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Abstract. We consider the deployment of island-based evolutionary
algorithms (EAs) on irregular computational environments plagued with
different kind of glitches. In particular we consider the effect that fac-
tors such as network latency and transient process suspensions have on
the performance of the algorithm. To this end, we have conducted an
extensive experimental study on a simulated environment in which the
performance of the island-based EA can be analyzed and studied under
controlled conditions for a wide range of scenarios in terms of both the
intensity of glitches and the topology of the island-based model (scale-
free networks and von Neumann grids are considered). It is shown that
the EA is resilient enough to withstand moderately high latency rates
and is not significantly affected by temporary island deactivations unless
a fixed time-frame is considered. Combining both kind of glitches has a
higher toll on performance, but the EA still shows resilience over a broad
range of scenarios.

1 Introduction

The great success of metaheuristics in the last decades comes partly from the fact
that their underlying algorithmic models are very much amenable to deployment
in parallel and distributed environments [1]. Indeed, nowadays the use of parallel
environments is a key factor to approach the resolution of complex computational
problems, and population-based metaheuristics are ideal tools in this context.
Specifically, evolutionary algorithms (EAs) have been used on this kind of setting
since the 1980s with excellent results and can greatly benefit from parallelism
[2,16]. Following this line, during the last years there has been a growing interest
in the use of EAs in distributed computing environments that move away from
classical dedicated networks so common in the past. Among such environments
we can cite cloud computing [19], P2P networks [14,28], or volunteer computing
(VC) [7], just to name a few.

Some of these emerging computational scenarios –in particular P2P and VC
systems– are characterized by several distinctive features which can be summa-
rized under the umbrella term of irregularity. Such irregularity is the result of
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their being part of interconnected techno-social systems [26] composed of hetero-
geneous layers of resources with a complex dynamics. Thus, the computational
substrate may be composed of a collection of computing nodes with heteroge-
neous capabilities [4,17], a feature that has to be accounted for, typically by
finding an appropriate balancing of the computational load [6] or by distribut-
ing data appropriately [23]. The dynamism of the computational environment
is another outstanding feature of these systems: computational nodes can have
an uncontrollable dynamics caused by user interventions, interruptions of the
network, eventual blockages, delays in communications, etc. The term churn is
used to denote this phenomenon [24].

While sometimes it may be possible to try to hide these computational irreg-
ularities by adding intermediate layers, this can be a formidable challenge in
multiple situations [8], and therefore algorithms may need being adapted to run
natively (that is, irregularity-aware) on these computational systems. Focusing
on EAs, these are fortunately very resilient, at least at a fine-grained scale –
see [15,18]. Furthermore, in cases in which they can be more sensitive to envi-
ronmental disruptions (e.g., in coarse-grain settings such as the island model
[12]), they can be augmented with the necessary functionality to endure some of
the difficulties caused by the irregularity of the computational substrate. In line
with this, previous work has studied the resilience of EAs in scenarios plagued
with instability and heterogeneity [21,22]. This does not exhaust the sources of
irregularity though. Computational glitches can take place in additional different
forms, such as traffic overloads or transient computational limitations, which to
the best of our knowledge have not been analyzed in this context. Studying the
performance of EAs in the presence of these is precisely the focus of this work.
To this end we deploy an island-based EA on a simulated computational envi-
ronment that allows experimenting in a controlled way with different intensities
of such computational glitches, namely communication latency and temporary
process deactivations. This will described in more detail in Sect. 2.

2 Methodology

As anticipated in previous section, we consider an island-based EA working on
a simulated environment, in order to have control on the different issues under
study. Each island of the EA runs on a computational node of this environment.
In the following we will describe the basic algorithmic details of the EA, as well
as how the network and the computational glitches are modeled.

Algorithmic Model. The algorithm considered is a steady-state EA with one-
point crossover, bit-flip mutation, binary tournament selection and replacement
of the worst parent. This algorithm is deployed on a computational environment
in which each node hosts an island running an instance of the previously men-
tioned EA. After each iteration of the basic EA, these islands perform migration
(stochastically with probability pmig) of single individuals to neighboring islands.
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Algorithm 1. Overview of the island-based evolutionary algorithm.
for i ∈ [1 · · · nι] do in parallel

Initialize(popi) ; // initialize i-th island population

buffer i ← ∅ ; // initialize i-th migration buffer

end
while ¬ BudgetExhausted() do

for i ∈ [1 · · · nι] do in parallel // basic evolutionary cycle

CheckMigrants (popi, buffer i) ; // accept migrants (if any)

DoIteration(popi) ; // selection, reproduction, replacement

if rand() < pmig then
for j ∈ Ni do

SendMigrants(popi, buffer j) ; // send migrants

end

end

end

end

In each migration event the migrant is randomly selected from the current popu-
lation and the receiving island inserts it in its population by replacing the worst
individual [20]. The whole process is illustrated in Algorithm 1.

Network Model. We assume a network composed by nι nodes interconnected
following a certain topology. More precisely, we consider two possibilities for
this purpose: a von Neumann (VN) grid and a scale-free (SF) network. The first
one is a classical structure often used in spatially-structured EAs [10,25] and
can be described as a regular toroidal mesh in which each node is connected to
four neighbors (those located at unit Manhattan distance), see Fig. 1a. As to the
second one, it is a complex network structure commonly found in many natural
and artificial systems (e.g., P2P networks) as a consequence of their growth
dynamics, i.e., their continuous expansion by the addition of new nodes that
attach preferentially to sites that are already well connected [5]. The result is a
network topology in which node degrees are distributed following a power-law
(i.e., the fraction p(d) of nodes with d neighbors goes as p(d) ∼ d−γ for some
constant parameter γ). To generate a network of this kind we use the Barabási-
Albert model [3], whereby the network is grown from a clique of m + 1 nodes
by adding a node at a time, connecting it to m of the nodes previously added
(selected with probability proportional to their degree) where m is a parameter
of the model. Figure 1b shows an example of a SF network. As anticipated by the
power-law distribution of node degrees, a few nodes will have a large connectivity
and increasingly more nodes will have a smaller number of neighbors.

Modeling Glitches. The functioning of the island-based EA described before
is disturbed by the presence of perturbations of two types: (i) communication
delays and (ii) temporary process deactivations. Both of them can have a diverse



414 R. Nogueras and C. Cotta

Fig. 1. (a) Example of a grid with von Neumann topology (toroidal links not shown
for simplicity) (b) Example of a scale-free network with m = 2.

set of causes in real networks but in the specific context considered in this work,
they can –from a very broad and abstract perspective – be considered to stem
from the intrinsic properties of the underlying computational substrate, namely
the fact it may be often composed of non-dedicated, low-end computational
devices. Focusing firstly on network latency, it is a major issue on P2P systems:
their decentralized nature makes them inherently more scalable than client-server
architectures but also hampers effective communications due to bandwidth lim-
itations and routing information maintenance overhead [13]. This can exert a
strong influence on the performance of applications running on this kind of
environments, e.g., [29]. To test the extent to which this factor also affects the
performance of our island-based EA, we introduce a tunable delay in the commu-
nication between islands: whenever individuals are sent for migration purposes,
they will only arrive to the destination island after some time λ, measured in
a machine-independent way as a number of iterations of the basic evolutionary
cycle in Algorithm 1.

The second factor considered is the temporary deactivation of a process. This
can be due to a number of factors related to the way the operating system of
a certain computational node schedules processes (e.g., the node can engage
in swapping, or another high-priority process may kick in –recall we could be
considering a VC scheme whereby our algorithm would be using just the spare
CPU and bandwidth of a certain device– and the EA can be put to sleep). In
such a case, we assume the computation process is still active but its execution is
temporarily frozen. This means that it will not execute any evolutionary cycle nor
it will send any individuals to neighboring islands (but it cannot prevent other
islands from sending migrants to it; these migrants will be simply kept in the
input buffer and processed later when the node wakes up). This is related to the
issue of instability mentioned in Sect. 1 and can be considered as a slightly more
benign form of churn, that is, the island is not completely lost as it would happen
when a node goes out of the system and the process is terminated. In order to
model this factor we need two parameters ps and ts: the first one indicates
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the probability that each island is put to sleep in each iteration (assumed for
simplicity to be constant and fixed for all islands), and the second one denotes
the number of cycles it will remain in this dormant state.

3 Experimentation

We consider nι = 64 islands of μ = 32 individuals each, and a total number
of evaluations maxevals = 250, 000. We use crossover probability pX = 1.0,
mutation probability pM = 1/�, where � is the genotype length, and migration
probability pmig = 1/(5μ) = 1/160. Regarding the network parameters, we use
m = 2 in the Barabási-Albert model in order to define the topology of the SF
network; in the case of the VN topology, we consider a 8 × 8 toroidal grid. As
for the computational glitches, we consider the following settings:

– Latency values λ = kμ for k ∈ {0, 1, 2, 4, 8}. Intuitively, these values indicate
a communication delay analogous to k full generations elapsed on an island.

– Node deactivations are done with values ps = k/(μnι) and ts = kμ, with k ∈
{0, 1, 2, 4, 8, 16, 32}. Intuitively, a certain value of k would indicate both the
average number of islands being deactivated per generation and the number
of generations they would remain in that state.

The experimental benchmark comprises Deb’s trap function [9] (TRAP, con-
catenating 32 four-bit traps), Watson et al.’s Hierarchical-if-and-only-if function
[27] (HIFF, using 128 bits) and Goldberg et al.’s Massively Multimodal Decep-
tive Problem [11] (MMDP, using 24 six-bit blocks). These functions provide
a scalable benchmark exhibitting properties of interest such as multimodality
and deception. We perform 20 simulations for each configuration and measure
performance as the percentage deviation from the optimal solution in each case.

Firstly, let us analyze how the latency of communications affects the per-
formance of the algorithm. Figure 2 and Table 1 show the results. As expected,
the performance of the algorithm degrades as the latency of communications
increases (that is, as we move to the right along the X axis). This can be
interpreted in terms of the role of migration: when individuals are migrated
the receiving island can benefit both from increased diversity and from quality
genetic material. In fact these two factors are intertwined since good (in terms
of fitness) fresh information is more likely to proliferate in the target popula-
tion, and can hence re-focus the search conducted in the island or contribute
to drive it out of stagnating states. To the extent that this information starts
to constitute a glimpse from the past (as it happens when the latency is in the
upper range of values considered), the migrants tend to be less significant in
terms of fitness (since the receiving island has more time to evolve and advance
in the mean time). They will still carry diversity (and actually in some cases
this diversity might be probably higher in comparative terms, since the emitting
island was in a less-converged state), but the impact on the receiving island will
be less marked, at least in the cases in which latency is high (cf. Table 1), with-
out excluding that for the lower range of latency values considered this diversity
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Fig. 2. Average deviation from the optimal solution as a function of the latency param-
eter for SF and VN topologies. (a) TRAP (b) HIFF (c) MMDP.

Table 1. Results (20 runs) of the different EAs on SF (upper portion of the table)
and VN (lower portion of the table) networks for different latency values. In this table
and subsequent ones, the median (x̃), mean (x̄) and standard error of the mean (σx̄)
are indicated. A symbol �| • |◦ is used to indicate statistically significant differences at
α = 0.01|0.05|0.10 with respect to the case λ = 0 according to a Wilcoxon ranksum
test.

SF TRAP H-IFF MMDP

Latency (λ) x̃ x̄ ± σx̄ x̃ x̄ ± σx̄ x̃ x̄ ± σx̄

0 2.50 2.34 ± 0.33 11.11 10.21 ± 1.87 5.99 5.75 ± 0.32

μ 2.50 2.84 ± 0.36 16.67 14.53 ± 1.83 ◦ 5.99 6.33 ± 0.38

2μ 2.50 2.56 ± 0.26 16.67 15.40 ± 1.67 ◦ 7.49 7.06 ± 0.29 •
4μ 3.75 3.88 ± 0.25 � 19.44 15.95 ± 1.79 • 7.49 8.10 ± 0.38 �

8μ 6.25 6.16 ± 0.32 � 21.88 21.92 ± 0.60 � 8.99 9.37 ± 0.41 �

VN TRAP H-IFF MMDP

Latency (λ) x̃ x̄ ± σx̄ x̃ x̄ ± σx̄ x̃ x̄ ± σx̄

0 0.00 0.00 ± 0.00 0.00 6.39 ± 1.68 1.50 1.50 ± 0.27

μ 0.00 0.00 ± 0.00 0.00 2.50 ± 1.17 ◦ 1.50 2.17 ± 0.25

2μ 0.00 0.37 ± 0.13 � 0.00 3.89 ± 1.40 3.00 3.10 ± 0.33 �

4μ 1.25 1.16 ± 0.22 � 11.11 8.13 ± 1.79 4.49 4.55 ± 0.32 �

8μ 3.75 3.41 ± 0.24 � 13.89 10.80 ± 1.92 ◦ 7.32 6.86 ± 0.24 �

boost can sometimes provide a minor improvement. The results are also qual-
itatively similar for both network topologies in which the degradation trend is
analogous.

Let us now turn our attention to the effect of temporary island deactiva-
tions. The results for different intensities of this factor are shown in Table 2.
As it can be seen, there is hardly a degradation of results even for large glitch
rates. To interpret this, notice that the presence of dormant islands resembles



Resilience of EAs to Computational Glitches 417

Table 2. Results (20 runs) of the different EAs on SF (upper portion of the table) and
VN (lower portion of the table) networks for different deactivation parameters and a
constant number of evaluations. The statistical comparison is done with respect to the
case k = 0.

SF TRAP H-IFF MMDP

k x̃ x̄ ± σx̄ x̃ x̄ ± σx̄ x̃ x̄ ± σx̄

0 2.50 2.34 ± 0.33 11.11 10.21 ± 1.87 5.99 5.73 ± 0.32

1 1.25 1.94 ± 0.27 16.67 13.11 ± 1.98 4.49 5.00 ± 0.36

2 2.50 2.37 ± 0.28 13.89 11.08 ± 1.78 5.99 5.82 ± 0.37

4 2.50 2.34 ± 0.29 16.67 14.57 ± 1.35 5.99 5.90 ± 0.39

8 2.50 2.88 ± 0.41 16.67 15.07 ± 1.54 • 7.32 6.86 ± 0.34 •
16 2.50 2.66 ± 0.36 19.44 18.44 ± 1.25 � 5.99 6.11 ± 0.36

32 2.50 2.22 ± 0.28 16.67 16.05 ± 1.71 • 5.99 6.03 ± 0.35

VN TRAP H-IFF MMDP

k x̃ x̄ ± σx̄ x̃ x̄ ± σx̄ x̃ x̄ ± σx̄

0 0.00 0.00 ± 0.00 0.00 6.39 ± 1.68 1.50 1.50 ± 0.27

1 0.00 0.00 ± 0.00 0.00 3.06 ± 1.24 1.50 1.26 ± 0.29

2 0.00 0.06 ± 0.06 0.00 6.10 ± 1.79 1.50 1.56 ± 0.22

4 0.00 0.12 ± 0.09 0.00 5.42 ± 1.81 1.50 1.48 ± 0.28

8 0.00 0.06 ± 0.06 11.11 8.06 ± 1.59 1.50 1.95 ± 0.31

16 0.00 0.25 ± 0.11 • 11.11 7.15 ± 1.58 1.50 1.91 ± 0.30

32 0.00 0.25 ± 0.11 • 11.11 8.89 ± 1.76 2.83 2.36 ± 0.22 •

transient heterogeneous computational capabilities: within a small time window,
each island will have conducted a different number of cycles, which is to some
extent analogous to assume they are running on nodes with different compu-
tational power; however, on the larger scale, these dormant periods distribute
rather homogeneously over all islands, and thus they advance on average at the
same rate. Of course, these perturbations become better smoothed out in the
longer term the finer they are (hence some effects can be observed in the upper
range of values of k, where glitches are more coarse-grained), but EAs are in any
case resilient enough to withstand heterogeneous advance rates without dramatic
performance losses [22].

A different perspective can be obtained if we approach these results from
the point of view of a fixed time frame, as opposed to a fixed computational
effort distributed over a variable time frame. Obviously, the presence of dormant
islands contributes to dilute the computational effort exerted over a certain time
frame, so studying the resilience of the EA to this dilution is in order. To do
so, we consider a time frame dictated by the number of cycles performed by the
EA in the base (k = 0) case. The results under these conditions are shown in
Table 3 and Fig. 3. As expected there is a clear trend of degradation in this case.
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Fig. 3. Average deviation from the optimal solution as a function of the deactivation
parameters for SF and VN topologies and a constant number of cycles. (a) TRAP (b)
HIFF (c) MMDP.

Table 3. Results (20 runs) of the different EAs on SF (upper portion of the table) and
VN (lower portion of the table) networks for different deactivation parameters and a
constant number of cycles. The statistical comparison is done with respect to the case
k = 0.

SF TRAP H-IFF MMDP

k x̃ x̄ ± σx̄ x̃ x̄ ± σx̄ x̃ x̄ ± σx̄

0 2.50 2.34 ± 0.33 11.11 10.21 ± 1.87 5.99 5.75 ± 0.32

1 1.25 2.00 ± 0.25 16.67 14.21 ± 1.91 5.24 5.17 ± 0.35

2 2.81 2.94 ± 0.30 16.67 12.53 ± 1.80 5.99 6.24 ± 0.34

4 3.75 3.78 ± 0.30 � 19.44 18.51 ± 1.23 � 7.49 7.54 ± 0.43 �

8 9.69 8.94 ± 0.53 � 30.38 29.26 ± 1.15 � 13.48 13.45 ± 0.50 �

16 21.56 21.69 ± 0.47 � 45.31 45.62 ± 0.46 � 21.39 20.98 ± 0.49 �

32 38.44 37.81 ± 0.60 � 57.47 57.20 ± 0.29 � 30.29 30.03 ± 0.27 �

VN TRAP H-IFF MMDP

k x̃ x̄ ± σx̄ x̃ x̄ ± σx̄ x̃ x̄ ± σx̄

0 0.00 0.00 ± 0.00 0.00 6.39 ± 1.68 1.50 1.50 ± 0.27

1 0.00 0.00 ± 0.00 0.00 3.06 ± 1.24 1.50 1.27 ± 0.29

2 0.00 0.06 ± 0.06 0.00 6.11 ± 1.80 3.00 2.32 ± 0.23 •
4 0.00 0.62 ± 0.19 � 5.56 8.33 ± 2.01 3.00 3.79 ± 0.33 �

8 6.25 6.31 ± 0.33 � 22.05 22.32 ± 1.48 � 10.15 10.26 ± 0.41 �

16 20.63 20.44 ± 0.41 � 43.40 43.40 ± 0.49 � 20.31 20.15 ± 0.32 �

32 37.19 36.47 ± 0.52 � 56.60 56.53 ± 0.32 � 29.29 29.25 ± 0.53 �

Still, the EA can withstand scenarios in which islands remain deactivated for a
number of cycles equivalent to twice the population size, although performance
significantly degrades for larger deactivation rates/periods in which a much more
significant part of the computational effort is lost (up from about 25% for k = 4).
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Table 4. Results (20 runs) of the different EAs on SF networks for different latency and
deactivation parameters and a constant number of cycles. Three symbols are shown
next to each entry indicating from left to right statistical comparisons with respect
to (i) λ = 0, k = 0, (ii) same λ and k = 0, and (iii) same k and λ = 0 using a
Wilcoxon ranksum test. Blanks indicate no statistically significant difference for the
corresponding comparison, and �| • |◦ have the same meaning as in Tables 1, 2 and 3.

SF TRAP H-IFF MMDP

λ k x̃ x̄ ± σx̄ x̃ x̄ ± σx̄ x̃ x̄ ± σx̄

0 0 2.50 2.34 ± 0.33 11.11 10.21 ± 1.87 5.99 5.75 ± 0.32

1 1.25 2.00 ± 0.25 16.67 14.21 ± 1.91 5.24 5.17 ± 0.35

2 2.50 2.41 ± 0.28 19.44 14.68 ± 1.99 • • 5.99 5.23 ± 0.36

4 3.13 3.00 ± 0.33 19.44 15.97 ± 1.81 • • 5.99 6.33 ± 0.31

8 2.50 2.81 ± 0.35 19.44 17.91 ± 1.34 � � 7.49 7.44 ± 0.46 � �

μ 0 2.50 2.84 ± 0.36 16.67 14.53 ± 1.83 ◦ ◦ 5.99 6.33 ± 0.38

1 3.75 3.22 ± 0.34 • 16.67 16.58 ± 1.62 • 6.57 6.47 ± 0.40 •
2 2.50 2.25 ± 0.32 16.67 14.86 ± 1.34 ◦ 6.57 6.39 ± 0.43 ◦
4 2.50 2.66 ± 0.22 18.06 15.00 ± 1.89 • 5.99 6.33 ± 0.35

8 3.44 2.97 ± 0.30 19.44 17.58 ± 1.62 � 8.07 7.56 ± 0.50 �◦
2μ 0 2.50 2.56 ± 0.26 16.67 15.40 ± 1.67 ◦ ◦ 7.49 7.06 ± 0.29 • •

1 3.44 3.09 ± 0.30 • 16.67 13.69 ± 1.94 7.49 7.16 ± 0.34 � �

2 2.81 3.19 ± 0.23 ◦ • 18.06 17.14 ± 1.58 � 5.99 6.41 ± 0.28 •
4 4.37 3.97 ± 0.30 ��• 18.06 15.00 ± 2.14 • 7.49 7.27 ± 0.35 � ◦
8 4.06 3.69 ± 0.41 •• 20.14 18.81 ± 1.35 �◦ 7.49 7.45 ± 0.41 �

4μ 0 3.75 3.88 ± 0.25 � � 19.44 15.95 ± 1.79 • • 7.49 8.10 ± 0.38 � �

1 4.37 4.16 ± 0.25 � � 19.44 17.66 ± 1.16 � 7.49 7.59 ± 0.32 � �

2 4.06 4.31 ± 0.32 � � 20.14 18.23 ± 1.16 � 8.99 8.26 ± 0.30 � �

4 4.69 4.53 ± 0.39 � � 20.49 17.41 ± 1.61 � 8.66 8.30 ± 0.42 � �

8 5.00 4.81 ± 0.24 �•� 20.83 18.17 ± 1.64 � 8.82 8.25 ± 0.27 �

8μ 0 6.25 6.16 ± 0.32 � � 21.88 21.92 ± 0.60 � � 8.99 9.37 ± 0.41 � �

1 5.94 5.75 ± 0.33 � � 21.70 22.35 ± 0.81 � � 10.15 9.79 ± 0.30 � �

2 5.94 6.09 ± 0.26 � � 22.14 22.47 ± 0.87 � � 9.57 9.59 ± 0.33 � �

4 6.25 6.25 ± 0.38 � � 21.88 22.76 ± 0.78 � � 10.48 10.51 ± 0.36 �•�

8 5.00 5.47 ± 0.35 �◦� 25.00 23.53 ± 1.52 �•� 10.48 10.58 ± 0.48 �◦�

Finally, let us consider the cross-effect of having both types of computational
glitches. To this end, we have focused on the lower range of deactivation rates
(0 � k � 8) in which degradation is moderate at most, leaving aside parameter
settings for which extreme degradation already takes place on its own. Also, we
have fixed ts = μ in order to have more fine-grained island deactivations and
isolate the analysis on the interplay between ps and λ. The results are shown
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Table 5. Results (20 runs) of the different EAs on VN grids for different latency
and deactivation parameters and a constant number of cycles. Statistical comparisons
follow the same notation as in Table 4.

VN TRAP H-IFF MMDP

λ k x̃ x̄ ± σx̄ x̃ x̄ ± σx̄ x̃ x̄ ± σx̄

0 0 0.00 0.00 ± 0.00 0.00 6.39 ± 1.68 1.50 1.50 ± 0.27

1 0.00 0.00 ± 0.00 0.00 3.06 ± 1.24 1.50 1.27 ± 0.29

2 0.00 0.00 ± 0.00 0.00 3.33 ± 1.36 1.50 1.76 ± 0.25

4 0.00 0.12 ± 0.09 0.00 4.72 ± 1.35 1.50 1.78 ± 0.23

8 0.00 0.19 ± 0.10 ◦ ◦ 11.11 8.06 ± 1.42 3.00 3.13 ± 0.25 ��

μ 0 0.00 0.00 ± 0.00 0.00 2.50 ± 1.17 ◦◦ 1.50 2.17 ± 0.25

1 0.00 0.25 ± 0.11 ••• 0.00 5.28 ± 1.37 3.00 2.77 ± 0.27 �◦�

2 0.00 0.19 ± 0.10 ◦◦◦ 5.56 5.56 ± 1.27 ◦ 2.83 2.42 ± 0.22 • ◦
4 0.00 0.28 ± 0.13 •• 0.00 5.56 ± 1.61 3.00 2.50 ± 0.24 • •
8 0.00 0.37 ± 0.13 �� 0.00 4.03 ± 1.63 ◦ 3.00 3.56 ± 0.31 ��

2μ 0 0.00 0.37 ± 0.13 � � 0.00 3.89 ± 1.40 3.00 3.10 ± 0.33 � �

1 0.00 0.44 ± 0.14 � � 0.00 4.44 ± 1.43 3.00 3.05 ± 0.25 � �

2 0.00 0.50 ± 0.14 � � 0.00 3.33 ± 1.36 3.00 3.52 ± 0.29 � �

4 0.00 0.56 ± 0.14 � • 5.56 6.39 ± 1.52 3.00 3.34 ± 0.33 � �

8 1.25 0.69 ± 0.14 � � 0.00 5.56 ± 1.45 4.49 4.68 ± 0.31 ���

4μ 0 1.25 1.16 ± 0.22 � � 11.11 8.13 ± 1.79 4.49 4.55 ± 0.32 � �

1 1.25 1.34 ± 0.21 � � 0.00 2.22 ± 1.24 ◦• 4.49 4.89 ± 0.26 � �

2 1.25 0.97 ± 0.16 � � 0.00 3.33 ± 1.36 • 5.66 5.35 ± 0.30 � �

4 1.25 1.50 ± 0.19 � � 0.00 1.88 ± 1.30 •�◦ 4.49 4.64 ± 0.26 � �

8 1.56 1.81 ± 0.23 �•� 5.56 7.57 ± 1.83 5.99 6.11 ± 0.32 ���

8μ 0 3.75 3.41 ± 0.24 � � 13.89 10.80 ± 1.92 ◦ ◦ 7.32 6.86 ± 0.24 � �

1 3.75 3.66 ± 0.28 � � 13.89 12.26 ± 1.80 • � 7.49 7.51 ± 0.27 � �

2 3.75 3.56 ± 0.29 � � 16.67 13.56 ± 1.91 � � 7.49 7.70 ± 0.24 ���

4 3.75 3.66 ± 0.27 � � 19.44 15.78 ± 1.69 �•� 7.49 7.41 ± 0.29 � �

8 4.37 4.47 ± 0.26 ��� 16.67 14.51 ± 1.79 � � 8.66 8.44 ± 0.43 ���

in Tables 4 and 5. As it can be seen, both factors strongly interact in degrading
performance: if we inspect the first block in either table (corresponding to hav-
ing no latency) we observe that performance differences only start to become
significant for larger values of ps; however, remaining blocks are plagued with
significant performance differences, even for small values of ps. Furthermore, we
can see that having ps > 0 can provoke significant differences in scenarios in
which the mere presence of latency would not suffice, cf. Table 1. It is never-
theless interesting to observe that this latter factor, namely latency, seems to
have a stronger influence in the performance of the algorithm in this scenario,
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as indicated by the fact that turning off deactivations for a given latency value
does not usually provide a significant difference (that is, unless the former is
typically in the upper end of its range) whereas the converse is often the case.

4 Conclusions

Resilience is a property that any algorithm running on an irregular computa-
tional environment should feature. Evolutionary algorithms are in this sense
well-prepared thanks to the intrinsic resilience provided by their population-
based nature. In particular, we have shown in this work that an island-based
EA can withstand significant computational glitches without major performance
losses. Indeed, the range of latency values and deactivation rates for which notice-
able degradation takes place can be considered at the very least moderately high
(e.g., latency values larger than a couple of generations of the EA). This comple-
ments previous findings that showed both the sensitivity of these techniques to
more serious disruptions (such as node failures) and their amenability for being
endowed with mechanisms to endure such severe glitches. In this sense, it would
be of the foremost interest to study harder scenarios integrating node failures
with the computational perturbations considered in this work, analyzing how the
EA can react to the corresponding variety of fluctuations in the computational
landscape. Such a study could certainly encompass other algorithmic variants
of EAs, as well as additional network topologies. The study could be also con-
ducted along other dimensions such as the effect that the migration probability
can have in order to counteract glitches.
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