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Abstract. Wave energy is a widely available but still largely unexploited
energy source, which has not yet reached full commercial development. A
common design for a wave energy converter is called a point absorber (or
buoy), which either floats on the surface or just below the surface of the
water. Since a single buoy can only capture a limited amount of energy,
large-scale wave energy production requires the deployment of buoys
in large numbers called arrays. However, the efficiency of these arrays
is affected by highly complex constructive and destructive intra-buoy
interactions. We tackle the multi-objective variant of the buoy placement
problem: we are taking into account the highly complex interactions
of the buoys, while optimising critical design aspects: the energy yield,
the necessary area, and the cable length needed to connect all buoys –
while considering realistic wave conditions for the first time, i.e., a real
wave spectrum and waves from multiple directions. To make the problem
computationally feasible, we use sparse incomplete LU decomposition
for solving systems of equations, and caching of integral computations.
For the optimisation, we employ modern multi-objective solvers that are
customised to the buoy placement problems. We analyse the wave field
of final solutions to confirm the quality of the achieved layouts.

Keywords: Ocean wave energy · Wave energy converter array
Simulation speed-up · Multi-objective optimisation

1 Introduction

With ever-increasing global energy demand and finite reserves of fossil fuels,
renewable forms of energy are becoming increasingly important to consider [16].
Wave energy is a widely available but unexploited source of renewable energy
with the potential to make a considerable contribution to future energy produc-
tion [12]. A multitude of techniques for extracting wave energy are currently
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being explored [12,13]. A wave energy converter (WEC) is a device that cap-
tures and converts wave energy to electricity. One common WEC design is the
point absorber or buoy, which typically floats on the surface or just below the
surface of the water, and captures energy from the movement of the waves [12].
In our research, we consider three-tether WECs (Fig. 1) inspired by the next
generation of CETO systems developed by the Australian wave energy company
called Carnegie Clean Energy. These buoys operate under water surface (fully
submerged) and tethered to the seabed in an offshore location.

Submerged buoy
Tether

Power take-off
system

Sea floor

Fig. 1. Schematic representation of
a three-tether WEC [28].

One of the central goals in designing and
operating a wave energy device is to max-
imise its overall energy absorption. As a
result, the optimisation of various aspects of
wave energy converters is an important and
active area of research. Three key aspects
that are often optimised are geometry, con-
trol, and positioning of the WECs within the
wave energy farm (or array). Geometric opti-
misation seeks to improve the shape and/or
dimensions of a wave energy converter (or some part of it) with the objective of
maximising energy capture [17,19]. On the other hand, the optimisation of con-
trol is concerned with finding good strategies for actively controlling a WEC [22].
A suitable control strategy is needed for achieving high WEC performance in
real seas and oceans, due to the presence of irregular waves [6]. In this article we
focus on the third aspect, namely the positioning of multiple wave energy con-
verters while considering constraints, additional objectives, and realistic wave
conditions.

To evaluate the performance of our arrays, we use a frequency domain model
for arrays of fully submerged three-tether WECs [24]. This model enables us to
investigate design parameters, such as number of devices and array layout. In
addition to the objective of producing energy, we consider two more objectives:
the area needed to place all buoys, and the cable length needed to connect all
buoys. This results in an optimisation problem: what are the best trade-offs of
the area needed, the buoys’ locations, and the cable length needed? To the best
of our knowledge, this study is the first to investigate this question to reduce
costs and to increase efficiency, while considering realistic wave conditions in a
multi-objective setting. A first related study is that by Wu et al. [28] where a
single objective (power output) was considered and only a single wave frequency
and single direction to keep the computational cost at bay. Arbonès et al. [1]
investigated multiple objectives by considering parallel architectures and varying
numbers of wave frequencies, while again being limited to a single wave direction.
Neshat et al. [21] characterised the intra-buoy effects given realistic conditions
and exploited this knowledge in custom single-objective hillclimbers.

We take this as a starting point for our four contributions here: (i) we use a
realistic wave scenario with multiple directions, (ii) we speedup the calculations,
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(iii) we employ a different constraint handling approach to allow the use of other
algorithms, and (iv) we provide insights by characterising the wave field.

We proceed as follows. In Sect. 2, we describe the WEC power generation
model used in our study and introduce the multi-objective buoy placement prob-
lem. We describe the different objectives that are subject to our investigations,
and the constraints used and how we implemented them. We note the problem
complexity, which is the factor preventing study of large farms. Then, we present
in Sect. 3 our methods to reduce running times and the constraint handling used.
We describe and present our experiments in Sect. 4, provide a discussion of the
results in Sect. 5, and conclude with a summary in Sect. 6.
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Fig. 2. Australia/New South Wales (NSW) test site near Sydney: wave data statistics
(left) and the directional wave rose [2] (right).

2 Preliminaries

The total performance of a wave energy farm is not only dependent on the
number of WEC units in the array, but also on their mutual arrangement and
separating distances. The total capital expenditure per single unit decreases sig-
nificantly with increase in the farm scale [20]. When operating in a group, WECs
interact with each other modifying the incident wave front which can lead to the
significant reduction in generated power [3]. Moreover, the interference between
converters can be destructive as well as constructive which purely depends on
their hydrodynamic parameters and coupling. Thus, the array layout is of great
importance for the efficient operation of the whole farm, as well as the wave
conditions (dominant wave periods and wave directions).

The WEC chosen for this study is a fully submerged spherical buoy connected
to three tethers (taut moored) that are equally distributed around the buoy hull
(Fig. 1). Each tether is attached to the individual power generator at the sea
floor, which allows to extract energy from surge and heave motions simultane-
ously [23]. The geometric parameters of the buoys are as follows: they have a
5 m radius, are submerged at 6 m below the water surface, have a weight of 376
tons, and the tether inclination angle from the vertical is 55◦. A particular site
on the east coast of Australia has been selected as one of the potential locations
for the farm installation (see Fig. 2 for sea site statistics).
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2.1 Objectives

We consider a multi-objective optimisation scenario, using various evolutionary
algorithms, where multiple goals are leveraged to obtain a set of solutions.

Power Output. The frequency domain model of this kind of WEC arrays has
been derived by Sergiienko et al. [24], and used by in related work [1,28]. In the
model, the hydrodynamic interaction of submerged spheres is taken from [27] and
the machinery force of each power take-off unit is modelled as a linear spring-
damper system. The output from the model is a power absorbed by the array
of WECs P (x,y, ω, β) that is a function of their spatial position (coordinates)
(x,y), wave frequency ω, and wave angle β. As a result, the optimisation problem
that corresponds to the power production of the array is expressed:

max(x,y)

∫
β

fβ · (∫
ω

fω · P (x,y, ω, β) dω
)
dβ, (1)

There is no closed form solution for this equation. The result is computed by a
discrete set of wave frequencies and angles sampled from the distribution.

Additional Objectives. As the second objective after the wave farm’s power
output, we use the Euclidean minimum spanning tree (MST) to calculate the
minimum length of cable or pipe required to connect all buoys.

Thirdly, the cost of the convex hull is defined as the area contained by the set
of buoys that form the convex hull. This corresponds to the minimum land area
that is required for a wave farm layout. While we omit it here, a safety distance
at the perimeter of the wave farm should be included for production purposes.

Constraints. The problem uses two types of constraints. Box constraints
restrict the available sea surface, and prevent the use of unrealistic amounts
of space. The second constraint ensures that no two buoys are placed closer
than 50 m. This prevents damage and allows for installation and maintenance
ships (such as the Atlantic Hawk vessel) to navigate between the buoys
safely.

2.2 Problem Complexity

The main computational burden is coming from the evaluation of the power out-
put, which involves (i) the approximation of singular numerical integrals involved
in the hydrodynamic model [27], and (ii) solution of the linear system of 3 × N
motion equations of the form Ax = b, where N corresponds to the number of
buoys in the array. As a result, the complexity of a function evaluation depends
on a number of factors, including, but not limited to, the number of buoys, wave
directions and number of frequencies considered. To obtain a reliable power
prediction, we sample a set of wave frequencies and angles. The accuracy of the
result depends on quantity and probability of parameters chosen. Therefore there
is an accuracy/time trade-off. The problem quickly becomes untractable for farm
sizes of practical interest. In this article, we prioritize reducing the runtime of
the power output computation to obtain the largest benefits.
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Furthermore, the interbuoy-distance constraint is non-convex, which prevents
the use of some algorithms that cannot handle this type of constraints. Relax-
ation of this constraint is not considered, as it would discard potentially good
solutions.

3 Computational Speed-Ups and Constraint Handling

Numerical Integration. The integrals in the hydrodynamic model span over
an infinite interval and contain a singularity at some point K. To obtain an
approximation, we use an implementation of Cauchy principal value for the
interval (0, 1.5K), and an algorithm based on a 21-point Gauss-Kronrod rule
(provided by the GNU Scientific Library [5]) for the remaining infinite interval.

Caching. During evaluation of the power output function, the integral is evalu-
ated several times with different parameters, pertaining to the positioning of the
buoys. These integrals appear often with the same parameters, and thus, do not
have to be recomputed. We cache the results, which allows for a more efficient
use of computational resources and avoids unnecessary calculations.

Linear Algebra. The linear systems of the form Ax = b become the bottleneck
after the approximation of the integrals. The typical choice for solving this type
of system of equation is the LU -factorization with partial pivoting. However, for
our application this approach is too slow as we need to solve several thousand
systems of equations throughout the optimisation process. Instead, we make use
of the fact that this system has many variables with values very close to zero
and thus their contribution to the final solution is negligible. One approach is
to compute a sparse incomplete LU -decomposition as a pre-conditioner for an
iterative algorithm. This procedure adds the cost of computing the approximate
decomposition in trade for fast solving of the system of equations. This approach
works best when the system has to be solved with several right hand sides as in
this case, where the cost of computing the LU -decomposition amortises.

In our case, we can not reuse the LU -decomposition. Instead we use the
fact that for a low percentage of zero-entries the incomplete LU -decomposition
gives a good approximation to the original system. Thus we can approximate the
original system by a sparse variation where we discard the smallest percentile of
values and solve it approximately using the incomplete LU -decomposition. This
saves time approximately linear in the percentage of discarded values.

We have to evaluate experimentally at which percentage of discarded values
we can still obtain a reasonable accuracy. For this, we generate 100 random feasi-
ble buoy layouts. While keeping the layouts fixed, we discard values and compare
the computed power output to the dense solution. Figure 3 shows the obtained
solutions with respect to matrix sparsity, where the power output of each layout
has been subtracted for comparison. We can see that run-time decreases linearly
with the increasing number of discarded values. The accuracy of the solution
remains stable until 75% sparsity, where it starts to degrade. The accuracy loss
of the 70% sparse solution with respect to the dense implementation is shown
in Fig. 4. To obtain the error of the linear system Ax = b, we use the formula
‖As − b‖/‖b‖, where s is the solution obtained.
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Fig. 3. Relative power output (left) and time per iteration (right), against sparsity per-
centage; medians of 100 runs (blue), 5%/95% percentiles (green). (Color figure online)

Fig. 4. Relative residual error of 100 different random feasible layouts using dense and
sparse solver. For the sparse, 70% of the smallest values were discarded.

Constraint Handling. The box constraint to allow buoy placements only in
the designated area is enforced by a sinusoidal function of the form [7]: x =
a + (b − a) ∗ (1 + cos(π ∗ x/(b − a) − π))/2. The range of this function is (a, b),
and provides a smooth transition near the boundaries which is beneficial for the
algorithms. By setting a, b ∈ R to the box limits, we guarantee that any solution
obtained will lay within the feasible range.

We implemented the inter-buoy constraint with a penalty function propor-
tional to the square of the violation distance. The function takes the set of
all buoys (b1 . . . bn), and a minimum distance parameter M : v (b1 . . . bn) =∑n

i=1

∑n
j �=i max(M2−‖bi −bj‖2, 0). The objectives F of a given layout are then

scaled according to a penalty regularisation parameter K: F ′ = F (1 + K v).
Other constraint handling approaches, e.g. as they are used for handling

geo-constraints, could have been considered [14,15], however, this is beyond the
scope of this present paper.
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4 Experimental Study

Experimental Setup. To obtain a realistic output estimate and to generate
solutions robust to the changing nature of the sea we choose to use 25 linearly-
spaced frequencies and 7 wave directions sampled from Fig. 2. Note that a direc-
tion of 0◦ indicates waves coming from the south.

We run experiments for farms of 4, 9, 16, 25 and 36 buoys. We set the
boundaries of the farm depending on the amount of buoys to be placed, using
20.000 m2 per buoy. This results in squares of sides 283 m, 424 m, 566 m, 707 m,
and 849 m. We limit most of our report here to 4, 9, and 36 buoys.

We use Unbounded-Population-MO-CMA-ES (UP-MO-CMA-ES)
[11], Steady-State-MO-CMA-ES (SS-MO-CMA-ES) [9], SMS-EMOA [4].
Furthermore, for comparison purposes, we use the variant of SMS-EMOA with
custom operators presented in [1] (SMS-EMOA�). These operators are specific to
our kind of placement problem and have been used in wind farm turbine place-
ment as well as WEC placement optimisation [1,25,26]. In particular, Move-
mentMutation moves single WECs along corridors for local search purposes,
and BlockSwapCrossover recombines sub-layouts from complete layouts in
order to potentially recombine good sub-layouts into higher-performing ones. We
run each combination of algorithm and amount of buoys 100 times.

We initialise with a population size of μ = 50, and run the experiments for
8000 iterations (for 25 and 36 buoys the budget is 10000). For SS-MO-CMA-ES
and UP-MO-CMA-ES we set σ = 50. We initialise the algorithms with μ = 50
grids of different sizes, i.e., from the smallest grid (inter-buoy distance 50 m) to
the largest grid where the outermost buoys are at the boundary.

We use K = 100 in the regularisation of infeasible layouts, as we found this
to be a good trade-off between preventing the algorithms from using infeasible
solutions, and allowing exploration of regions close to the boundaries.

We focus on the power output because it is the objective of highest practical
importance. The convex hull and minimum spanning tree attempt to decrease
the cost and resource utilization of the final solution, while the power output is
the target driving the funding and development of the farm infrastructure.

Experimental Results. We present the results of our experiments for the
different multi-objective algorithms used. Our inter-buoy penalty does not guar-
antee that infeasible solutions will not be produced, therefore we ignore them
here.

As the power objective is most important, we first present the evolution of
the points with the highest power output. For all farm sizes considered, we show
the means over the points with highest power output of all fronts and their 75%
confidence intervals for each iteration. Additionally, Fig. 5 shows the values of
minimum spanning tree (MST) and convex hull (CH) of those points.

To compare the performance of the multi-objective algorithms we use the
so-called hypervolume, which is the volume of the space dominated by the found
solutions and a chosen reference point as in [4]. We show the evolution of the
volume over the course of optimisation in Fig. 6 for all algorithms.
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Fig. 5. Evolution of the three objectives for all algorithms. Shown are the means of
100 runs with 75% confidence intervals.

Table 1. Objectives attained by initial and optimised individuals.

Buoys Highest power initial solution Highest overall power solution

Power (MW ) MST (m) CH (m2) Power (MW ) MST (m) CH (m2)

4 1.8258 396 17635 1.8497 152.29 10.8

9 4.1042 1008 63635 4.1590 493 10465

16 7.2873 1734 124906 7.3254 1263 98797

25 11.3506 2520 183542 11.4145 1823 156958

36 16.3215 5082 640442 16.3757 3080 323946

Fig. 6. Hypervolumes: means of 100 runs with 75% confidence intervals. The reference
point is based on the worst values obtained for each objective.

In Fig. 7, we show the set of non-dominated feasible solutions found by any
algorithm after the last iteration. The objective value achieved by the layouts
with highest power outputs are given in Table 1. As we can see, the power output



520 D. R. Arbonès et al.

of the best solutions always increased slightly over the initial best layouts, while
the MST length and the area needed both decreased significantly. This means
that the newly found layouts not only produce more energy, but also require
shorter pipes and a smaller area.

5 Discussion

Optimisation Interpretation. The modified SMS-EMOA worked better for
the best individuals except in 4 dimensions. In terms of hypervolume, the UP-
MO-CMA consistently outperformed the other variants for larger layouts. We
obtained a roughly 1% improvement on average over the best initial grid.

The SS-MO-CMA-ES consistently performs well on the 4-buoy layout, how-
ever it becomes worse on the larger layouts and fails for layouts with more
than 9 buoys. The UP-MO-CMA-ES performs better in comparison. We argue
that the reason for this is the complex function landscape with constraints in
conjunction with the different measures of progress. The UP-MO-CMA-ES
only requires a point to be non-dominated to make progress. Thus it have more
chances to adapt to the function landscape. The SS-MO-CMA-ES in compari-
son must create points which non-dominated but also an improvement in covered
volume. Thus the SS-MO-CMA-ES will quickly adapt to evaluate solutions
close to existing solutions and thus might easily get stuck in local optima.

The SMS-EMOA has good performance when used in farm sizes of 4 buoys,
but lags behind for larger farms. In contrast, SMS-EMOA� consistently outper-
forms all other algorithms and produces the best solutions. This shows that the
operators developed for wind turbine placement generalise to the similar task of
WEC positioning. However, in terms of hypervolume covered, it lags behind the
UP-MO-CMA-ES.

One might wonder whether our best performing layouts (in terms of power
output) are optimal. While we have no means of proving optimality, we do know
that the UP-MO-CMA-ES used in the experiment uses 20% of the given budget
on the corner points. This means it spends a considerable amount of effort on

Fig. 7. Aggregated fronts of all algorithms’ non-dominated solutions. The three dimen-
sional objective space is plotted twice into the two-dimensional space.
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exploring extreme trade-offs, among which are the layouts with highest power
output. Therefore, the results of UP-MO-CMA-ES given here provide a good
intuition of how UP-MO-CMA-ES’s single-objective cousin CMA-ES [8] would
perform, albeit with a smaller budget.

Hydrodynamic Interpretation. In order to analyse the optimisation results,
it is necessary to understand how a particular array layout modifies the wave field
and how much power propagates downstream as waves travel through the farm.
Firstly, we explore the behaviour of the wave farm for the dominant wave period
of 9 s (ω = 0.7 rad/s) and the wave angle of 0◦. For the following interpretation
we use WAMIT, which a state-of-the-art tool used by the industry and research
community for analysing wave interactions.

When a wave hits the buoy, a part of the wave front passes through the
object creating a wake field behind, a part of the wave is diffracted back and the
rest is absorbed by the converter. Other wave types are the radiated waves that
spread uniformly in all directions from the oscillating structure (wave source).
Depending on the phase information, these three types of waves can be superim-
posed on each other creating a more energetic wave field, or in other case they
can eliminate each other leading to the smaller or zero wave amplitude. Thus,
for the wave farm design it is important to place buoys in such locations when
waves create a constructive interaction resulting in more wave power.

Fig. 8. The wave field around the 4 and 9-unit arrays of WECs with the initial (left)
and optimised (right) layouts. White circles show the location of submerged spherical
buoys. The wave propagates from left.

In Fig. 8 (left), we show the wave energy transport per unit frontage of the
incident and radiated wave for the 4-unit array. It can be seen that the ini-
tial square layout has two converters located in a wake of the first row which
decreases their power output. The incident wave energy transport for this wave
period is around 35 kW/m, while only 25 kW/m are propagated to the back row.
As has been stated in [3], the park effect in the wave farm is the most significant
for the front buoys as they benefit from radiated waves of a row behind. Inter-
estingly, WECs in the optimised layout are lined up perpendicular to the wave
front. An inter-buoy distance is about 51 m which is equal to 0.43λ, if we consider
only one dominant frequency of the spectrum (here λ is a wavelength). Com-
paring this result with existing literature, this particular scenario buoys should
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be separated by 0.85λ = 100 m [10,18] in order to achieve the maximum con-
structive interaction in the array leading to a quality factor of 1.5. However, the
other optimisation objectives came into place limiting the inter-buoy distance.

Similar behaviour of the optimisation algorithm is observed for the case of 9
buoys (see Fig. 8, right) resulting in the decreased number of rows as compared
to the initial layout. From the hydrodynamic point of view, it would be even
better to have only one row perpendicular to the wave front. However, single-
line initialisation is not robust when a spectrum of wave directions is considered,
and they would also require larger-than-allowed maximal dimensions.

With increasing number of units in the array, a more complex interaction
between buoys takes place leading to the non-trivial optimisation results. In
comparison to the 4-buoys array, more interesting effects can be observed look-
ing at the wave field created by the 9-buoy array with the initial layout (see
Fig. 8 left). It becomes obvious that initially all converters have been placed
to the areas, where radiated waves from adjacent buoys create disadvantageous
conditions for power generation. In contrast, the coordinates of all converters in
the optimised layout (see Fig. 8 right) coincide with locations where more energy
can be captured (similar to the local maxima on the surface plot), especially it
is observed for the buoys placed in front.

Fig. 9. Levels of absorbed power
by the 9-unit arrays for the initial
(left) and optimised (right) layouts.
WECs sizes are not to scale.

Going deeper in the analysis, power out-
puts from all WECs within the 9-unit array
are shown in Fig. 9 for the initial and opti-
mised layouts. As expected, for arrays with
a regular grid (initial case), the amount of
generated power from each row is reduced by
about 10% as compared to the row ahead.
In the final layout almost all WECs have
power output higher than 450 kW, which
proves the effectiveness of the optimisation
algorithms.

6 Conclusions

Wave energy is widely available around the globe, however, it is a largely unex-
ploited source of renewable energy. Over the last years, the interest in it has
increased tremendously, with dozens of wave energy projects being at various
stages of development right now. In our studies we focused on point absorbers
(also known as buoys). As the energy capture of a single buoy is limited, the
deployment of large numbers of them is necessary to satisfy energy demands.
In such scenarios, it is important to consider realistic intra-buoy interactions in
order to optimise the operations of a wave energy farm.

In this article, we investigated the placement optimisation with respect to
three competing objectives. To speed up the simulations of the intra-buoy inter-
actions, we considered the use of sparse incomplete decompositions to solve linear
systems. We tested different evolutionary optimisation algorithms, including cus-
tom variation operators developed for wind turbine placement. All simulations
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were done assuming realistic scenarios with waves coming from various directions
with different probabilities and different wave spectra.

The volume covered by the solutions of the different algorithms showcases
the complexity of the wave energy model for larger farm sizes. The highest power
obtained from the experiments achieved a 1% increase in power on average over
the best grid-based initial layout, In addition, the optimised layouts require
significantly shorter cables (or pipes) for the interconnection, and a significantly
smaller area for the installation.

In summary, our results show that the fast and effective multi-objective place-
ment optimisation of wave energy farms under realistic conditions is possible and
yields significant benefit. Furthermore, our results are consistent with previous
results obtaining optimal separation between buoys.
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