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Abstract. This paper proposes an efficient optimization method to
solve the Chance Constrained Problem (CCP) described as the critical
fractile formula. To approximate the Cumulative Distribution Function
(CDF) in CCP with an improved empirical CDF, the truncated Halton
sequence is proposed. A sample saving technique is also contrived to solve
CCP by using Differential Evolution efficiently. The proposed method is
applied to a practical engineering problem, namely the design of SAW
filter.
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1 Introduction

In real-world optimization problems, various uncertainties have to be taken into
account. Traditionally, there are two kinds of problem formulations for handling
uncertainties in the optimization [11], namely the deterministic one and the
stochastic one. Chance Constrained Problem (CCP) [13] is one of the possible
formulation of the stochastic optimization problem. Since the balance between
optimality and reliability can be taken with a probability in CCP, a number of
real-world optimization problems have been formulated as CCPs [7,9].

CCP has been studied in the field of stochastic programming [13]. If the
chance constraint is linear, CCP can be transformed to a deterministic optimiza-
tion problem. Otherwise, CCP is so hard to solve because the time-consuming
Monte Carlo simulation is needed to calculate the empirical probability that the
chance constraint is satisfied. For solving CCP with the optimization methods
of nonlinear programming, the stochastic programming assumes that the chance
constraint is differentiable and convex. Even though Evolutionary Algorithms
(EAs) are also reported to solve CCP [8,12], they use Monte Carlo simulations
to evaluate the feasibility of every solution in the process of optimization.

In our previous paper [16], an optimization method based on Differential
Evolution (DE) [14] was given to solve CCP without the Monte Carlo simulation.
Specifically, CCP is described by using the Cumulative Distribution Function
(CDF) of uncertain function value. In order to approximate CDF from samples,
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an extended version of Empirical CDF (ECDF) [10], which is called Weighted
ECDF (W ECDF) [15], was employed. Thereby, for solving the CCP formulated
with CDF, an Adaptive DE (ADE) combined with W ECDF was used.

This paper focuses on a specific CCP known as the critical fractile formula
[4] and improves the previous method [16] by introducing two new techniques.
Firstly, the truncated Halton sequence is proposed to approximate CDF with
W ECDF more efficiently. Secondly, a new ADE equipped with a sample saving
technique is proposed. The improved method is applied to the structural design
of Surface Acoustic Wave (SAW) filters [2], which are widely used in the radio
frequency circuits of mobile communication systems such as cellular phones.

2 Background and Problem Formulation

As stated above, there are two problem formulations for handling uncertainties.
Robust optimization problem is a deterministic problem formulation [3]. Let
x = (x1, · · · , xD) ∈ X ⊆ �D, X = [xj , xj ]D, j = 1, · · · , D be a vector of
decision variables, or a solution. The uncertainty is given by a vector of random
variables ξ = (ξ1, · · · , ξK) ∈ Ξ with a support Ξ ⊆ �K . Robust optimization
problem is defined with a measurable function g : X × Ξ → � as

min
x∈X

γ s.t. ∀ ξ ∈ Ξ : g(x, ξ) ≤ γ. (1)

The feasible solution x ∈ X of the robust optimization problem in (1) has to
satisfy the constraint g(x, ξ) ≤ γ absolutely with 100% probability. Therefore,
it seems to be too conservative from an engineering perspective.

CCP is a stochastic problem formulation [13]. By introducing any required
sufficiency level α ∈ (0, 1) into an infinite number of constraints in (1), CCP
reduces the conservativism of the robust optimization problem as

min
x∈X

γ s.t. Pr(g(x, ξ) ≤ γ) ≥ α (2)

where Pr(A) denotes the probability that an event A will occur.
Actually, CCP may have more than one constraint. Besides, there are two

types of CCPs, namely separate CCP and joint CCP [13]. In this paper, separate
CCP having only one chance constraint is considered as shown in (2).

The presence of the uncertainty in CCP leads to different results for repeated
evaluations of the same solution x ∈ X. Since ξ ∈ Ξ is a vector of random
variables, the function value g(x, ξ) ∈ � in (2) becomes a random variable too.
The CDF of g(x, ξ) depending on the solution x ∈ X is defined as

F (x, γ) = Pr(g(x, ξ) ≤ γ). (3)

By using the inverse CDF of g(x, ξ), an alternative formulation of the CCP
in (2), which is known as the critical fractile formula [4], is written as

min
x∈X

γ(x) = F−1(x, α) (4)
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where γ(x) denotes the critical fractile γ = γ(x) achieved by x ∈ X.
The probability distribution of ξ ∈ Ξ in CCP is usually known [13]. If the

probability distribution of g(x, ξ) ∈ � is also known or the inverse CDF of
g(x, ξ) can be derived analytically, the CCP in (4) can be transformed into
a deterministic optimization problem [4,13]. Otherwise, for solving the original
CCP in (2), the probability Pr(g(x, ξ) ≤ γ) in (2) has to be evaluated repeatedly
with the Monte Carlo simulation by changing the value of γ ∈ �.

3 Approximation of CDF

3.1 Empirical CDF (ECDF)

In real-world optimization problems, g(x, ξ) in (3) is too complex to derive its
CDF analytically. Therefore, an approximation of the CDF is composed from
samples. Let g(x, ξn) ∈ �, ξn ∈ Ξ, n = 1, · · · , N be a set of random samples
of the function value g(x, ξ) in (3). The indicator function is defined as

1l(g(x, ξn) ≤ γ) =

{
1 if g(x, ξn) ≤ γ

0 otherwise.
(5)

From the samples g(x, ξn), n = 1, · · · , N , ECDF [10] is composed as

F(x, γ) =
1
N

N∑
n=1

1l(g(x, ξn) ≤ γ). (6)

Let F̃(x, γ) be a smoothed ECDF. The CDF of g(x, ξ) is approximated by
F̃(x, γ). Since F̃(x, γ) is a monotone increasing function, we can get the inverse
CDF value, or the critical fractile in (4), numerically as γ = F̃

−1(x, α).
As a drawback of ECDF, many samples are required to approximate CDF

accurately because the samples g(x, ξn), ξn ∈ Ξ taken from the tail part of the
probability distribution on Ξ ⊆ �K are relatively few in number.

3.2 Weighted Empirical CDF (W ECDF)

W ECDF [15] is an improved ECDF to approximate CDF in (3). In order to take
samples ξn ∈ Ξ from Ξ ⊆ �K uniformly, K-dimensional Halton Sequence (HS)
is used instead of the random sampling. HS is a low-discrepancy sequence [5]. Let
θn ∈ Θ ⊆ �K , n = 1, · · · , N be a set of points generated as HS. Considering
the support Ξ ⊆ �K , the region Θ ⊆ �K of HS is chosen as Θ ⊇ Ξ.

Let f : Ξ → [0, ∞) be the Probability Density Function (PDF) of ξ ∈ Ξ.
Each of the points θn ∈ Θ of HS is weighted by the PDF of ξ ∈ Ξ as f(θn).
Thereby, W ECDF is composed from g(x, θn), θn ∈ Θ, n = 1, · · · , N as

F(x, γ) =
1
W

N∑
n=1

f(θn) 1l(g(x, θn) ≤ γ) (7)

where W = f(θ1) + · · · + f(θn) + · · · + f(θN ).
By using a smoothed W ECDF F̃(x, γ), we can obtain γ = F̃

−1(x, γ).
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Fig. 1. RS: ξn ∈ Ξ Fig. 2. HS: θn ∈ Θ Fig. 3. THS: θn ∈ S

3.3 Truncated Halton Sequence (THS)

In our previous paper [16], we supposed that all of the random variables ξj ∈ �,
j = 1, · · · , K are mutually independent. Besides, for composing W ECDF in
(7) from θn ∈ Θ, the region Θ ⊆ �K of HS was given by a hyper-cube.

In this paper, Truncated HS (THS) is proposed to compose W ECDF more
efficiently. The region S ⊆ Θ of THS is defined with Θ ⊆ �K as

S = {θn ∈ Θ | f(θn) ≥ fmin} (8)

where the minimum PDF value fmin is a parameter given in advance.
By using the points θn ∈ S, n = 1, · · · , N of THS for composing W ECDF,

we can eliminate futile points θn ∈ Θ such as f(θn) ≈ 0. The correlation between
two random variables ξi and ξj , i �= j is also reflected in θn ∈ S naturally.

Example of W ECDF with THS. Let’s consider a stochastic function:

g(x, ξ) = x ξT = x1 ξ1 + x2 ξ2 (9)

where ξ ∈ Ξ ⊆ �2 is following a 2-dimensional normal distribution such as

ξ = (ξ1, ξ2) ∼ N2(μ1, μ2, σ2
1 , σ2

2 , ρ) = N2(1, 2, 0.12, 0.22, −0.8) (10)

where ρ denotes the correlation coefficient between ξ1 and ξ2.
Figure 1 shows ξn ∈ Ξ, N = 100 generated by the Random Sampling (RS)

of ξ ∈ Ξ in (10). Figure 2 shows θn ∈ Θ, N = 100. Figure 3 shows θn ∈ S,
N = 100. Since HS [5] is deterministic, the randomized HS [19] is used in this
paper.

From the theory of probability [1], the PDF of ξ ∈ Ξ in (10) is

f(ξ) =
1

2π
√|Σ| exp

(
−1

2
(ξ − μ)Σ−1 (ξ − μ)T

)
(11)

where μ = (μ1, μ2) and the covariance matrix Σ is given as

Σ =
(

σ1 0
0 σ2

) (
1 ρ
ρ 1

) (
σ1 0
0 σ2

)
=

(
σ2
1 σ1 σ2 ρ

σ1 σ2 ρ σ2
2

)
. (12)
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Fig. 4. ECDF in (6) Fig. 5. W ECDF in (7) Fig. 6. Estimation error

From the linearity of the normal distribution, the value of g(x, ξ) in (9) also
follows a normal distribution with mean μg(x) and variance σ2

g(x) as

g(x, ξ) ∼ N (μg(x), σ2
g(x)) = N (x μT , x Σ xT ). (13)

From (13), the CDF of g(x, ξ) in (9) can be derived exactly as

F (x, γ) = Pr
(

g(x, ξ) − μg(x)
σg(x)

≤ γ − μg(x)
σg(x)

)
= Φ

(
γ − μg(x)

σg(x)

)
(14)

where Φ denotes the CDF of the standard normal distribution [1].
ECDF and W ECDF are used to approximate F (x̂, γ) in (14) for a solution

x̂ = (1, 1). Figure 4 shows an example of the step function of ECDF and its
smoothed one. ECDF is composed from N = 10 samples g(x̂, ξn), ξn ∈ Ξ.
Similarly, Fig. 5 shows W ECDF and its smoothed one composed from N = 10
samples g(x̂, θn), θn ∈ S. From Figs. 4 and 5, the samples g(x̂, θn) for W ECDF
are distributed wider than the samples g(x̂, ξn) for ECDF.

From (14), the critical fractile γ̂ = F−1(x̂, α) ≈ 3.17 is obtained exactly for
α = 0.9. Figure 6 compares between THS, HS, and RS in the estimation error
|F̃−1(x̂, α) − γ̂| averaged over 10 runs. For generating θn ∈ S from θn ∈ Θ,
fmin = 0.01 is used in (8) and about 40% of θn ∈ Θ are dumped. From Fig. 6,
the estimation error with THS is small even if the sample size N is small.

4 Critical Fractile Optimization Method

4.1 Differential Evolution with Sample Saving Technique

By using the smoothed W ECDF composed of N samples and a correction level
β ≥ α, the CCP in (4), namely the critical fractile formula, is written as

min
x∈X

γ(x) = F̃
−1(x, β) (15)

where the correction level is initialized as β := α and regulated in the procedure
of the proposed optimization method as noted below if it is necessary.

The original versions of many EAs including DE have been developed to solve
unconstrained optimization problems. Therefore, they can be applied directly to
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the CCP in (15). In this paper, one of the most successful ADE, namely JADE
without archive [20], is used. As well as DE, JADE has a set of solutions xi ∈ Pt,
i = 1, · · · , NP called population. An initial population P0 ⊆ X is generated
randomly. Then every solution xi ∈ P0 is evaluated N times and the objective
function γ(xi) in (15) is estimated from g(xi, θn), θn ∈ S, n = 1, · · · , N as
stated above. At each generation t, xi ∈ Pt, i = 1, · · · , NP is assigned to a
parent in turn. By using the strategy named “DE/current-to-pbest/1/bin” [20],
a child ui ∈ X is generated from the parent xi ∈ Pt and evaluated N times. If
γ(ui) ≤ γ(xi) holds, the parent xi ∈ Pt is replaced by the child ui ∈ X.

JADE applied to a real-world optimization problem spends most of time to
evaluate children. The proposed sample saving technique called “pretest” can
find and eliminate fruitless children with a few samples. When a newborn child
ui ∈ X is compared with its parent xi ∈ Pt, the pretest takes its samples
g(ui, θn) one by one. Let m ≤ N be the number of samples obtained so far.
From these samples, the empirical probability is calculated with weights as

P̂r(γ(ui) > γ(xi)) =
1
W

m∑
n=1

f(θn) 1l(g(ui, θn) > γ(xi)) (16)

where P̂r(A) denotes the predicted value of Pr(A) through observations.
If P̂r(γ(ui) > γ(xi)) > 2 (1 − β) holds on the way, ui ∈ X is regarded as

worse than xi ∈ Pt and discarded without evaluating γ(ui) = F̃
−1(ui, β).

JADE combined with Pretest is named JADEP. In the global optimization
process of JADEP, the pretest is used locally in the competition between parent
and child. Therefore, the pretest doesn’t degrade the performance of JADE.

4.2 Verification of Solution Using Monte Carlo Simulation

We verify the feasibility of the solution xb ∈ X obtained by JADEP for the
CCP in (15). Specifically, by using a huge number of random samples g(xb, ξn),
ξn ∈ Ξ, n = 1, · · · , N̂ , we calculate the empirical probability that the chance
constraint of the CCP in (2) is satisfied with the solution xb ∈ X as

P̂r(g(xb, ξ) ≤ γ(xb)) =
1
N̂

N̂∑
n=1

1l(g(xb, ξn) ≤ γ(xb)). (17)

If P̂r(g(xb, ξ) ≤ γ(xb)) ≥ α holds, we regard that xb ∈ X is a feasible
solution of the CCP in (2). Otherwise, we increase the value of the correction
level β just a little and apply JADEP to the CCP in (15) again.

The sample size N̂ in (17) is determined as follows. Let x� ∈ X be the
optimum solution of the CCP in (2) and yn = 1l(g(x�, ξn) ≤ γ). Therefore,
Pr(yn = 1) = α and Pr(yn = 0) = (1 − α) hold. Let ŷ be the sample mean of
yn, n = 1, · · · , N̂ . From the central limit theorem [1], the confidence interval of
the sample mean ŷ is obtained for a confidence level q ∈ (0, 1) as
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(a) Sufficiency level α = 0.7 (b) Sufficiency level α = 0.9

Fig. 7. Landscapes of the critical fractile γ(x) of h(x, ξ) in (21)

Pr(|ŷ − α| ≤ ε) = Pr

⎛
⎝|ŷ − α| ≤ zq/2

√
α (1 − α)

N̂

⎞
⎠ ≥ 1 − q (18)

where ε is a margin of error and zq/2 is the z-score for q/2 ∈ (0, 0.5].
From desired ε and q in (18), the sample size N̂ is determined as

N̂ =
(zq/2

ε

)2

α (1 − α). (19)

In this paper, ε = 10−3 and q = 0.01 are chosen in (18). Therefore, if α = 0.9
is given by the CCP in (2), we have N̂ = 597, 128 from (19).

5 Numerical Experiment on Test Problem

5.1 Test Problem of CCP

The following function h(x), x ∈ [0, 1] has five unequal valleys [18].

h(x) =

{
1 − e(x) | sin(5π x)|0.5 if 0.4 < x ≤ 0.6

1 − e(x) sin(5π x)6 otherwise
(20)

where e(x) = exp(−2 log2((x − 0.1)/0.8)2).
A random variable ξ ∈ � is added to the function h(x) in (20) as

h(x, ξ) = h(x + ξ), ξ ∼ N (0, σ2). (21)

Figure 7 illustrates the landscapes of the critical fractiles γ(x) = F−1(x, α)
evaluated from the CDF of h(x, ξ) in (21). From Fig. 7, the value of γ(x) depends
not only on the sufficiency level α but also on the variance σ2 in (21).

As an instance of the CCP in (2), g(x, ξ) is defined as

g(x, ξ) =
√

h(x1, ξ1)h(x2, ξ2) (22)

where h(xj , ξj) is given by (21). ξ1 and ξ2 are mutually independent.
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Table 1. Comparison of JADE and JADEP on the CCP defined by (22)

α σ2 JADE JADEP Rate

γ(xb) ̂Pr(A) β γ(xb) ̂Pr(A) β

0.305 0.718 0.805 0.305 0.718 0.809 0.139

0.7 0.022 (0.003) (0.002) (0.013) (0.003) (0.001) (0.003) (0.034)

0.083 0.719 0.810 0.082 0.716 0.807 0.192

0.7 0.012 (0.000) (0.002) (0.000) (0.001) (0.005) (0.004) (0.029)

0.340 0.908 0.950 0.340 0.908 0.949 0.385

0.9 0.022 (0.001) (0.002) (0.000) (0.001) (0.003) (0.002) (0.048)

0.213 0.909 0.949 0.196 0.909 0.943 0.407

0.9 0.012 (0.035) (0.002) (0.002) (0.008) (0.006) (0.004) (0.049)

5.2 Comparison Between JADEP and JADE

JADEP is compared with JADE on the CCP defined by g(x, ξ) in (22). They
are coded by MATLAB. The population size NP = 20 is used. The maximum
number of generations is fixed to Gmax = 100. The sample size N = 30 is used
to compose W ECDF. JADEP and JADE are run 20 times in each case.

Table 1 shows the result of experiment averaged over 20 runs. In Table 1,
γ(xb) is the critical fractile attained with the best solution xb. The feasibility
of xb is ensured by the empirical probability P̂r(A) as stated above. The rate
denotes the percentage of children eliminated by the pretest of JADEP.

From the rate in Table 1, the pruning effect of the pretest depends on the
case, but its works in all cases. From the result of Wilcoxon test about the value
of γ(xb), it is confirmed that there is no difference between JADE and JADEP
in all cases. Consequently, the proposed pretest can reduce the number of the
children examined N times without spoiling the quality of obtained solution.

6 Application to SAW Filter Design

6.1 Structure and Mechanism of SAW Filer

A SAW filter consists of some electrodes and reflectors, namely Inter Digital
Transducers (IDTs) and Shorted Metal Strip Arrays (SMSAs), fabricated on a
piezoelectric substrate. Figure 8 shows the symmetric structure of a resonator
type SAW filter. The input-port of SAW filter is connected to two transmitter
IDTs (IDT-Ts). The output-port is connected to a receiver IDT (IDT-R).

IDT-T converts electric input signals into acoustic signals. The acoustic signal
of a specific frequency resonates between two SMSAs. The resonant frequency
depends on the geometrical structure of SAW filter. Then IDT-R reconverts the
enhanced acoustic signal to electric output signal. As a result, the resonator type
SAW filter in Fig. 8 works as an electro-mechanical band-pass filter.
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Fig. 8. Symmetric structure of resonator type SAW filter

Table 2. Design parameters of SAW filter

xj ej [xj , xj ] Description

x1 — [0.25, 0.35] Thickness of electrode

x2 — [0.45, 0.55] Metallization ratio of IDT: dm/dg

x3 — [0.45, 0.55] Metallization ratio of SMSA: sm/sg
x4 — [1.0, 1.1] Pitch ratio of SMSA: dg/sg
x5 — [1.0, 1.1] Gap between IDT R and IDT T

x6 — [250.0, 350.0] Overlap between electrodes

x7 5.0 [50, 200] Number of strips of SMSA

x8 1.0 [10.5, 30.5] Number of finger-pairs of IDT R

x9 0.5 [10, 30] Number of finger-pairs of IDT T

Table 3. JADEP

Parameter Value

NP 100

Gmax 200

N 100

6.2 Design of SAW Filer Under Uncertainty

In order to describe the structure of SAW filter in Fig. 8, design parameters, or
decision variables x = (x1, · · · , x9), are chosen as shown in Table 2. Each design
parameter takes either a continuous value xj ∈ � or a discrete value at ej ∈ �
interval. In the procedure of JADEP, a decision variable xj ∈ � is rounded to the
nearest discrete value if it has to take a discrete value. Figure 8 also illustrates
graphically the design parameters of SAW filter listed in Table 2.

We consider processing errors ξ = (ξ1, ξ2, ξ3) ∈ �3 for the thickness of
electrode x1 and the metallization ratios of IDT and SMSA xj , j = 2, 3 as

x1 (1 + ξ1), ξ1 ∼ EXP(λ) = EXP(100) (23)

where EXP(λ) denotes the exponential distribution with mean 1/λ and

xj + ξj , j = 2, 3 (24)

where (ξ2, ξ3) ∼ N2(μ2, μ3, σ2
2 , σ2

3 , ρ) = N2(0, 0, 0.012, 0.012, 0.5).
Each of IDT and SMSA can be modeled by an elemental circuit. Therefore,

the equivalent circuit model of SAW filter is built up from the elemental circuits
of IDT and SMSA [6,17], and then transformed to a network model as[

b1
b2

]
=

[
s11 s12
s21 s22

] [
a1

a2

]
(25)
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Fig. 9. Reference points R(ωk) in (27) Fig. 10. Convergence plots

where ap, p = 1, 2 denotes the input signal at port-p, while bp denotes the output
signal at port-p. Scattering parameter spq gives the transition characteristic from
port-q to port-p, while spp gives the reflection characteristic at port-p.

From (25), the attenuation of SAW filter is defined as

L(x, ξ, ω) = 20 log10(|s21(x, ξ, ω)|) (26)

where s21 depends on x ∈ X, ξ ∈ Ξ, and frequency ω ∈ �.
For the attenuation in (26), some reference points R(ωk) and weights ck are

specified at frequencies ωk, k = 1, · · · , M . Thereby, the design of SAW filter is
formulated as the CCP in (2) by using the following function:

g(x, ξ) =
M∑

k=1

ck (L(x, ξ, ωk) − R(ωk))2 (27)

where M = 5 reference points are specified as shown in Fig. 9. Three points are
given in the pass-bound and two points are given in the stop-bound.

6.3 Result of Experiment and Discussion

JADEP is compared with JADE on the above design problem of SAW filter.
Table 3 shows the values of the parameters of JADEP. The same parameter
values are used for JADE. Thereby, JADE and JADEP are run on a personal
desktop computer (CPU: Intel Core i7@3.40GHz, OS: Windows 7).

Figure 10 shows a typical example of the convergence plots of JADEP and
JADE which start from the same initial population. Figure 11 compares JADEP
with JADE in the critical fractiles γ(xb) of the obtained solutions xb ∈ X for
some sufficiency levels α. From Fig. 11, we can confirm the trade-off between the
values of γ(xb) and α. From Figs. 10 and 11, there is no significant difference
between JADEP and JADE in γ(xb), namely the quality of solution.

Since each sample g(ui, θn) has to be evaluated through the simulation of
SAW filter, the efficiency of JADEP is much higher than JADE. In order to
obtain a solution of the CCP in (15), JADEP spent 642 [sec] on average except
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Fig. 11. Trade-off between γ and α Fig. 12. Prediction interval in (28)

the verification of solution using the Monte Carlo simulation, while JADE spent
1, 464 [sec]. The pretest of JADEP discarded more than 70% of the children.

The prediction interval of the attenuation in (26) is defined as

Pr(L(x, ω) ≤ L(x, ξ, ω) ≤ L(x, ω)) = (1 − q). (28)

From the inverse CDF of L(x, ξ, ω), the upper and lower bounds are(
L(x, ω) = F−1(x, ω, (1 − q/2))
L(x, ω) = F−1(x, ω, q/2).

(29)

By approximating the CDF in (29) with W ECDF, the prediction interval in
(28) can be estimated for a solution xb ∈ X found by JADEP. Figure 12 shows
an example the prediction interval of L(xb, ξ, ω) estimated for q = 0.1. The
reference points in Fig. 9 exist within the prediction interval in Fig. 12.

By using Figs. 11 and 12, which are provided by the proposed method, we
can guarantee the performance of SAW filter under uncertainties.

7 Conclusion

For solving CCP efficiently, two new techniques were contrived to improve the
optimization method based on JADEP and W ECDF. Firstly, THS was used to
compose W ECDF from fewer samples. Secondly, the sample saving technique
called Pretest was introduced into JADE. Finally, the contribution of this paper
was demonstrated on the design of SAW filter formulated as CCP.

In this paper, an appropriate value of fmin in (8) was decided empirically
considering the range of PDF and the number of points θn ∈ S. Future work
includes how to decide the value of fmin theoretically for generating THS.
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