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Abstract. Conditional preference networks (CP-nets) have recently
emerged as a popular language capable of representing ordinal preference
relations in a compact and structured manner. In the literature, CP-nets
have been developed for modeling and reasoning in mainly toy-sized com-
binatorial problems, but rarely tested in real-world applications. Learn-
ing preferences expressed by passengers is an important topic in sustain-
able transportation and can be used to improve existing journey plan-
ning systems by providing personalized information to the passengers.
Motivated by such needs, this paper studies the effect of using CP-nets
in the context of personalized and context-aware journey planning. We
present a case study where we learn to predict the journey choices by
the passengers based on their historical choices in a multi-modal urban
transportation network. The experimental results indicate the benefit
of the conditional preference in passengers’ modeling in context-aware
journey planning.
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1 Introduction

Personalized journey planning provides tailored information to the passengers
on sustainable transit options through usually web-based journey planner [3].
It seeks to overcome the habitual use of cars, enabling more journeys to be
made on bike, foot, or public transport. This is achieved through the provision
of personalized information, to increase the passengers’ satisfaction using mul-
timodal transit to support a voluntary shift towards more sustainable choices.
The planner uses expressed passenger preferences to recommend journeys to the
individuals based on his/her circumstances. The power of the individual-based
journey planning is that it can often lead to more significant behavior change
than a one-solution-fits-all-approach [3].
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Currently, the majority of ‘intelligent’ commercial journey planners only
have a small set of predefined preferences (e.g., preferred highways or public
transit modes) made available for passengers to choose from and rank (Yahoo!
trip planner, PTV journey planner, Google Maps) [2]. Although these planners
are reliable and offer adequate assistance to passengers, they assume the values
of passengers’ preferences are independent i.e., the value of one attribute does
not influence the passenger’s preference on the value of other attributes [12].
This assumption, however, is not sound in real-world journeying. For example,
the weather condition may affect the passengers’ preferences towards the trans-
portation modes that they are willing to take. This issue could be alleviated
by incorporating passengers’ preferences and context into the planning process.
Here, we refer to the ‘context’ as the interrelated conditions in which the jour-
ney occurs such as departure-time, weather status, the purpose of the journey,
companionship, etc. (see Sect. 3). By incorporating context and user preferences,
more desirable journey plans can be recommended to the passengers which, by
increasing their satisfaction, can motivate them to use multimodal transit.

As an example, suppose we are observing a user’s interactions with a par-
ticular web-based journey planning system. For instance, we observe that the
passenger prefers a train over a bus arriving at Flinders Street for one query,
and we also observe that for another query, the passenger prefers a train arriving
at Flinders Street to a bus arriving at Swanston Street for a specific destina-
tion. An intuitively correct hypothesis that explains her behavior could be that
she unconditionally prefers trains over buses, and Flinders Street over Swanston
Street. Such a hypothesis is useful for further predictions. For example, using this
hypothesis, we can predict that she will prefer a train to Flinders Street over any-
thing else. However, such a hypothesis gives no further information about other
preferences, for example, we cannot predict whether she prefers a bus arriving
at Flinders Street over a train arriving at Swanston Street or not. Now assume
that in the later observations, we observe that she also prefers a bus arriving at
Swanston Street over a train arriving at Swanston Street. A new possible updated
hypothesis could be that she prefers Flinders Street over Swanston Street when
traveling by train and vice versa when traveling with buses. In other words, her
preferences over the transportation modes are conditioned with her destined
street.

In the above scenario, the passenger has used previous travel experiences
to learn specific preferences about the journeys and a similar approach can be
followed by a computer algorithm. The learning problem underlying this sce-
nario is to extract a preference structure by observing the user’s behavior in
situations involving a choice among several alternatives. Each alternative can be
specified by many attributes, such as the transportation mode, the destination
location, the arrival and departure time, etc. in the above example. As a result,
the space of possible situations has a combinatorial structure. Furthermore, as we
have shown in the example, the preferences induced by the passenger’s behavior
are intrinsically related to conditional preferential independence, a fundamental
notion in multi-attribute decision theory [20]. Indeed, the initial hypothesis is
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unconditional in the sense that the preference over the values of each attribute is
independent of the values of other attributes. By contrast, in the final hypothe-
sis, the passenger’s preferences among the transportation modes of the journeys
are conditioned by the destined streets.

Conditional preference networks, also known as CP-nets, was proposed for
handling problems where the preferences are conditioned to one another [4].
CP-nets have received a great deal of attention due to their compact and natu-
ral representation of conditional preferences [8,12,17]. Informally, a CP-net is a
digraph where nodes represent attributes pointing to a (possibly empty) set of
parents, and a set of conditional tables associated with each attribute, expressing
the local preference on the values of the attribute given all possible combinations
of values of its parents (Fig. 1) (see Sect. 2). The transitive closure of these local
preferences is a partial order over the set of alternatives, which can be extended
into several total orders. CP-nets and their generalizations are probably the most
famous compact representation language for conditional preferences in multi-
attribute domains [1]. While many facets of CP-nets have been studied in detail,
such as learning of CP-nets, consistency and dominance checking, and optimiza-
tion (constrained and unconstrained), to the best of our knowledge, there are
no works on studying the effect of conditional preference modeling with CP-net
in a real-world application. This paper aims to examine the effect of conditional
preference modeling in the context-aware journey planning problem.

The objective of this paper is to investigate the effect of conditional prefer-
ence modeling - using a GA-based CP-net learning methods (CPLGA) proposed
in [8] - in personalized journey planning problem and compare it with vari-
ous conventional preference learning techniques (four derived from the literature
namely, RankNet citeburges2005learning, AdaRank [18], OSVM [13] and SVOR
[11], and one designed for the problem under investigation called learning pref-
erence weight (PWL) [9]) alongside with the performance comparison of three
state-of-the-art passive CP-net learning methods presented in [8,14,15] for the
personalized journey planning problem.

2 Background on CP-Net

Assume a finite list V = {X1, . . . , Xn} of attributes, with their associated finite
domains Dom = {D1, . . . , Dn} where n is the number of domain elements. An
attribute Xi is a binary attribute if Di has two elements, which by convention we
note xi, x̄i [17]. By Ω = ×Xi∈DDi, we denote the set of all complete alternatives,
called outcomes.

A preference relation is a reflexive and transitive binary relation � over
Ω. A complete preference relation � is a preference relation that is connected,
that is, for every x, y ∈ Ω we have either x � y or y � x. A strict preference
relation � is an irreflexive and transitive (thus asymmetric) binary relation over
Ω. A linear preference relation is a strict preference relation that is connected.
From a preference relation we define a strict reference relation in the usual way:
x � y iff x � y and y � x.
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Preferences between outcomes that differ in the value of one attribute only,
all other attributes being equal (or ceteris paribus) are often easy to assert and
to understand. CP-nets [5] are a graphical language for representing such pref-
erences. Informally, a CP-net is composed of a directed graph representing the
preferential dependencies between attributes, and a set of conditional preference
tables expressing, for each attribute, the local preference on the values of its
domain given all possible combinations of values of its parents.

Fig. 1. (a) A simple CP-net N , modeling the passenger preferences. Journeys are
defined by three attributes and for this particular passenger the preferences over transit
mode is conditioned with the values of time of the journey and weather condition. (b)
The equivalent chromosome of the sample CP-net

Definition 1. Preference: A strict preference relation �u is a partial order on
a set of outcomes O ∈ Ω defined by a user u. oi �u oj indicates that the user
strictly prefers oi over oj.

Definition 2. Conditional Preference Rule (CP-rule): A CP-rule on an
attribute Xi is an expression of the form t : p � p, where p is a literal of
Xi and t is a term such that t ∈ {V \Xi}.

Such a rule means given that t holds, the value p is preferred to the value p
for the attribute Xi.

Definition 3. Conditional Preference Table (CPT): CPT (Xi) is a table asso-
ciated with each attribute that consists of conditional preference rules (CP-rules)
t : p �i p specifying a linear order on Dom(Xi) where t indicated to the parents
of Xi in the dependency graph.

Definition 4. Conditional Preference Network (CP-net): A CP-net is a digraph
on V = {X1, . . . , Xn} in which each node is labeled with a CPT. An edge (Xi,Xj)
indicates that the preferred value of Xj is conditioned by the value of its parent
attribute Xi.

Definition 5. Dominance Testing: A dominance testing, defined by a triple
(N, oi, oj), is a decision of whether oj is dominated by oi given the CP-net N
and oi, oj ∈ Ω. The answer is in the affirmative if and only if N |= oi � oj.
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Let us explain the properties of a CP-net with an example of the journey
planning problem. Figure 1 represents a CP-net model for a particular passenger.
Since the graph has three nodes we can infer that each journey is formulated by
three attributes namely, weather condition, travel time and transit mode. Please
note that one can describe journeys with a different set of attributes. As we can
see in the Fig. 1, the CP-net contains three CPTs with six CP-rules (weather
and travel time nodes has one rule each and four rules for transit mode node).
Using this CP-net, as well as dominance testing, we can infer that the passenger
prefers a train leaving in a morning on a sunny day to a bus leaving in the same
condition. Formally speaking, a journey with a train dominates a journey with
a bus for the traveler on a sunny morning. However, we still need to answer
the question ‘how can one model a passenger with a CP-net using her historical
travel information?’.

In GLPCA [8], we proposed a GA-based CP-nets learning solver in order
to find a CP-net from historical and inconsistent preference examples. Each
chromosome is representing a CP-net and the length of each chromosome is set
to the number of attributes and is composed of two main parts: Parenti and
CPTi. Parenti denotes to the nodes j ∈ {N\i} in the dependency graph which
the preference over the value of node i is conditioned on them and CPTi denotes
the conditional preference table associated with node i (Fig. 1(b) represents the
equivalent chromosome for the sample CP-net in Fig. 1(a)). Then, we used GA
to find an individual that best describes the training preference dataset. The
output of the algorithm is then considered as the user’s model and is used to
predict her future ranking in order to provide personalized information. We refer
readers to [8] for detailed information about the algorithm.

3 Multimodal Journey Planning Tool

In our study, we use the journey planner presented in [10] to find multimodal
journey plans. This planner computes optimal multi-objective journey plans
using a customized NSGAII-based algorithm [7]. Here we considered two criteria
to optimize journey plans. The first criterion is the travel time and the second
criterion is journey convenience which is a linear combination of the number of
transfers, waiting and walking times. We refer the readers to [10] for detailed
information about the algorithm.

3.1 Journey Plan Attributes

To apply a CP-net, first, we need an attribute-based representation approach to
describe each journey. Based on the knowledge of mobility experts, we divided
the journey’s attributes into two categories: journey plan attributes and contex-
tual attributes. Regarding journey plan attributes, we identify the following set
of attributes to describe each journey:
Travel Time: which denotes to the total time spent to complete the journey.
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Modes of Transport: which refers to the utilized transportation modes in the
recommended journey.
Personal Energy Expenditure (PEE): which denotes to the PEE of the
journeys that contain walking or cycling concerning the weight of the passenger
as well as the average speed of the walking/cycling mode using the published
energy consumption rates presented in [16].
CO2 Emission: which denotes to the CO2 emissions related to each journey.
We utilized unit rates (per kilometer) for each vehicle to calculate the emission
of a journey [ABS 2013].
Number of Transfers: which denotes to the number of transfers required to
complete the journey.
Monetary Cost: which is the monetary cost associated with each journey [ABS
2013]. When a journey contains multiple public transport, the cost is calculated
once in every 2-h time window.

Finally, CP-nets are typically designed to function with categorical data;
therefore, we first have to discretize the numeric attributes described above. To
do this, we employed a fuzzy-set method [12] that assigns each possible value
to one or two predefined categories. In particular, we divide each numerical
attribute into five equal intervals: very low, low, normal, high and very high.
This method allows for a more accurate discretization by assigning a weight to
the categories that are close to the boundaries separating two intervals.

3.2 Contextual Attributes

Based on the knowledge of mobility experts we identified seven contextual factors
as relevant in this domain: 2 user-specific factors: companionship and reason of
the journey, and five environmental-based factors namely: time of day, time of
the week, weather, temperature, and crowdedness.
Companionship: which is a binary attribute indicating that the passenger is
alone or not.
Reason of the Journey: which specifies the purpose of the journey including,
going to work, going back home and site seeing.
Time of Day: which can be either early morning, morning, afternoon, evening
and night.
Time of the Week: which is a binary value distinguishing between weekends
and week-days.
Weather: which indicate the expected weather of a particular journey including,
sunny, rainy and windy.
Temperature: which is a multivalued attribute consisting of very cold, cold,
normal, hot and very hot.
Crowdedness: which denotes to the expected crowdedness of a particular public
transit mode and can range from quiet, natural and crowded.
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4 Algorithms’ Evaluation

4.1 Experimental Setup

We have conducted experiments on real data collected from the transportation
network of the City of Melbourne, to evaluate the effectiveness of the condi-
tional preference modeling in the context-aware journey planning domain. For
the road, bike and foot transportation network the OpenStreetMap1 data has
been used. Regarding public transit network, we used the GTFS2 data, consist-
ing of several information such as stop locations, routes, and timetable. A total
of 34617 locations considered including 31259 bus stops, 1763 tram stations, 218
train stations, and 44 rental bike stations were included in the network. For the
multi-modal network, all pairs of nodes, within 0.25 km radius, are connected
by walking legs. Cycling legs are only available between two bike stations within
the distance of two hours. The speed of walking and cycling legs is 5 km/h and
12 km/h respectively.

To carry out the experiment, we first had to collect a data-set of user ratings
for a variety of journey plans. For each user, a set of 200 random queries, includ-
ing random origin, destination and departure time, are created. By default, a
set of contextual conditions was randomly picked for each query. In response
to each query, the journey planner generated five to seven alternative journey
plans combining different modes of transportation. Each plan was followed by a
detailed explanation of characteristics of the journey plan and Users were asked
to analyze and rank them from ‘best’ to ‘worst’ taking into consideration the
‘active’ contextual situation. This experiment lasted four weeks, and we collected
a total of 5,218 orders given by 45 users to 31,350 journey plans in 8,710 queries.
The participants comprised of 55% women and 45% men living in Melbourne
(Australia) at the time of the experiment. Each user, on average, provided 115
rankings.

Besides, a common problem that arises when dealing with human subjects
is the possibility of noise or inconsistent information [8]. Therefore, to test the
robustness of the results, we also evaluated the behavior of preference learning
methods under noisy conditions. To add order noise into the data set, we swapped
the rankings of two randomly selected pairs of adjacent journeys in the original
sample orders. The noise level could be controlled by changing the number of
times that the swapping happens. Finally, We generated three data-set with
0.1%, 1% and 10% of noise, respectively.

Various types of distance metrics have been proposed in the literature to com-
pute the distance between two orders, O1 and O2, composed of the same sets
of solutions, i.e., X(O1) = X(O2). In this paper, we use the widely-used Spear-
man’s rank correlation coefficient (ρ) [17], which is a non-parametric measure of
correlation between two variables and is defined as:
1 http://www.openstreetmap.com.
2 The General Transit Feed Specification (GTFS) data which defines a common format

for public transportation schedules and associated geographic information. For more
information, please visit http://www.transitwiki.org.

http://www.openstreetmap.com
http://www.transitwiki.org
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ρ = 1 − 6ds(O1, O2)
L3 − L

, (1)

where L is the length of orders and ds(O1, O2) is the sum of the squared differ-
ences between ranks O1 and O2.

Finally, in all the experiments, we used the CPLGA with the configuration
setup described in Table 1. The parameters of CPLGA are set following our
experience in practice. We have chosen a non-parametric test, Wilcoxon Signed
Rank Test [6] as the statistical significant testing. The test is performed at the
5% significance level.

Table 1. CPLGA setup used in experiments

Selection mechanism Ranked bias

Bias = 1.2

Nr. of parents Nr. of attributes

Cross-over rate 0.8

Mutation rate 0.4

Pool size 200

Maximum number of evaluation 20000

Results average over 30

4.2 Result Analysis

Table 2 shows the means of ρ for the CP-net based preference learning algo-
rithm with the learning-to-rank methods, namely RankNet [5], AdaRank [18],
OSVM [13], SVOR [11] and PWL [9], different sample size and noise levels.
These methods are the most popular methods for learning-to-rank in recent years
and can perform reasonably well under noisy training samples. The experiment
shows that CP-net based ranking significantly outperformed all the learning-to-
rank methods at different noise levels and different training sizes. This is due
to the fact that learning-to-rank methods do not take into account the condi-
tional dependency of the attributes. However, our further experiments reveal
that there exists a dependency between passengers’ preferences that the conven-
tional learning-to-rank methods tend to overlook.

As discussed earlier, the purpose of CP-net is to provide a conditional model
to represent the user preferences. Therefore, during the experiments, we modeled
each user with a CP-net based on his/her rating data-set, i.e., a total number of
45 CP-nets were obtained. Figure 2 illustrates the dependencies between journey
attributes and contextual attributes among all 45 learned CP-nets. The num-
ber in a circle represents the number of CP-nets that the two attributes were
conditioned to each other. For example, we observed that for 27 passengers, the
value of transportation mode was dependent on the expected weather condition
of the journey. In other words, for 27 passengers, the learned model indicates
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Table 2. Comparing the conditional preference learning with conventional learning to
rank methods for different training sizes.

|S| 200 500 1000

Noise level 0 0.01 0.05 0.1 0 0.01 0.05 0.1 0 0.01 0.05 0.1

Method ρ

AdaRank 0.7453 0.7458 0.7352 0.7140 0.7642 0.7799 0.7614 0.7397 0.7895 0.7917 0.7743 0.7527

RankNet 0.6663 0.6642 0.6438 0.6242 0.7031 0.6833 0.6768 0.6493 0.7376 0.7165 0.7046 0.6765

OSVM 0.7305 0.7123 0.6653 0.6276 0.7866 0.7622 0.7201 0.6383 0.8257 0.7881 0.7281 0.6476

SVOR 0.7360 0.6965 0.6569 0.6363 0.7718 0.7704 0.6754 0.6271 0.8063 0.7704 0.6883 0.6435

PWL 0.7260 0.7246 0.7149 0.7002 0.7864 0.7751 0.7592 0.7520 0.8119 0.8031 0.7808 0.7717

CPLGA 0.8435 0.8432 0.8215 0.8090 0.8817 0.8769 0.8530 0.8433 0.9285 0.9019 0.8946 0.8775

Fig. 2. The conditional dependency between contextual and journey attributes. The
numbers in the circles denote the number of CP-nets that the values of two attributes
are dependent on each other.

that their preferences among the transportation modes used in the journey are
conditioned on the weather status. We also observed that almost half of the
participants have a conditioned preference over the transportation modes based
on the expected crowdedness of the transportation network. Latent information
such as this, which is ignored by the majority of popular learning-to-rank meth-
ods, can be precious when one wants to predict the passengers’ behavior. We
believe that this information was the main reason of why CP-net based pref-
erence learning method outperformed all conventional ones. However, we first
need to prove that the learned CP-net are concordant with the actual passen-
gers’ behavior. To achieve this, we conduct another experiment to reveal that
whether the actual behavior of passengers matched with our learned CP-nets.
For the sake of brevity, in this paper, we only present the two highest conditioned
attributes, namely (weather and mode) and (crowdedness and mode).

Figure 3 presents the average percentage of transportation mode against four
different attributes namely, crowdedness, day-time, purpose and weather condi-
tion. In Fig. 3(a) we show the average percentage of transportation modes for
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(a) Weather (27 passengers from Fig. 2). (b) Crowdedness (21 passengers from Fig. 2)

(c) Day-time (19 passengers from Fig. 2) (d) Purpose (17 passengers from Fig. 2)

Fig. 3. The conditional dependency between transit mode and four highly conditioned
variables extracted from the true ratings of the passengers.

the first ranked journey for the 27 passengers presented in Fig. 2 based on the
learned CP-nets for these passengers, we expected that the transportation mode
was conditioned to the weather status. Figure 3(a) shows the actual behavior of
these passengers when they rated the actual recommended journeys. In here we
assumed that, for each query, they would choose their highest ranked journey. As
shown in Fig. 3(a), there is a clear correlation between the used transportation
mode and the weather status which demonstrates that the learned CP-net is con-
cordant with the actual behavior of the passengers. For example, we observed
that when raining, the usage of trains was increased as these passengers pre-
ferred trains more over other means of transportation. We also observed that
the usage of buses dropped dramatically in raining condition. It could be since,
for buses and trams, the possibility of delays increases in raining weather and
passengers – who gained this knowledge through experience – try to avoid it by
leaning towards trains which are more robust against variations in weather con-
ditions. Although, this information may seem trivial, but note that these explicit
dependencies are being ignored by the conventional learning-to-rank methods.
Needless to say, such information is beneficial when the system wants to predict
passengers’ preferences to recommend personalized journeys to them.

Figure 3(b) demonstrates the same results for the relation between expected
crowdedness of the transportation network and the passengers’ preferences
among different modes of transportation. As we stated before, in 21 out of
47 learned CP-net, the value of transportation mode is conditioned with the
value of expected crowdedness. Again, we observed that there is a clear corre-
lation between the two attributes in actual passengers’ behaviors. For example,
we observed an increase in train usage in crowded situations. One explanation
could be that the passengers prefer to avoid traffic jams, in case of buses, or
limited space, in case of trams. We also observed an increase of bicycle usage
when the transportation network is crowded. This could be because, in the City
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of Melbourne passengers are only allowed to bring their bikes onto the trains,
but prohibited for other means of transportation, so some passengers are willing
to take some part of the journey with bikes during rush hours.

To have a fair comparison, we also compare CPLGA [8] against two CP-
net learning algorithms proposed in [14,15]. Similar to CPLGA, these methods
learn CP-nets passively from inconsistent examples. We observed that CPLGA
algorithm significantly performs better than the other two. Regarding [15] it is
because this algorithm starts with a hypothesis and then performs a local search
to optimize that hypothesis, making the algorithm prone to getting stuck in local
optima for larger problems. Another issue is the sample size. Note that for larger
problems (i.e., more than ten attributes) these algorithms need a large training
set to prove their hypothesis. We also tested the robustness of these methods in
noisy condition by adding 1% to 20% of noise to the data-set. We observed that
all methods which have handled the noisy data and could find similar preference
graphs as the noise-free setting; however, we again observed a significant gap
between CPLGA model and the other algorithms concerning their performance
(Table 3).

Table 3. Comparison between the three state-of-the-art passive CP-net learning meth-
ods on real data with different noise level.

|S| ρ 0 0.01 0.05 0.1 0.2

Method Sample agreement

500 [15] 0.5533 0.5564 0.4756 0.4213 0.2712

[14] 0.5117 0.5107 0.4819 0.4665 0.2301

CPLGA 0.9212 0.9230 0.9195 0.8400 0.7512

1000 [15] 0.5812 0.5601 0.5139 0.4201 0.3320

[14] 0.5210 0.5109 0.4939 0.4339 0.3134

CPLGA 0.9309 0.9101 0.9152 0.8754 0.7713

5 Conclusions

In this paper, we discussed the effect of conditional preference learning in the
domain of context-aware journey planning problem. To this aim, we have pro-
posed a context-aware journey recommendation test-bed and we have imple-
mented and evaluated the CP-net based preference learning algorithm and com-
pared it with five state-of-the-art PL strategies and two similar CP-net learning
approaches. Our experiment results have concluded that there exists the latent
conditional information in the user preferences and this information can be very
useful when one wants to predict the passengers’ behavior in the urban trans-
portation network.

Our future work is to further improve the performance of the conditional
preference learning methods. We also want to investigate the effectiveness of the
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conditional preference learning strategies when applied during the construction
of the journey plans. We believe that in this way the preference model can have
a major impact on quality of the recommended journeys and also help to speed
up the plan generation process by reduction of the search space.
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