
Weaving of Metaheuristics
with Cooperative Parallelism

Jheisson López1,2, Danny Múnera2, Daniel Diaz3, and Salvador Abreu4(B)

1 National University of General Sarmiento, Buenos Aires, Argentina
jalopez@ungs.edu.ar

2 University of Antioquia, Medellin, Colombia
danny.munera@udea.edu.co

3 University of Paris 1/CRI, Paris, France
daniel.diaz@univ-paris1.fr

4 University of Évora/LISP, Évora, Portugal
spa@uevora.pt

Abstract. We propose PHYSH (Parallel HYbridization for Simple
Heuristics), a framework to ease the design and implementation of hybrid
metaheuristics via cooperative parallelism. With this framework, the
user only needs encode each of the desired metaheuristics and may rely
on PHYSH for parallelization, cooperation and hybridization. PHYSH
supports the combination of population-based and single-solution meta-
heuristics and enables the user to control the tradeoff between intensi-
fication and diversification. We also provide an open-source implemen-
tation of this framework which we use to model the Quadratic Assign-
ment Problem (QAP) with a hybrid solver, combining three metaheuris-
tics. We present experimental evidence that PHYSH brings significant
improvements over competing approaches, as witness the performance
on representative hard instances of QAP.

1 Introduction

Metaheuristics are often the most efficient approach to address the hardest Com-
binatorial Optimization Problems (COP). Metaheuristics are high-level proce-
dures using choices (i.e., heuristics) to limit the part of the search space which
actually gets visited, in order to make problems tractable. Metaheuristics can be
classified in two main categories: single-solution and population-based methods.
Single-solution metaheuristics (S-MH) maintain, modify and stepwise improve on
a single candidate solution, hence the term trajectory-based metaheuristics. On
the other hand, population-based metaheuristics (P-MH), modify and improve
a population, i.e. a set of individuals corresponding to candidate solutions.

Metaheuristics generally implement two main search strategies: intensifica-
tion and diversification, also called exploitation and exploration [1]. Intensifica-
tion guides the solver to deeply explore a promising part of the search space. In

This work was partly funded by FCT under grant UID/CEC/4668/2016 (LISP).

c© Springer Nature Switzerland AG 2018
A. Auger et al. (Eds.): PPSN 2018, LNCS 11101, pp. 436–448, 2018.
https://doi.org/10.1007/978-3-319-99253-2_35

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-99253-2_35&domain=pdf


Weaving of Metaheuristics with Cooperative Parallelism 437

contrast, diversification aims at extending the search onto different parts of the
search space [8]. In order to obtain the best performance, a metaheuristic should
provide a useful balance between intensification and diversification. By design,
some heuristics are good at one but not at the other.

More generally, each metaheuristic can perform differently according to
the problem or even instance being solved. A single metaheuristic will also
vary depending on its chosen tuning parameters. The current trend is thus
to design hybrid metaheuristics, by combining different methods in order to
benefit from the individual advantages of each one [9]. An effective approach
consists in combining an evolutionary algorithm with a single-solution method
(very often a local search procedure). These hybrid methods are called memetic
algorithms [10]. Hybrid metaheuristics tend to be complex procedures, tricky to
design, implement and tune, therefore, most of them only combine two methods.

Despite the good results obtained with the use of hybrid metaheuristics, it
is still necessary to reduce the processing times needed for harder instances [18].
One possible answer entails resorting to parallel execution [5]. For instance,
several instances of a given metaheuristic can be executed in parallel in order
to develop concurrent explorations of the search space, either independently or
cooperatively by means of communication between concurrent processes. The
first is easiest to implement on parallel computers, as the metaheuristics run
oblivious to each other and execution stops as soon as any of them finds a solu-
tion [16,22]. For some problems this provides very good results [3] but in many
cases the speedup tends to taper off when increasing the number of proces-
sors [13]. A cooperative approach entails adding a communication mechanism in
order to share or exchange information among solver instances during the search
process [20]. However, designing an efficient cooperative method is a daunt-
ingly complex task [4], and many issues must be solved: What information is
exchanged? Between which processes is it exchanged? When is it exchanged? How
is it exchanged? How is the imported data used? [21]. Moreover, most cooper-
ative choices are problem-dependent (and sometimes even instance-dependent).
Bad choices result in poor performance, possibly much worse than what could
be obtained with independent parallelism. However, a well-tuned cooperative
scheme may significantly outperform the independent approach.

In 2014, we proposed the Cooperative Parallel Local Search framework
(CPLS) for the cooperative parallel execution of local search metaheuris-
tics [13,14]. The user only has to encode the LS procedure and can rely on CPLS
to obtain a parallel application able to run concurrently and cooperatively several
instances of this LS procedure. At runtime, the outcome is a parallel exploration
of the search space with candidate solution interchange. All low-level parallel
mechanisms (task creation/destruction, mapping to physical resources, synchro-
nization, communication, termination, . . . ) are transparently handled by CPLS.
CPLS has been successfully used to tackle stable matching problems [15] and
very difficult instances of the Quadratic Assignment Problem (QAP) [12]. We
later extended CPLS to allow the user to run different metaheuristics in paral-
lel. CPLS has enabled a simpler way to hybridize metaheuristics, by exploiting



438 J. López et al.

its solution-sharing cooperative parallelism mechanism. At runtime, the parallel
instances of each different metaheuristic communicate their best solutions, and
one of them may forgo its current computation to adopt a better solution from
the others, hoping to converge faster. The expected outcome is that a solution
which may be stagnating for one solver, has a chance to be improved on by
another metaheuristic. CPLS has been successfully used to develop a very effi-
cient hybrid solver for QAP [11]. However, CPLS was designed for local search
metaheuristics: its cooperation mechanisms can only handle single-solution meta-
heuristics. When pursuing hybridization this limitation becomes too severe.

In this paper we propose a framework for the Parallel HYbridization of Simple
Heuristics (PHYSH), which eases the implementation of hybrid metaheuristics
using cooperative parallelism. As in CPLS, the user only needs to code each of
the desired metaheuristics, independently, and may rely on PHYSH to provide
both parallelism and cooperation to get “the best of both worlds”. PHYSH is
highly parametric and the user has control over the trade-off between intensifi-
cation and diversification. Single-solutions methods are in charge of intensifying
the search while population-based methods can be used to provide diversification
through the evolution of a population. We also sketch a prototype implemen-
tation, available as an open source library written in the IBM X10 concurrent
programming language. Needs only code the desired metaheuristic, PHYSH API.
We used this implementation to develop a parallel solver for QAP by hybridiz-
ing 3 metaheuristics: a Genetic Algorithm, an Extremal Optimization procedure
and a Tabu Search method. The resulting solver performs extremely well on the
hardest instances of QAP.

The rest of this paper is organized as follows: in Sect. 2 we describe the
framework, while in Sect. 3 we discuss implementation issues. In Sect. 4 we carry
out an experimental evaluation on hard QAP instances. Finally, we summarize
our results and draw plans for future developments in Sect. 5.

2 The PHYSH Framework

The aim of PHYSH is to offer the user an environment for the development of
hybrid and parallel metaheuristics. By transparently managing all of the tech-
nical details of parallel programming as well as mechanisms for hybridization,
PHYSH allows the user to focus on metaheuristic codings and problem modeling.
The resulting parallel hybrid search process starts from different points in the
search space, attempting to ensure convergence on proper solutions while escap-
ing local extrema. We achieve this with multiple concurrent worker teams, each
one tasked with visiting a different region of the search space. Figure 1 depicts a
search space where red regions contain high-quality solutions which is explored
by 4 teams in parallel: 2 teams are intensifying the search in a promising region
while the 2 others are diversifying the search in order to reach other rich region.

Teams are composed of the following components: a set of search units, a
diverse and an elite populations. The main active element of the framework
is the search unit (SU) which encapsulates a single metaheuristic that can be



Weaving of Metaheuristics with Cooperative Parallelism 439

Fig. 1. PHYSH search process (Color figure online)

either a S-MH or a P-MH. If the SU contains a S-MH, it takes the role of
an intensifier otherwise (implementing P-MH) it takes the role of a diversifier.
The elite population (EP) retains the best individuals found by the intensifiers,
while the diverse population (DP) holds individuals sent by diversifiers. The
interaction patterns between the different components that make up a team
establish a parametric four-way migratory flow process (see Fig. 2). In each case
a parameter controls the migration frequency.1

– Elite Emigration (ee): from the intensifier worker to the EP.
– Diverse Emigration (de): from the diversifier worker to the DP.
– Elite Immigration (ei): from the EP to the diversifier worker.
– Diverse Immigration (di): from the DP to the intensifier worker.

Fig. 2. PHYSH team structure

1 Terms “immigration” and “emigration” are from the metaheuristics point-of-view.



440 J. López et al.

The intensifiers (resp. diversifiers) must apply a selection policy to deter-
mine which individuals emigrate to the EP (resp. DP). EP and DP population
implement an acceptance policy for deciding whether the incoming individual is
accepted or rejected (discarded). For immigration flows, intensifiers and diver-
sifiers request individuals respectively from DP and EP. Once again a selection
policy is implemented on the populations to define how to chose an individual
and send it to the corresponding entity.

Our framework follows the design principle of separating policy form mech-
anism. As a result, this process constitutes a flexible interaction model between
intensifiers and diversifiers which eases the hybridization of simple metaheuris-
tics, effectively promoting cross-fertilization among different types.

Different mechanisms can be implemented for the same policy e.g., an elitist
or non-elitist mechanism. In the first case we favor elite individuals, while in the
second we may, for instance, select the most diverse individual or even adopt a
stochastic stance. We may assign several mechanisms for the same policy to a
component, in that case the mechanisms are applied in a round-robin fashion
until they succeed in the (selection/acceptance) pipeline.

An intuitive configuration could assign elitist mechanism to the intensifiers,
non-elitist mechanism to the diversifiers, and both types of mechanism to the
populations. We decided to make this a configurable option, as it provides rich
choices of search strategy.

In PHYSH, the programmer may easily control the balance between inten-
sification and diversification (see Fig. 3). Take the proportion of SUs used for
the intensifiers vs. diversifiers: it may be tuned to achieve a specific balance. For
instance, if more intensification is needed for a given instance, one may increase
the number of SUs in the role of intensifier. The intensification/diversification
level may also be tweaked by varying the number of teams in the execution:
given a fixed number of processing units, using more teams with a lower SU
count will increase the diversification on the search.

Fig. 3. PHYSH intensification-diversification control

The PHYSH framework is designed to adapt to different parallel archi-
tectures: shared-memory multiprocessors as well as distributed systems with
network-connected MP nodes. SUs are meant to be mapped to physical proces-
sors, while teams may be configured very flexibly.



Weaving of Metaheuristics with Cooperative Parallelism 441

3 PHYSH×10: A Prototype Implementation

We implemented our prototype in the X10 programming language which is a
high level object-oriented programming language, focused on concurrency and
distribution. X10 supports a wide range of parallel platforms and it has been
in active developemnt by IBM research since 2004. X10 is based on the Asyn-
cronous Partitioned Global Address Space model (APGAS). Using this model,
computation and data are partitioned into places which are abstractions for
mutable, shared-memory regions that can contain global references to locations
in other places, as well as worker threads operating on this memory.

In adoption of common practice for metaheuristics tools, PHYSH×10
presents a clear separation between available metaheuristics and the problems
that can be solved. We have implemented a genetic algorithm (GA), a robust
tabu search (RoTS) and an extremal optimization (EO) procedure. Conse-
quently, the diversifiers are built from SUs that contain a GA, while the other
two metaheuristics are available for the SUs in the intensifiers. Figure 4 displays
the main classes of PHYSH×10, a few application-specific ones and their rela-
tionships.

Fig. 4. PHYSH×10 UML diagram of the main classes

PHYSH×10 uses the features offered by X10-APGAS model to assign avail-
able physical processing resources. Accordingly, each SU is allocated to an X10
place, so that intensifiers and diversifiers operate as a distributed system. As
explain above, SUs are grouped to form teams. Each team is composed of tz
SUs. The number of teams is thus #cores/tz. EP and DP populations are
bound to a single SU within each team. These populations have a parametric
size i.e., epz individuals for EP and dpz individuals for DP. Each component
implements the most convenient mechanism for the acceptance and selection
criteria.



442 J. López et al.

At present, PHYSH×10 provides the following selection mechanisms:

– Best : best individual found in the search process.
– Current : all eligible individuals are selected (for S-MH the current configura-

tion is the unique eligible individual.)
– Random: an individual is randomly selected from the elegible set.

The following acceptance mechanism are also provided:

– Elitist : The individual is accepted if it is better than the worst in the target
population (if it is not present yet.)

– Probabilistic: The individual is accepted, regardless of its cost, with a given
probability (if it is not present yet.)

– Maximizer : The individual is accepted if its average distance to the other
individuals is greater than a defined threshold.

Intensifiers implement the current mechanism for the selection policy i.e., SU
sends its current configuration to perform the emigration to the EP. Parame-
ter elite emigration period (eep) controls the periodicity of this communication.
Intensifiers also request an immigrant individual from DP each diverse immigra-
tion period (dip). To accept or deny this individual intensifiers implement an
elitist mechanism for the acceptance policy (for S-MH the target “population”
is current solution of the metaheuristic).

Diversifiers implements a random mechanism for the selection policy. This
mechanism requires a parameter to define the percentage of the population
eligible for emigration (ppfe). The individual to emigrate is randomly chosen
among the top ppfe% of the SU’s population (the best individuals). Parame-
ter diverse emigration period (dep) controls the periodicity of this emigration
process. Diversifiers also request an immigrant from EP each elite immigration
period (eip). Individual diversifiers implement an elitist acceptance mechanism.

To simplify the assignment of these parameters we define two general values:
emigration period ep and immigration period ip. Considering teams of size tz (a
team embeds tz SUs) and a problem of size of n, the default values are computed
as follows: eip = ep/tz, dep = ip/n, eep = ep/n and dip = ip.

4 Experimental Evaluation

To evaluate the performance of our framework, we developed PHYSH-QAP2: a
parallel hybrid solver for QAP which combines three metaheuristics: a Genetic
Algorithm (GA) [7], a Robust Tabu Search (RoTS) [19] and an Extremal Opti-
mization procedure (EO) [12]. PHYSH-QAP is built on top of PHYSH×10. We
consider three sets of very hard benchmarks: the 33 hardest instances of QAPLIB
and two sets of even harder instances: Drezners dreXX and Palubeckis InstXX
instances. All experiments have been carried out on a cluster of 16 machines,
each with 4×16-core AMD Opteron 6376 CPUs running at 2.3 GHz and 128 GB
of RAM. The nodes are interconnected with InfiniBand FDR 4× (i.e., 56 GBPS).
We had access to 4 nodes and used up to 32 cores per node.
2 The source code is available from https://github.com/jlopezrf/COPSolver-V 2.0.

https://github.com/jlopezrf/COPSolver-V_2.0


Weaving of Metaheuristics with Cooperative Parallelism 443

4.1 Evaluation of PHYSH-QAP on QAPLIB

QAPLIB is a collection of 134 QAP problems of different sizes [2]. The instances
are generally named as nameXX where name corresponds to the first letters of
the author and XX is the size of the problem. For each instance, QAPLIB also
includes the Best Known Solution (BKS), which is sometimes the optimum.
Many QAPLIB instances are easy for a parallel solver, we therefore only con-
sidered the 33 hardest instances, as reported in [12]. Each problem instance is
executed 30 times, stopping as soon as the BKS is reached or when a time limit
of 5 min is hit, using 64 cores. PHYSH-QAP was configured with four teams,
each of size tz = 16 embedding 1 diversifier running GA, 8 intensifiers run-
ning RoTS and 7 intensifiers running EO. The size for the elite population and
the diverse population was set to 4 (epz = dpz = 4). The ppfe parameter is
instance-dependent (we only experimented with values 0, 50 and 100).

Table 1 has all the results. For each instance we have the BKS, the ppfe
parameter used, the number of times the BKS is reached (across the 30 execu-
tions), the Average Percentage Deviation (ADP) which is the average of the 30
relative deviation percentages computed as follows: 100 × Sol−BKS

BKS , the Best Per-
centage Deviation (BPD) which corresponds to the relative deviation percentage
of the best solution found among the 30 executions, the Worst Percentage Devia-
tion (WPD) which corresponds to the worst solution, the average execution time
given in seconds which corresponds to the elapsed (wall) time, and includes the
time to install all solver instances, solve the problem communications and the
time to detect and propagate the termination and, finally, the average number of
times the winning SU adopted an individual from the diverse/elite populations.

On this set of 33 hardest instances, even with a limit of time of 5 min PHYSH-
QAP is able to find the BKS at least once for 29 instances. Moreover, it is even
able to reach the BKS systematically at each replication for 21 instances. For
the 4 remaining instances (tai80a, tai100a, tai150b and tai256c), the quality
of solutions returned by PHYSH-QAP is very good, around 0.2% of the BKS.
The summary row has interesting numbers. The average ADP is only 0.051%, the
average BPD is 0.024% and the average WPD is 0.079%. These numbers confirm
that all runs provide high quality solutions; even the worst runs provide good
results. For instance, in the worst case (tai80a), the worst solution among 30
runs is within just 0.547% of the BKS. Performance-wise, PHYSH-QAP averages
just 96 s to find a solution. If we do not take into account the 4 unsolved instances
(whose time is bounded by the time limit), the average run time is 70 s. The
number of adopted configurations on the wining SU is 4.2, on average, showing
that the hybridization is effectively taking place.

Comparison with Another Parallel Hybrid Solver for QAP: ParEOTS is
a hybrid solver for QAP built on the top of the CPLS framework. ParEOTS com-
bines RoTS and EO and has shown to perform very well. Indeed, on the hardest
instances of QAPLIB, it outperforms most of state-of-the-art methods [11].

For this comparison we selected the 15 hardest instances from Table 1. We
then ran ParEOTS using the parameters reported in [11] in the same execution



444 J. López et al.

Table 1. PHYSH-QAP on hard QAPLIB instances (64 cores, timeout = 5 min)

BKS ppfe #BKS APD BPD WPD Time #adopt

els19 17212548 50 30 0 0 0 0.0 0.1

kra30a 88900 100 30 0 0 0 0.0 0

sko56 34458 50 30 0 0 0 1.8 0.5

sko64 48498 50 30 0 0 0 2.0 0.3

sko72 66256 50 30 0 0 0 9.8 1.2

sko81 90998 50 30 0 0 0 22.4 1.6

sko90 115534 100 30 0 0 0 104.4 6.3

sko100a 152002 100 27 0.001 0 0.016 129.3 3.4

sko100b 153890 0 30 0 0 0 52.4 1.0

sko100c 147862 0 30 0 0 0 77.5 1.3

sko100d 149576 0 30 0 0 0 64.9 1.2

sko100e 149150 0 30 0 0 0 49.4 0.9

sko100f 149036 100 29 0.000 0 0.005 103.7 2.4

tai40a 3139370 50 20 0.025 0 0.074 173.9 4.7

tai50a 4938796 100 8 0.133 0 0.336 262.0 10.3

tai60a 7205962 0 1 0.242 0 0.368 292.7 9.5

tai80a 13499184 50 0 0.460 0.335 0.547 300.0 8.6

tai100a 21052466 0 0 0.352 0.167 0.463 300.0 22.6

tai20b 122455319 100 30 0 0 0 0.0 0.0

tai25b 344355646 50 30 0 0 0 0.0 0.1

tai30b 637117113 50 30 0 0 0 0.1 1.3

tai35b 283315445 0 30 0 0 0 0.3 1.8

tai40b 637250948 0 30 0 0 0 0.4 2.5

tai50b 458821517 0 30 0 0 0 6.7 0

tai60b 608215054 0 30 0 0 0 10.9 0

tai80b 818415043 0 30 0 0 0 42.0 1.3

tai100b 1185996137 0 29 0.001 0 0.024 143.4 4.9

tai150b 498896643 50 0 0.190 0.085 0.410 300.0 10.1

tai64c 1855928 0 30 0 0 0 0.2 0.1

tai256c 44759294 50 0 0.264 0.211 0.312 300.0 4.4

tho40 240516 0 30 0 0 0 1.1 0.1

tho150 8133398 0 1 0.021 0 0.043 298.8 29.7

wil100 273038 100 26 0.000 0 0.002 144.7 5.2

Summary 771 0.051 0.024 0.079 96.8 4.2



Weaving of Metaheuristics with Cooperative Parallelism 445

environment as for PHYSH-QAP: same machine, using 64 cores with a time
limit of 5 min and 30 repetitions per instance.

Table 2. PHYSH-QAP vs ParEOTS (64 cores, timeout = 5 min)

PHYSH-QAP ParEOTS

#BKS APD Time #BKS APD Time

sko81 30 0 22.4 25 0.002 70.6
sko90 30 0 104.4 29 0.000 116.5
sko100a 27 0.001 129.3 25 0.003 128.9
sko100c 30 0 77.5 29 0.000 127.3
tai40a 20 0.025 173 9 20 0.025 184.2
tai50a 8 0.133 262.0 3 0.144 289.8
tai60a 1 0.242 292.7 0 0.270 300.0
tai80a 0 0.460 300 0 0.460 300.0
tai100a 0 0.352 300 0 0.358 300.0
tai100b 29 0.001 143.4 22 0.015 181.4
tai150b 0 0.190 300.0 0 0.130 300.0
tai64c 30 0 0.2 28 0.004 20.0
tai256c 0 0.264 300.0 0 0.272 300.0
tho150 1 0.021 298.8 0 0.019 300.0
wil100 26 0 144.7 14 0.001 213.9

Summary 232 0.113 190 0 195 0.114 208.8

Table 2 presents the results. To compare the two solvers, compare the number
of BKS found, then (in case of a tie), the APDs and finally the execution times.
For each benchmark, the best-performing solver row is highlighted and the dis-
criminant field is enhanced in bold font. PHYSH-QAP outperforms ParEOTS on
13 out of 15 of the hardest QAPLIB instances while the reverse only occurs for
one instance (tai150b). Our implementation systematically solves 4 instances
which are not fully solved on ParEOTS (sko81, sko90, sko100c and tai64c).
The summary row shows that PHYSH-QAP obtains a total #BKS higher than
ParEOTS (232 vs. 195). It is worth noticing that this quality of solutions is
obtained in a shorter execution time (190 s vs. 208 s).

4.2 Evaluation of PHYSH-QAP on Harder Instances

We evaluated our hybrid solver on two sets of instances, artificially crafted to
be very difficult for metaheuristics: the dreXX instances proposed by Drezner
et al. [6] and the InstXX instances by Palubeckis [17]. These instances are
generated with a known optimum. For this test we used the same machine,
with 128 cores and a time limit of 10 min with 30 repetitions. We used the
same framework configuration as in Sect. 4.1 for QAPLIB. We could not yet
experiment with different values for ppfe so we use ppfe = 100 for all instances.



446 J. López et al.

Table 3. PHYSH-QAP on Drezner and Palubeckis (128 cores, timeout = 10 min)

#BKS APD best Time

dre21 30 0 356 0.0
dre24 30 0 396 0.0
dre28 30 0 476 0.0
dre30 30 0 508 0.1
dre42 30 0 764 0.9
dre56 30 0 1086 11.5
dre72 30 0 1452 90.9
dre90 23 2.757 1838 281.2
dre110 6 14.997 2264 549.4
dre132 5 11.404 2744 558.2

Summary 244 2.915 149.2

#BKS APD best Time

Inst20 30 0 81536 0.0
Inst30 30 0 271092 0.1
Inst40 30 0 837900 3.2
Inst50 30 0 1840356 7.7
Inst60 30 0 2967464 11.8
Inst70 30 0 5815290 35.7
Inst80 30 0 6597966 78.0
Inst100 17 0.038 15008994 476.4
Inst150 0 0.122 58411484 600.0
Inst200 0 0.123 75495960 600.0

Summary 227 0.028 181.3

Table 3 presents the results obtained on both benchmarks. Regarding
Drezner’s instances, PHYSH-QAP is able to optimally solve all instances. To
best of our knowledge, no other dedicated solver for QAP has ever reported
an optimal solution either for dre110 or dre132 (highlighted in green in the
table). Moreover, all instances of size n ≤ 72 are systematically solved at each
replication. Regarding Palubeckis’ instances, the optimum is found for instances
with n ≤ 100 (and systematically found at each replication for n ≤ 80). For
size n > 100, clearly a limit of 10 min is too short. Nevertheless the quality
of obtained solutions within this time limit is very good with an APD around
0.12%. It is worth noting that for Inst150 and Inst200, the solution computed
by PHYSH-QAP improves on the best solutions ever published (corresponding
best costs computed are highlighted in green in Table 3).

5 Conclusion and Future Directions

We have proposed PHYSH: a new framework for the efficient resolution of
Combinatorial Optimization Problems combining single-solution metaheuristics,
population-based metaheuristics, cooperative parallelism and hybridization. We
have used our X10 implementation of this framework to construct a hybrid solver
for the Quadratic Assignment Problem which combines up to three metaheuris-
tics. This solver turns out to perform exceptionally well, particularly on very
hard instances of QAP.

We plan to study the impact of each parameter in more detail; includ-
ing experimentation with techniques for parameter auto-tuning, e.g. using F-
Race. We also plan to add new metaheuristics to the prototype, particularly
population-based methods. This enriched implementation we will enable uas to
address a wider range of problems. Finally, it will be interesting to experiment
on different parallel architectures, for instance GPGPUs or Intel MIC, using the
X10 language, which greatly abstracts on machine architectural specificities.



Weaving of Metaheuristics with Cooperative Parallelism 447

References

1. Blum, C., Roli, A.: Metaheuristics in combinatorial optimization: overview and
conceptual comparison. ACM Comput. Surv. 35(3), 268–308 (2003)

2. Burkard, R.E., Karisch, S., Rendl, F.: QAPLIB - a quadratic assignment problem
library. Eur. J. Oper. Res. 55(1), 115–119 (1991)

3. Caniou, Y., Codognet, P., Richoux, F., Diaz, D., Abreu, S.: Large-scale parallelism
for constraint-based local search: the costas array case study. Constraints 20(1),
30–56 (2015)

4. Crainic, T., Gendreau, M., Hansen, P., Mladenovic, N.: Cooperative parallel vari-
able neighborhood search for the p-median. J. Heuristics 10(3), 293–314 (2004)

5. Crainic, T., Toulouse, M.: Parallel meta-heuristics. In: Gendreau, M., Potvin, J.Y.
(eds.) Handbook of Metaheuristics. ISOR, vol. 146, pp. 497–541. Springer, Boston
(2010). https://doi.org/10.1007/978-1-4419-1665-5 17

6. Drezner, Z.: The extended concentric tabu for the quadratic assignment problem.
Eur. J. Oper. Res. 160(2), 416–422 (2005)

7. Drezner, Z.: Extensive experiments with hybrid genetic algorithms for the solution
of the quadratic assignment problem. Comput. Oper. Res. 35(3), 717–736 (2008)

8. Hoos, H., Stützle, T.: Stochastic Local Search: Foundations and Applications. Mor-
gan Kaufmann/Elsevier, Burlington (2004)

9. Misevicius, A.: A tabu search algorithm for the quadratic assignment problem.
Comput. Optim. Appl. 30(1), 95–111 (2005)

10. Moscato, P., Cotta, C.: Memetic algorithms. In: Handbook of Applied Optimiza-
tion, vol. 157, p. 168 (2002)

11. Munera, D., Diaz, D., Abreu, S.: Hybridization as cooperative parallelism for the
quadratic assignment problem. In: Blesa, M.J., et al. (eds.) HM 2016. LNCS,
vol. 9668, pp. 47–61. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-
39636-1 4

12. Munera, D., Diaz, D., Abreu, S.: Solving the quadratic assignment problem
with cooperative parallel extremal optimization. In: Chicano, F., Hu, B., Garćıa-
Sánchez, P. (eds.) EvoCOP 2016. LNCS, vol. 9595, pp. 251–266. Springer, Cham
(2016). https://doi.org/10.1007/978-3-319-30698-8 17

13. Munera, D., Diaz, D., Abreu, S., Codognet, P.: A parametric framework for coop-
erative parallel local search. In: Blum, C., Ochoa, G. (eds.) EvoCOP 2014. LNCS,
vol. 8600, pp. 13–24. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-
662-44320-0 2

14. Munera, D., Diaz, D., Abreu, S., Codognet, P.: Flexible cooperation in parallel
local search. In: Symposium on Applied Computing, SAC 2014, pp. 1360–1361.
ACM Press, Gyeongju (2014)

15. Munera, D., Diaz, D., Abreu, S., Rossi, F., Saraswat, V., Codognet, P.: Solving
hard stable matching problems via local search and cooperative parallelization. In:
AAAI, Austin, TX, USA (2015)

16. Novoa, C., Qasem, A., Chaparala, A.: A SIMD tabu search implementation for
solving the quadratic assignment problem with GPU acceleration. In: Proceedings
of the 2015 XSEDE Conference on Scientific Advancements Enabled by Enhanced
Cyberinfrastructure - XSEDE 2015, pp. 1–8 (2015)

17. Palubeckis, G.: An algorithm for construction of test cases for the quadratic assign-
ment problem. Inform. Lith. Acad. Sci. 11(3), 281–296 (2000)

18. Saifullah Hussin, M.: Stochastic local search algorithms for single and bi-objective
quadratic assignment problems. Ph.D. thesis. Université de Bruxelles (2016)

https://doi.org/10.1007/978-1-4419-1665-5_17
https://doi.org/10.1007/978-3-319-39636-1_4
https://doi.org/10.1007/978-3-319-39636-1_4
https://doi.org/10.1007/978-3-319-30698-8_17
https://doi.org/10.1007/978-3-662-44320-0_2
https://doi.org/10.1007/978-3-662-44320-0_2


448 J. López et al.

19. Taillard, É.: Robust taboo search for the quadratic assignment problem. Parallel
Comput. 17(4–5), 443–455 (1991)

20. Talbi, E.G., Bachelet, V.: COSEARCH: a parallel cooperative metaheuristic. J.
Math. Model. Algorithms 5(1), 5–22 (2006)

21. Toulouse, M., Crainic, T., Gendreau, M.: Communication issues in designing
cooperative multi-thread parallel searches. In: Osman, I., Kelly, J. (eds.) Meta-
Heuristics: Theory & Applications, pp. 501–522. Kluwer Academic Publishers,
Norwell (1995)

22. Tsutsui, S., Fujimoto, N.: An analytical study of parallel GA with independent
runs on GPUs. In: Tsutsui, S., Collet, P. (eds.) Massively Parallel Evolutionary
Computation on GPGPUs. NCS, vol. 8, pp. 105–120. Springer, Heidelberg (2013).
https://doi.org/10.1007/978-3-642-37959-8 6

https://doi.org/10.1007/978-3-642-37959-8_6

	Weaving of Metaheuristics with Cooperative Parallelism
	1 Introduction
	2 The PHYSH Framework
	3 PHYSH10: A Prototype Implementation
	4 Experimental Evaluation
	4.1 Evaluation of PHYSH-QAP on QAPLIB
	4.2 Evaluation of PHYSH-QAP on Harder Instances

	5 Conclusion and Future Directions
	References




