the function might be working at the exact same time; the results
of these instances are then received back by every one of the instances.

In fact, this kind of system would be more functionally equivalent to a pool-
based architecture [4], since the queue acts as a pool from where populations are
taken and where evolved populations return. Actually, the pool becomes a stream
in this case, but in fact the pool also evolves, changing its composition, and has a
finite size just like the pool. Since pool-based architectures have already proved
they work with a good performance, we might expect this type of architecture,
being functionally equivalent, to be at least just as efficient and the latter, and
better adapted to a cloud-native application.

In this phase where we are creating a proof of concept, there is a single
instance of this part. For the time being, it has not been detected as a bottleneck,

Introducing an Event-Based Architecture 405

although eventually, when the number of functions are working in parallel, it
might become one. There are several options for overcoming this problem, the
easiest of which is to add more instances of this Population-controller. These
instances will act in parallel, processing the message queue at different offsets
and contributing to population diversity. This will eventually have its influence
in the results of the algorithm, so it is better left as future work.

Since we are running just a few functions, the amount of code of KafkEO
is quite small compared with other implementations. We use DEAP for all the
evolutionary functions, which are written in Python and released in GitHub
under the GPL license.

4 Experiments and Results

In this section we compare the performance of KafkEO against an implemen-
tation of the EvoSpace [9] pool-based architecture, using the first five functions
of the Noiseless BBOB testbed [10], which are real-parameter, single-objective,
separable functions, namely: Sphere, ellipsoidal, which is highly multimodal,
Rastrigin, Buche-Rastrigin, and the purely lineal function called linear slope.
It is expected that the two algorithms achieve similar results as they are func-
tionally equivalent. The EvoSpace implementation follows the basic EvoSpace
model in which EvoWorkers asynchronously interact with the population pool
by taking samples of the population to perform a standard evolutionary search
on the samples, to then return newly evolved solutions back to the pool.

EvoWorkers were implemented in Python with the same code as KafkEO and
using DEAP [7] for the GA service function. The code is in the following GitHub
repository: https://hidden.com. Before each experiment, a script initializes the
population on the server, creating the number of individuals specified by the Pool
Size parameter, this size depends on the dimension of the problem according to
the BBOB testbed. When starting each EvoWorker, the following parameters
are used: first, the Sample Size indicating the number of individuals the worker
would take from the server on each interaction, then the Iterations per Sample
parameter specifies the number of generations or iterations the worker algorithm
will run before sending back to the server the resulting population. Finally, the
number of times an EvoWorker will take, evolve and return a sample, is indicated
by the Samples per Worker parameter. The number of EvoWorkers instantiated
for the experiment is given by the GA Workers parameter. The EvoSpace param-
eters are shown in Table 1. These parameters are set for each dimension and they
indicate the effort in number of evaluations. In both experiments the maximum
number of evaluations is 105 ·D. For instance, for D = 2, the maximum number
of evaluations is 200, 000 which is obtained by multiplying the parameters int
the first column of Table 1: 50 · 100 · 20 · 2. Also both algorithms limit the search
space to [−5, 5]D.

On the other hand, the parameters used for KafkEO are shown in Table 2.
Every function runs an evolutionary algorithm for the shown number of iterations
and with the population size also shown. The number of initial messages act as

https://hidden.com

406 J. J. Merelo Guervós and J. M. Garćıa-Valdez

Table 1. EvoWorker setup parameters,

Dimension 2 3 5 10 20 40

Iterations per Sample 50 50 50 50 50 50

Sample Size 100 100 100 200 200 200

Samples per Worker 20 30 25 25 25 25

GA Workers 2 2 4 5 8 16

Pool Size 250 250 500 1000 2000 4000

an initial trigger, being thus equivalent to the number of parallel functions or
workers; this is the tunable parameter used for increasing performance when
the problem dimension, and thus difficulty, increases; the population size is also
increased, so that initial diversity is higher. Please note that every population
is generated randomly, so that the population size would have to be multiplied
by the number of initial messages to get to the initial population involved in the
experiment. The effort is limited by the maximum number of messages consumed
by the Population-Controller from the evolved-population-objects message queue.
The maximum number is calculated by multiplying the Maximum Iterations and
Initial Messages parameters. Again for a 105·D maximum number of evaluations.

Table 2. KafkEO parameters for the BBOB benchmark. Dimensions are the inde-
pendent variable, the rest of the parameters are changed to adapt to the increasing
difficulty.

Dimension 2 3 5 10 20 40

Iterations 50 50 50 50 50 50

Population Size 100 100 100 200 200 200

Initial Messages 2 2 4 5 8 16

Maximum Iterations 2 2 4 5 8 16

The evolutionary algorithm implemented in KafkEO used the same code, also
delegating the evolutionary operations to the standard DEAP library, written in
Python [7], using 12 for tournament size, a Gaussian mutation with sigma = 0.05
and a probability between 0.1 and 0.6, plus two point crossover with probability
between 0.8 and 1; these are the default parameters. In particular, the tourna-
ment size injects a high selective pressure which is known to decrease diversity.
The system also allows to set different parameters for every instance; in this
proof of concept only two parameters were randomly set, Mutation Probabil-
ity uniformly random in the [.1, .6] range, and Crossover Probability random on
[.8, 1]. This is one deviation from the standard evolutionary algorithm, but has
been proved in the past to provide good results without needing to fine tune
different parameters [18].

Introducing an Event-Based Architecture 407

The experiments were performed during the month of January using a paid
IBM BlueMix subscription. The totality of experiments costed about $12. Most
of the cost is due to the MessageHub partitions, that is, the hosted messaging
service itself. The amount paid for the messages in the BlueMix platform is
less than one dollar in total; messages are paid by the hundreds of thousands
delivered, and are actually not the most expensive part of the implementation
of the algorithm. Partitions are essential for a high throughput; a messaging
queue will be able to process as many messages as the partitions are able to get
through in parallel; this means that cost will scale with the number of messages in
a complex way, not simply linearly, and design decisions will have to be taken.
The baseline is that the best option is to maximize the number of messages
that can be borne by a particular partition, and try to minimize the number of
partitions to avoid scaling costs.

Fig. 3. Scaling of the running time with dimension to reach certain target values Δf .
Lines: average runtime (aRT); Cross (+): median runtime of successful runs to reach
the most difficult target that was reached at least once (but not always); Cross (×):
maximum number of f-evaluations in any trial. Notched boxes: interquartile range with
median of simulated runs. All values are divided by dimension and plotted as log10

values versus dimension. Shown is the aRT for fixed values of Δf = 10k with k given in
the legend. Numbers above aRT-symbols (if appearing) indicate the number of trials
reaching the respective target. The light thick line with diamonds indicates the best
algorithm from BBOB 2009 for the most difficult target. Horizontal lines mean linear
scaling, slanted grid lines depict quadratic scaling. Odd columns (1, 3): EvoSpace; even
columns (2, 4): KafkEO.

408 J. J. Merelo Guervós and J. M. Garćıa-Valdez

The results of the comparison are shown in Fig. 3, which follow the classical
BBOB 2009 format, which includes the amount of effort devoted to finding a
certain fitness level and time needed to do it. Figure 3 was generated by the post-
processing script from COCO [10] used in the Black-box Optimization Bench-
marking workshop series. The EvoSpace and KafkEO results are shown side by
side, only for the sake of comparison, since we are only interested for the time
being in the baseline performance of the proof of concept.

The results obtained show that the basic Genetic Algorithm implemented in
KafkEO does not perform very well against the testbed, specially when compared
against other nature inspired algorithms like PSO or other hybrid approaches
[11]. However, both implementations, shown side by side, reach similar results
with the same effort; and the results in this case have been obtained with fewer
parameters, with out the need to specify an initial pool size and without tuning
the evolutionary algorithm parameters.

This is a problem that pool-based algorithms have: we need to specify the
initial number of individuals to place in the pool and have the burden of always
keeping a minimum number of individuals in the pool. This is not the case
in KafkEO, because there is no need to have a repository for the population.
However, population size and the number of generations turned in by every
instantiation of the functions have to be tuned, which is something that will
have to be left as future work.

5 Conclusions

This paper is intended to introduce a simple proof of concept of a serverless
implementation of an evolutionary algorithm. The main problem with this algo-
rithm, shared by many others, is to turn something that has state (in the form
of loop variables or anything else) into a stateless system. In this initial proof
of concept we have opted to create a stateful mixer outside the serverless (and
thus stateless) platform to be able to perform migration and mixing among pop-
ulations. A straightforward first step would be to parallelize this service so that
it can respond faster to incoming evolved populations; however, this scaling up
should be done by hand and a second step will be to make the architecture
totally serverless by using functions that perform this mixing in a stateless way.
This might have the secondary effect of simplifying the messaging services to
a single topic, and making deployment much easier by avoiding the desktop or
server back-end we are using now for that purpose.

The proof of concept is a good adaptation of an evolutionary algorithm to
the serverless architecture, with a performance that is comparable, in terms of
number of evaluations, to pool-based architectures. Even if results right now are
not competitive, the scalability of the architecture and also the possibilities it
offers in terms of tuning parameters for the algorithm, even using heterogeneous
functions tapping the same topic (channel), offer the chance of improving running
time as well as the algorithm itself in terms of number of evaluations. This is an
avenue that we will explore in the near future. The whole set of experiments, done

Introducing an Event-Based Architecture 409

in the cloud with a desktop component, took more than running a single desktop
experiment using EvoSpace. However, scaling was lineal with problem difficulty,
which at least mean that we are not adding an additional level of complexity to
the algorithm and might indicate that horizontal or vertical scaling would solve
the problem. This kind of scaling also indicates that the stateful part, run in a
desktop, has not for this problem size become a bottleneck. Even so, we consider
that it is essential to create an algorithm architecture that will be fully serverless
and, thus, stateless.

Other changes will go in the direction of testing the performance of the
system and computing the cost, so that we can increase the former without
increasing the latter. Since there is room for increasing parallelism, we will try
different ways of obtaining better algorithmic results by making a parameter
sensitivity analysis, including population size, length of evolution runs, and other
algorithmic parameters. Once those algorithmic baselines have been set, we will
experiment with different metaheuristics such as particle swarm optimization,
or even try for heterogeneous functions with different evolutionary algorithm
parameters, with the purpose of reducing the number of parameters to set at
the start.

Acknowledgments. Supported by projects TIN2014-56494-C4-3-P (Spanish Min-
istry of Economy and Competitiveness) and DeepBio (TIN2017-85727-C4-2-P).

References

1. Atienza, J., Castillo, P.A., Garćıa, M., González, J., Merelo, J.: Jenetic: a dis-
tributed, fine-grained, asynchronous evolutionary algorithm using Jini. In: Wang,
P.P. (ed.) Proceedings of JCIS 2000 (Joint Conference on Information Sciences),
vol. I, pp. 1087–1089 (2000). ISBN: 0-9643456-9-2

2. Baldini, I., et al.: Cloud-native, event-based programming for mobile applications.
In: Proceedings - International Conference on Mobile Software Engineering and
Systems, MOBILESoft 2016, pp. 287–288 (2016)

3. Baugh, J.W., Kumar, S.V.: Asynchronous genetic algorithms for heterogeneous
networks using coarse-grained dataflow. In: Cantú-Paz, E., et al. (eds.) GECCO
2003. LNCS, vol. 2723, pp. 730–741. Springer, Heidelberg (2003). https://doi.org/
10.1007/3-540-45105-6 88

4. Bollini, A., Piastra, M.: Distributed and persistent evolutionary algorithms: a
design pattern. In: Poli, R., Nordin, P., Langdon, W.B., Fogarty, T.C. (eds.)
EuroGP 1999. LNCS, vol. 1598, pp. 173–183. Springer, Heidelberg (1999). https://
doi.org/10.1007/3-540-48885-5 14

5. Chong, F.S., Langdon, W.B.: Java based distributed genetic programming on the
internet. In: Banzhaf, W., et al. (eds.) Proceedings of the Genetic and Evolutionary
Computation Conference, vol. 2, p. 1229. Morgan Kaufmann, Orlando, 13–17 July
1999. Full text in technical report CSRP-99-7

6. Coleman, V.: The DEME mode: an asynchronous genetic algorithm. Technical
report, University of Massachussets at Amherst, Department of Computer Science
(1989). uM-CS-1989-035

7. Fortin, F.A., Rainville, F.M.D., Gardner, M.A., Parizeau, M., Gagné, C.: DEAP:
evolutionary algorithms made easy. J. Mach. Learn. Res. 13, 2171–2175 (2012)

https://doi.org/10.1007/3-540-45105-6_88
https://doi.org/10.1007/3-540-45105-6_88
https://doi.org/10.1007/3-540-48885-5_14
https://doi.org/10.1007/3-540-48885-5_14

410 J. J. Merelo Guervós and J. M. Garćıa-Valdez

8. Garćıa-Sánchez, P., González, J., Castillo, P.A., Arenas, M.G., Merelo-Guervós, J.:
Service oriented evolutionary algorithms. Soft Comput. 17(6), 1059–1075 (2013)

9. Garćıa-Valdez, M., Trujillo, L., Merelo, J.J., Fernández de Vega, F., Olague, G.:
The EvoSpace model for pool-based evolutionary algorithms. J. Grid Comput.
13(3), 329–349 (2015). https://doi.org/10.1007/s10723-014-9319-2

10. Hansen, N., Auger, A., Mersmann, O., Tusar, T., Brockhoff, D.: COCO: a platform
for comparing continuous optimizers in a black-box setting (2016). arXiv preprint
arXiv:1603.08785

11. Hansen, N., Auger, A., Ros, R., Finck, S., Poš́ık, P.: Comparing results of 31
algorithms from the black-box optimization benchmarking BBOB-2009. In: Pro-
ceedings of the 12th Annual Conference Companion on Genetic and Evolutionary
Computation, pp. 1689–1696. ACM (2010)

12. Merelo-Guervós, J.J., Arenas, M.G., Mora, A.M., Castillo, P.A., Romero, G.,
Laredo, J.L.J.: Cloud-based evolutionary algorithms: an algorithmic study. CoRR
abs/1105.6205, 1–7 (2011)

13. Munawar, A., Wahib, M., Munetomo, M., Akama, K.: The design, usage, and
performance of GridUFO: a grid based unified framework for optimization. Future
Gener. Comput. Syst. 26(4), 633–644 (2010)

14. Papazoglou, M.P., van den Heuvel, W.J.: Service oriented architectures:
approaches, technologies and research issues. VLDB J. 16(3), 389–415 (2007).
https://doi.org/10.1007/s00778-007-0044-3

15. Rodŕıguez, L.G., Diosa, H.A., Rojas-Galeano, S.: Towards a component-based soft-
ware architecture for genetic algorithms. In: 2014 9th Computing Colombian Con-
ference (9CCC), pp. 1–6, September 2014

16. Salza, P.: Parallel genetic algorithms in the cloud. Ph.D. thesis, University of
Salerno, Italy (2017). https://goo.gl/sDx6mY

17. Salza, P., Hemberg, E., Ferrucci, F., O’Reilly, U.M.: cCube: a cloud microservices
architecture for evolutionary machine learning classification. In: Proceedings of
the Genetic and Evolutionary Computation Conference Companion, pp. 137–138.
ACM (2017)

18. Tanabe, R., Fukunaga, A.: Evaluation of a randomized parameter setting strategy
for island-model evolutionary algorithms. In: 2013 IEEE Congress on Evolutionary
Computation (CEC), pp. 1263–1270. IEEE (2013)

19. Thönes, J.: Microservices. IEEE Softw. 32(1), 116–116 (2015)
20. Varghese, B., Buyya, R.: Next generation cloud computing: new trends and

research directions. Future Gener. Comput. Syst. 79, 849–861 (2018). Cited by
2

21. Voigt, H.-M., Born, J., Santibañez-Koref, I.: Modelling and simulation of dis-
tributed evolutionary search processes for function optimization. In: Schwefel, H.-
P., Männer, R. (eds.) PPSN 1990. LNCS, vol. 496, pp. 373–380. Springer, Heidel-
berg (1991). https://doi.org/10.1007/BFb0029778

22. Zorman, B., Kapfhammer, G.M., Roos, R.S.: Creation and analysis of a JavaSpace-
based distributed genetic algorithm. In: PDPTA, pp. 1107–1112 (2002)

https://doi.org/10.1007/s10723-014-9319-2
http://arxiv.org/abs/1603.08785
https://doi.org/10.1007/s00778-007-0044-3
https://goo.gl/sDx6mY
https://doi.org/10.1007/BFb0029778

	Introducing an Event-Based Architecture for Concurrent and Distributed Evolutionary Algorithms
	1 Introduction
	2 State of the Art
	3 Event-Based Architectures and Implementing Evolutionary Algorithms over Them
	4 Experiments and Results
	5 Conclusions
	References

