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Abstract. Workforce Scheduling and Routing Problems (WSRP) are
very common in many practical domains, and usually have a number of
objectives of interest to the end-user. Illumination algorithms such as
Map-Elites (ME) have recently gained traction in application to design
problems, in providing multiple diverse solutions as well as illuminating
the solution space in terms of user-defined characteristics, but typically
require significant computational effort to produce the solution archive.
We investigate whether ME can provide an effective approach to solv-
ing WSRP, a repetitive problem in which solutions have to be produced
quickly and often. The goals of the paper are two-fold. The first is to
evaluate whether ME can provide solutions of competitive quality to an
evolutionary algorithm in terms of a single objective function, and the
second to examine its ability to provide a repertoire of solutions that
maximise user choice. We find that very small computational budgets
favour the EA in terms of quality, but ME outperforms the EA at larger
budgets, provides a more diverse array of solutions, and lends insight to
the end-user.

1 Introduction

Workforce scheduling and routing problems (WSRP) [3] are challenging prob-
lems for organisations with staff working in areas including health care [2] and
engineering [5]. Finding solutions is the responsibility of a planner within the
organisation who will have an interest in the wider organisational policy deci-
sions surrounding the solution. Such wider issues could include the implications
of solutions with a lower environmental impact, the effects of switching to public
transport, or the impact of changing the size of the workforce.

Multi-objective optimisation approaches are commonly used to find solutions,
to WSRP instances, as they can provide a front of solutions that trade-off objec-
tives [13]. However, fronts may only comprise a small section of the total solution
space, and are difficult to visualise if there are many dimensions. Thus, it can
be difficult for a planner to understand the range of solutions, why solutions
were produced, and in particular to know whether other compromise solutions
might exist.
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A class of algorithms known as illumination algorithms have recently been
introduced by Mouret et al. [7], with a number of variants following, e.g. [8,10].
Fundamentally different to a traditional search algorithm, the approach provides
a holistic view of how high-performing solutions are distributed throughout a
solution space [7]. The method creates a map of high-performing solutions at
each point in a space defined by dimensions of variation that are chosen by a
user, according to characteristics of a solution that are of interest. The result-
ing map (a Multi-dimensional Archive of Phenotypic Elites) enables the user to
gain specific insight into how different combinations of characteristics of solutions
correlate with performance, hence providing insight as well as multiple potential
solutions. In addition, as the approach encourages diversity, it has often been
shown to more capable of fully exploring a search-space, outperforming state-
of-the-art search algorithms given a single-objective, and can be particularly
helpful in overcoming deception [9]. We therefore hypothesise that an illumi-
nation algorithm might provide particular benefit to real-world problems such
as WRSP, which contain multiple, and sometimes conflicting, objectives. How-
ever, in contrast to the majority of previous applications of Map-Elites which
fall mainly in the domain of design problems (e.g. designing robot morphology),
WSRP is a repetitive problem, which requires solving new instances repeatedly
and obtaining acceptable solutions in reasonable time. While investing effort into
producing an archive of solutions can pay off in a design domain, it may prove
prohibitive for repetitive problems. Therefore, in the context of a WSRP based
on the city of London, using real geographical locations and real transport infor-
mation. Previous approaches to solving the problem [14] has utilised a portfolio
of multi-objective Evolutionary Algorithms to produce a non-dominated front,
the principle contribution lies in the application of MAP-Elites to illuminate
a combinatorial ESRP problem. To assess the success of MAP-Elites in this
context we consider the following questions:

1. How does the relative performance of ME compare to a standard Evolutionary
Algorithm (EA) in terms of satisfying a single objective-function over a range
of evaluation budgets?

2. Does MAP-Elites provide useful insights into problem characteristics from a
real-world perspective through providing a range of diverse but high-quality
solutions?

Using 10 realistic problem instances, we demonstrate that for a small fixed
evaluation budget, MAP-Elites does not outperform an EA in terms of the objec-
tive function, but as the budget increases, it outperforms the EA on the majority
of instances tested. Furthermore, even when it is outperformed by an EA in terms
of the single objective, it can discover solutions that have better values for the
individual characteristics. From a user-perspective, it may therefore present an
acceptable trade-off between overall quality and insight.
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2 Previous Work

The Workforce Scheduling and Routing Problem (WSRP) was defined in [3]
as a scenario that involves the mobilisation of personnel in order to perform
work related activities at different locations. It has been tackled by a variety
of methods including meta-heuristics [1] and hyper-heuristics [5]. It can involve
consideration of many constraints and objectives, for example transport modal-
ity, time-windows, transport cost, travel cost etc. and hence is often treated as
multi-objective problem, e.g. [13]. The reader is referred to [3] for a detailed
survey on previous approaches.

The Multi-dimensional Archive of Phenotypic Elites (MAP-Elites) was first
introduced by Mouret et al. [7] and as discussed in the introduction, provides
a mechanism for illuminating search spaces by creating an archive of high-
performing solutions mapped onto solution characteristics defined by the user.
To date, the majority of applications of illumination algorithms have been to
design problems [7,16]. Another tranche of work focuses on behaviour evolution
in robotics, for example Cully et al. [4], who evolve a diverse set of behaviours for
a single robot in a “pre-implementation” simulation phase: these are then used
in future when the robot is in operation to guide intelligent choice of behaviour
given changing environmental conditions.

To the best of our knowledge, an illumination algorithm has never been
used to solve repetitive problems, i.e. problems faced in the real-world where
acceptable solutions to problems have to be discovered in short time-frames,
often many times a day. Typically these types of problems are combinatorial
optimisation problems, e.g. scheduling, routing and packing, that often utilise
indirect genotypic representations as a result of having to deal with multiple
constraints. This contrasts to much of the existing work using MAP-Elites which
uses a direct representation of design parameters (although the use of MAP-
Elites with an indirect representation was discussed in [11]).

3 Methodology

We consider a WSRP characterised by time-windows, multiple transport modes
and service times. Variations of this scenario include the scheduling of health and
social care workers as well as those providing other services such as environmental
health inspections.

We assume an organisation has to service a set of clients, who each require
a single visit. Each of the visits v must be allocated to an employee, such that
all clients are serviced, and an unlimited number of employees are available.
Each visit v is located at gv, where g represents a real UK post-code, has a
service time dv and a time-window in which it must commence described by
{ev, lv}, i.e. the earliest and latest time at which can start and finish. Visits
are grouped into journeys, where each journey contains a subset Vj of the V
visits and is allocated to an employee. Each journey j starts and ends at the
central office. Two modes of travel are available to employees: the first mode
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uses private transport (car), the second makes uses of available public-transport,
encouraging more sustainable travel. The overall goal is to minimise the total
distance travelled across all journeys completed and forms the objective function
for the problem. However, in addition, discussions with end-users [14] highlights
four characteristics of solutions that are of interest:

– The total emissions incurred by all employees over all visits
– The total employee cost the total cost (based on £/hour) of paying the

workforce
– The total travel cost the cost of all of the travel activities undertaken by

the workforce
– The % of employees using car travel

We develop an algorithm based on Map-Elites to minimise the distance objec-
tive through projecting solutions onto a 4-dimensional map, with each axis repre-
senting one of the above characteristics. Solution quality is compared to an Evo-
lutionary Algorithm that uses exactly the same distance function as an objective,
and an identical representation, crossover and mutation operators.

Both the Map-Elites algorithm and the EA use an identical representation
of the problem, previously described in [14]. The genotype defines a grand-tour
[6], i.e. a single permutation of all v required visits. This is subsequently divided
into individual feasible journeys using a decoder. The genotype also includes v
additional genes that denote the model of transport to be used for the visit, i.e.
public or private.

The decoder converts the single grand tour into a set of journeys to be under-
taken by an employee. It examines each visit in the grand tour in order. Initially,
the first visit in the grand tour specified by the genotype is allocated to the first
journey. The travel mode(car or public transport) associated with this visit in
the genome is then allocated to the journey: this travel mode is then adopted
for the entire journey (regardless of the information associated with a visit in
the genome). The decoder then examines the next visit in the grand tour: this
is added to the current journey if it is feasible. Feasibility requires that the
employee arrives from the previous visit using the mode of transport allocated
to the journey within the time window associated with the visit. Note that a
travel mode cannot be switched during a journey. Subsequent visits are added
using the journey mode until a hard constraint is violated, at which point the
current journey is completed and a new journey initiated.

3.1 The MAP-Elites Algorithm

The implementation of MAP-Elites used in this paper is given in Algorithm 1
and is taken directly from [7]. G random-solutions are initially generated and
mapped to a disrete archive as follows. For each solution x′ a feature-descriptor b
is obtained by discretising the four features of interest associated with the solu-
tion (Sect. 3) into 20 bins; for 4 dimensions this gives a total of 204 = 160, 000
cells. The upper and lower bounds required for discretisation are taken as the
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maximum and minimum values observed by [14] for each dimension during an
extensive experimental investigation. A solution is placed in the cell in the
archive corresponding to b if its fitness (p, calculated as total distance travelled)
is better than the current solution stored, or the cell is currently empty. Par-
ents are selected at random from the archive. The RandomVariation() method
applies either crossover followed by mutation, or just mutation, depending on the
experiment. All operators utilised are borrowed from [14]. The mutation oper-
ator moves a randomly selected entry in the grand-tour to another randomly
selected point in the tour. The crossover operator selects a random section of
the tour from parent-1 and copies it to the new solution. The missing elements
in the child are copied from parent-2 in the order that they appear in parent-2.

Algorithm 1. MAP-Elites Algorithm, taken directly from [7]
procedure Map-elites Algorithm

(P ← ∅,X ← ∅)
for iter = 1 → I do

if iter < G then
x′ ← randomSolution()

else
x′ ← randomSelection(X )
x′ ← randomVariation(X )

end if
b′ ← feature descriptor(x’)
p′ ← performance(x’)
if P(b′) = ∅ or P(b′) < p′ then

P(b′) ← p′

X (b′) ← x′

end if
end for
return feature-performance map(P and X )

end procedure

3.2 The Evolutionary Algorithm

The EA uses exactly the same representation and operators as the Map-Elites
algorithm. The EA uses a population size of 100, with 40 children being created
each generation. Each child is created by cloning from one parent or crossover
using two parent. Parents are selected using a tournament of size 2. A mutation-
rate of 0.7 is applied to each child. The children are added back into the pop-
ulation, replacing the loser of a tournament, providing the child represents an
improvement over the loser. The parameters for the EA were derived from the
authors’ previous experience with similar algorithms applied to the same prob-
lem instances.
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3.3 Problem Instances

We use a set of problem instances based upon the city of London, divided into
two problem sets, termed London (60 visits) and BigLondon (110 visits). These
instances were first introduced in [14]. Each visit represents a real post-code
within London. For each of the problem sets, 5 instances are produced in which
the duration of each visit is fixed to 30 min. Visits are randomly allocated to
one of n time-windows, where n ∈ {1, 2, 4, 8}. For n = 1, the time-window has a
duration of 8 hours, for n = 2, the time-windows are “9am–1pm” and“1pm–5pm”
etc. These instances are labelled using the scheme <set>−numTimeWindows,
i.e. Lon-1 refers to an instance in the London with one time-window and Blon-2
refers to an instance of the BigLondon problem with 2 time windows. The fifth
instance represents a randomly chosen mixture of time windows based on 1,2,4
and 8 h.

If a journey is undertaken by car, paths between visits and distance is cal-
culated according to the real road-network using the GraphHopper library1.
This relies on Open StreetMap data2. Car emissions are calculated as 140 g/km
based upon values presented in [12]. For journeys by public-transport, data is
read from the Transport for London (TfL) API3 which provides information
including times, modes and routes of travel by bus and train. Public transport
emissions factors are based upon those published by TfL [12].

3.4 Experimental Parameters

The function evaluation budget is fixed in all experiments. We tests two values:
one million evaluations and five million. Each treatment is repeated 10 times
on each instance. The best objective (distance) value is recorded for both treat-
ments in each run. We apply Vargha and Delaney’s Â statistic [15] to assess
difference between the algorithms. This is regarded as a robust test when assess-
ing randomised algorithms. The test returns a statistic, Â, that takes values
between 0 and 1; a value of 0.5 indicates that the two algorithms are stochas-
tically equivalent, while values closer to 0 or 1 indicate an increasingly large
stochastic difference between the algorithms. One of the most attractive proper-
ties of the Vargha-Delaney test is the simple interpretation of the Â statistic: for
results from two algorithms, A and B, then is simply the expected probability
that algorithm A produces a superior value to algorithm B. We follow the stan-
dard interpretation that a value in the range 0.5 ± 0.06 indicates a small effect,
0.5 ± 0.14 a medium effect and .5 ± 0.21 a large effect.

In addition we use two metrics to further analyse Map-Elites that are now
de-facto in the literature:

– Coverage represents the area of the feature-space covered by a single run of
the algorithm, i.e. the number of cells filled. For a single run x of algorithm

1 https://graphhopper.com/.
2 https://openstreetmap.org/.
3 https://api.tfl.gov.uk/.

https://graphhopper.com/
https://openstreetmap.org/
https://api.tfl.gov.uk/


494 N. Urquhart and E. Hart

y, coverage = noOfCellsF illed/CMax where CMax is the total number of
cells filled by combining all runs of any algorithm on the problem under
consideration.

– Precision is also defined as opt-in reliability: if a cell is filled in a specific run,
then the cell-precision is calculated as the inverse of the performance-value
(distance) found in the that cell in that run, divided by the best-value ever
obtained for cell in any run of any algorithm (as this is minimisation). Cell-
precision is averaged over all filled cells in an archive to give a single precision
value for a run.

From the perspective of a planner, this represents the choice of solutions
available to them, while precision indicates whether a cell contains a solution
that is likely to of potential use to the planner. The averaged precision for a run
indicates the overall quality of the solutions produced.

4 Results

The first research question aims to compare the performance of MAP-Elites and
EA algorithms under different evaluation budgets to determine whether MAP-
Elites might be useful in producing a set of acceptable solutions quickly. Two
values are tested : the first is relatively small with 1 million evaluations (as in
[14]); the second increases this to 5 million.

Figure 1(a,b) show the objective fitness values achieved by ME and the EA
under both budgets on each of the problem instances. Table 1 shows effect size
and direction according to the Vargha-Delaney metric.

Table 1. Comparison of Map-Elites (ME) to Evolutionary Algorithm (EA) at n million
evaluations. Arrows show Vargha-Delaney A test effect size and direction

London problems Big London problems

Lon-1 Lon-2 Lon-4 Lon-8 Lon-rnd Blon-1 Blon-2 Blon-4 Blon8 Blon-rnd

ME(1M) vs
EA(1M)

↔ ↓↓↓ ↓↓↓ ↓↓↓ ↓↓↓ ↓↓↓ ↓↓↓ ↓↓↓ ↓↓↓ ↓↓↓

ME(5M) vs
EA(5M)

↑↑↑ ↑↑↑ ↑↑↑ ↑↑↑ ↑↑↑ ↓↓↓ ↓↓ ↑ ↑ ↓↓↓

We note firstly that for 1M evaluations for both sets of problems, the EA
outperforms Map-Elites: the median of the EA is lower than ME, and the effect
size is large in each case. However, when the budget is increased to 5M, Map-
Elites outperforms the EA on all of the smaller problems with a large effect size;
it also outperforms the EA on two of the larger problems, although the effect
size is small. In the remaining 3 cases, the EA still wins.

Note that the Fig. 1a and b only show performance in terms of distance and
do not take into account the four characteristics which provide insight to the end-
users. These values are given in Table 2. Firstly we note that for the smaller lon
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Fig. 1. Performance of MAP elites and the EA with budgets of 1 million and 5 million
evaluations.

problems, the best-value for each characteristic is obtained from the MAP-Elites
algorithm in call cases. This includes lon−8 in which the best objective value for
a solution is obtained by the EA, but the solution has poorer values for each of
the 4 characteristics than the best solution obtained by MAP-Elites. Examining
the results for the larger BLon problem demonstrates that MAP-Elites, despite
a sub-optimal performance (w.r.t the objective function), can still find solutions
that out perform the EA in terms of the individual characteristics.

4.1 Coverage and Precision

The coverage metric evaluates the ability of an individual run of an algorithm
to place individuals in each of the cells. Note that it is possible that some of the
cells cannot be filled in because the characteristics of that instance do not allow
a feasible solution in that area.

The coverage achieved is displayed in Fig. 2a and b. Observe that coverage
of over 70% is common with MAP-Elites, but the EA gives very poor coverage
as it converges to a single solution. In real-world terms, the EA leaves the user
with little choice of solution and no insight into the problem.

Figure 2c and d show the precision achieved by MAP Elites and the EA. We
note that the highest precision achieved by the EA outperforms MAP Elites.
Recall that precision is calculated over only those cells that are filled. The EA
allocates all of its evaluations to very few cells, and thus find good solutions
for those cells. In contrast, MAP-Elites has to distribute the same budget of
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Table 2. A detailed comparison of the best results found over 10 runs for performance
(distance) and the 4 characteristics associated with the solutions, based on an evalua-
tion budget of 5 million for each run. Values are shown for MAP elites on the left and
the EA on the right.

Dist StaffCost TravelCost CO2 CarUse

Lon-1 204.64 : 206.93 841 : 974.67 82.54 : 85.79 133.83 : 163.75 0 : 0.25

Lon-2 223.3 : 231.02 870.67 : 1014.67 89.71 : 103.04 148.94 : 192.85 0.06 : 0.33

Lon-4 225.37 : 244.09 904.33 : 1276 94.63 : 116.74 158.77 : 194.59 0.04 : 0.33

Lon-8 230.8 : 230.34 967.33 : 1376.67 103.5 : 140.1 159.07 : 240.54 0.04 : 0.35

Lon-Rnd 244.91 : 259.11 944 : 1140.33 99.48 : 107.4 155.17 : 216.53 0.04 : 0.33

Blon-1 698.48 : 619.15 1987 : 2182.33 222.63 : 207.17 527.27 : 506.02 0.04 : 0.25

Blon-2 729.21 : 644.07 2107.67 : 2385.67 244.54 : 243.55 584.99 : 581.16 0.07 : 0.32

Blon-4 708.25 : 722.53 2183.33 : 2545.67 267.85 : 272.34 584.19 : 637.26 0.08 : 0.33

Blon-8 688.94 : 658.52 2209 : 2772 272.22 : 311.52 586.81 : 637.5 0.08 : 0.38

Blon-rnd 730.3 : 666.29 2256 : 2717.67 251.31 : 263.1 580.16 : 602.47 0.09 : 0.36

evaluations across a much larger number cells, making it hard to always find
a high-performing solution in each cell. In addition,many of the low-precision
scores for MAP-Elites occur when one run does not find as high-performing a
solution in a cell as another run of MAP-Elites. Running MAP-Elites for more
evaluations would likely improve precision (without danger of convergence due
to its propensity to enforce diversity).

4.2 Gaining Insight into the Problem Domain

Figure 3 plots the cells, and the elite solutions contained, for each 2-dimensional
pairing of the 4 dimensions. Although the archive could be drawn in 4-
dimensions, discussion with users suggested that presenting 2-dimensional maps
provides more insight. Within each plot, each cell that is occupied is coloured
to represent the distance objective value of the elite solution - lowest (best) val-
ues being green, highest being red. Note that most of the cells have a solution
within them. Where there is an area with no solutions it tends to be at a corner
of the plot. For instance, there are a lack of solutions with low CO2 and high
travel costs (Fig. 3e) or high car use and low CO2 (Fig. 3a). From a planning
perspective, Fig. 3 indicates (1) combinations of objectives that have no feasible
solutions, and (2) quality of feasible solutions.

MAP-Elites tends to cover a larger part of the solution space. A common
trend is that the solutions that are better in terms of one or two of the four
characteristics are not always solutions that exhibit the lowest distance objec-
tive. The map also quantifies trade-offs in objective value: for example, the extent
to which increased car use increases CO2 compared to options that utilise more
public transport. Another insight to be gained is the effects of higher public
transport use (i.e. low car use) and staff cost: staff costs rise as public transport
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Fig. 2. Coverage and precision for map-elites and the EA on both problem sets

usage increases (Fig. 3a and c). This is due to the longer journey times experi-
enced with public transport leading to increased working hours for staff.

A planner with responsibility for determining policies regarding staff schedul-
ing may make use of the diagrams in Fig. 3c to understand what solutions are
possible given a specific priority. For instance, if it is determined that reducing
CO2 is a priority then they can determine what possible trade-offs exist for low
CO2 solutions. Where a balance is required (i.e. lowering CO2 but also keeping
financial costs in check) MAP-Elites allows the planner to find compromise solu-
tions that are not optimal in any single dimension, but may prove useful when
meeting multiple organisational targets or aspirations.

5 Conclusions

In this paper we have applied MAP-Elites to a real world combinatorial opti-
misation problem domain—a workforce scheduling and routing problem. Unlike
previous applications of MAP-Elites that have tended to concentrate on design
problems, WSRP is an example of a repetitive problem, requiring an optimisa-
tion algorithm to find acceptable solutions in a short period of time. In addition
to an acceptable solution however, a user also requires choice, in being able to
select potential solutions based on additional criteria of relevance to a particular
company.

With reference to the research questions in Sect. 1, we note that MAP-Elites
tends to require a larger evaluation budget to produce results that are com-
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Fig. 3. Maps produced from a single run of the blon-1 problem: rather than display the
single 4-dimensional map produced from map-elites, we display the data as all possible
pairings of the 4 characteristics (Color figure online)

parable with a straightforward EA for the problems tested. However, for small
problems, affording a larger evaluation budget to Map-Elites enables it to dis-
cover improved solutions, compared to the EA. For larger problems, although
our results show that MAP-Elites cannot outperform the EA in terms of objec-
tive performance, it does find solutions that outperform the EA in terms of the
individual characteristics. It is likely that running MAP-Elites for longer would
continue to improve its performance, without risking convergence. The increased
cpu-time required for such a budget may be easily obtained through the use of
multi-core desktop computers or cloud based resources in a practical setting.
We also note that the illumination aspect of MAP-Elites may aid the ability of
planners to understand the factors that lead to good solutions and subsequently
influence policy planning/determine choices based on organisational values, and
that this aspect is of considerable benefit. Illumination of the solution-space also
provides additional insight to planners, who can gain understanding into the
influence of different factors on the overall cost of a solution.

Future work will focus on further exploration of the relationship between
objective quality and function evaluations, to gain insight into the anytime
performance of Map-Elites, for use in a real-world setting. The granularity of
the archive clearly influences performance and should be investigated by depth.
Finally, an additional comparison to multi-objective approaches is also worth
pursing — while this may improve solution quality however it is unlikely to offer
the same insight into the entire search-space.
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