
Understanding Climate-Vegetation
Interactions in Global Rainforests

Through a GP-Tree Analysis

Anuradha Kodali1, Marcin Szubert2, Kamalika Das1(B), Sangram Ganguly3,
and Joshua Bongard2

1 USRA, NASA Ames Research Center, Moffett Field, CA, USA
anu.uconn@gmail.com, kamalika.das@nasa.gov
2 University of Vermont, Burlington, VT, USA

{marcin.szubert,jbongard}@uvm.edu
3 BAERI Inc., NASA Ames Research Center, Moffett Field, CA, USA

sangram.ganguly@nasa.gov

Abstract. The tropical rainforests are the largest reserves of terrestrial
carbon and therefore, the future of these rainforests is a question that
is of immense importance in the geoscience research community. With
the recent severe Amazonian droughts in 2005 and 2010 and on-going
drought in the Congo region for more than two decades, there is grow-
ing concern that these forests could succumb to precipitation reduction,
causing extensive carbon release and feedback to the carbon cycle. How-
ever, there is no single ecosystem model that quantifies the relationship
between vegetation health in these rainforests and climatic factors. Small
scale studies have used statistical correlation measure and simple linear
regression to model climate-vegetation interactions, but suffer from the
lack of comprehensive data representation as well as simplistic assump-
tions about dependency of the target on the covariates. In this paper we
use genetic programming (GP) based symbolic regression for discovering
equations that govern the vegetation climate dynamics in the rainforests.
Expecting micro-regions within the rainforests to have unique character-
istics compared to the overall general characteristics, we use a modified
regression-tree based hierarchical partitioning of the space to build indi-
vidual models for each partition. The discovery of these equations reveal
very interesting characteristics about the Amazon and the Congo rain-
forests. Our method GP-tree shows that the rainforests exhibit tremen-
dous resiliency in the face of extreme climatic events by adapting to
changing conditions.
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1 Introduction

Physics based modeling and perturbation theory has long been used to study the
eco-climatic interactions by scientists in order to explain observed phenomena.
However, these models, derived under various assumptions of equilibrium, are
often only suitable for ideal conditions, and fail to explain the complex dynam-
ics of ecosystem responses to varying environmental factors, especially in the
context of a progressively warming global climate. Given the vast amounts of
data being collected by different ground-based and remote sensing instruments
over long periods of time, the Earth Science research community is extremely
data rich. As a result, there has been a slow and steady shift towards the use
of machine learning for answering many of their science questions. Ensemble
approaches for climate modeling, uncertainty analysis for model evaluation, net-
work based analysis for discovery of new climate phenomena are examples [1].
However, most of the analysis approaches used for climate-vegetation dynamics
have been restricted to simple statistical correlation analysis or linear regres-
sion [17], thereby limiting discoveries to only linear dependencies. In this work,
we formulate the problem of understanding vegetation-climate relationship in
rainforests as a regression problem where different climate variables and other
influencing factors form the set of independent regressors, and data represent-
ing vegetation in the rainforests is the target. In the hope of understanding
how climate affects vegetation, we discover regression equations that best fit
the observed data. We alleviate the limitation of linear models through the use
of a genetic programming based symbolic regression [5] which is a data driven
white-box model that allows us to learn both the structure and weights of the
regression equation, thereby revealing previously unknown nonlinear interactions
in the data. We combine symbolic regression with hierarchical modeling using
regression trees in order to partition the large space of spatio-temporal interac-
tions for discovering micro regions within the vast rainforest expanses.

The tropical rainforests are the largest reserves of terrestrial carbon sink,
predominantly due to the presence of homogeneous, dense, moist forests over
extensive regions. The Amazon forests, for example, are a critical component
of the global carbon cycle, storing about 100 billion tons of carbon in woody
biomass [7], and accounting for about 15% of global net primary production
(NPP) and 66% of its inter-annual variability [19]. Together with the Congo
basin in Africa and the Indo-Malay rainforests in Southeast Asia, tropical forests
store 40–50% of carbon in terrestrial vegetation and annually process approxi-
mately six times as much carbon via photosynthesis and respiration as humans
emit from fossil fuel use [6]. With the recent severe Amazonian droughts in
2005 and 2010 [13,17] and on-going multi-decadal drought in the Congo region
[20], there is growing concern that these forests could succumb to precipitation
reduction, causing extensive carbon release and feedback to the carbon cycle [3].
Interestingly, the two largest rainforests display different characteristic drought
patterns with Amazonia encountering episodic and abrupt droughts during the
dry season (July–September) and Congo experiencing a gradual and persistent
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water shortage. Individual studies of these forests or small areas within them
fail to identify any unifying theory that holds for these global rainforests.

In this work we learn from the various observations pertaining to these rain-
forests in the context of a single modeling framework. We develop a regression
tree approach called GP-tree where the models at each node of the tree are
built using symbolic regression [5]. This framework discovers dynamics that are
local to different partitions within the forests and can be used to explain why
certain areas of the rainforests have responded very differently to the extreme cli-
mate events of the recent times. The discoveries have been validated by domain
scientists conversant with the rainforest ecosystem modeling problem. Precipi-
tation and temperature are the two most relevant climatic factors affecting the
rainforests. Other relevant physiological factors that have been included based
on domain science expertise are elevation and slope which directly affect how
rainfall (or lack thereof) can influence vegetation. Given that forest greenness is
an established indicator of tree health, we use satellite-based vegetation green-
ness observations as our target for this ecosystem model. The goal of the GP
tree method is to learn the dependency of greenness on the climatic and phys-
iological factors from historical data spanning multiple years of observations.
An additional goal is to identify boundaries in this spatial data set where the
equations of dependency change.

2 Related Work

Standard methods in ecosystem modeling use pairwise correlation analysis of
vegetation with each climate variable [16]. Trend analysis on standard anomalies
of different time series is commonly used for understanding long term dependen-
cies. Nemani et al. [10] use trend analysis for understanding limiting environ-
mental factors in different zones of the earth. Ordinary least squares regression
has been used to model the relationship between vegetation and multiple cli-
mate variables [8]. Geographic Weighted Regression (GWR) has also been tra-
ditionally used to allow for local spatial correlations while explaining climate-
vegetation interactions [18]. However, GWR suffers from serious scaling issues.
Cubist [11] is another popular analysis tool that automatically partitions the
data into geographic regions while learning linear models in each partition.
However, none of the methods allow discovery of nonlinear relationships, which
severely restricts the discovery process. Nature inspired learning techniques such
as deep learning, although very powerful in extracting nonlinear relationships,
are not particularly useful in this context due to their blackbox nature.

3 Modeling Framework

Genetic programming based symbolic regression (SR) [5] allows for discovery of
nonlinear dependencies in the data by allowing to learn the equation structure
along with the regression coefficients. Occasionally when the data is diverse, a
single nonlinear model does not suffice. Hierarchical partitioning techniques such
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as classification and regression trees (CART) [2] and model trees [11] help in the
identification of low variance regions in the data for building individual models.
In this paper we describe GP-tree that combines these two powerful algorithms
in order to build nonlinear regression models at each partition.

3.1 Symbolic Regression

Symbolic regression’s (SR’s) main defining features are that it is data driven,
white box, and nonlinear. Given training and validation data, SR distills equa-
tions of arbitrary form and complexity to explain the data. An example equation
explaining vegetation-climate interactions for a specific spatio-temporal extent
may look like

Y = −0.01log(eX8(0.03e4X6+X8+2X9((X5 + X6)2 − X2 − X3)2 + 0.2eX10))

where Xi,∀i and Y represent the independent climate variables and greenness
respectively. Symbolic regression is instantiated using population-based stochas-
tic optimization method, genetic programming (GP), whose underlying search
algorithm is biologically-inspired and consists of 3 major operations, namely,
mutation, crossover, and selection [5]. Using these operations, the algorithm
iteratively searches the space of possible models by probabilistically recombin-
ing previous expressions, modifying their components and adding new random
terms to the randomly initialized model population. In each iteration the candi-
date solutions are evaluated and less accurate and less parsimonious models are
replaced by randomly-modified copies of more accurate and more parsimonious
models. A squared error measure is used to judge the goodness of fit of the var-
ious candidate solutions The set of solutions form a Pareto front where error on
the validation set and model complexity are two competing parameters.

3.2 Regression Trees

Decision tree is a machine learning technique for recursively partitioning a space
of explanatory (independent) variables in order to better describe a discrete
target variable. When the target variables are continuous instead of discrete,
regression trees are used. In a regression tree each intermediate node splits the
data using a greedy search algorithm that minimizes variance at that node and
the leaf nodes contain constant values. A special kind of regression tree called
model tree contain leaf nodes which have linear models that can predict the value
of a previously unknown example. Regression trees are used in place of a global
simple linear regression model where the data has many features that interact in
complicated nonlinear ways, and the assumption of linearity falls apart on the
entire data set, but might hold true in small subsets. There are different variants
of the regression tree algorithms. The original model tree approach proposed by
Quinlan [11] relies on building a regression tree with the objective of reducing
the standard deviation of the target variable at each split whereas CART [2]
chooses to minimize the mean squared error (MSE) of the predicted target value
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at each node using decision thresholds. The goodness of fit is determined using
the squared error on a validation set and overfitting is handled through tree
pruning and cross validation.

3.3 GP-Tree

Our approach, GP-tree consists of two steps: induction of a model tree to par-
tition the data into subsets and then learning of governing equations for each
partition using symbolic regression. The overall approach for the GP-tree frame-
work is described in Algorithm 1. The details of the framework are described
next.

Algorithm 1. Hierarchical regression: GP-tree
Input: X ∈ R

n×D,y ∈ R
n,max depth, gp params

Output: Tree: T, Models: Mi, i ∈ k (no. of partitions)
Step 1: Build tree: Partition data into k groups

T = PolynomialRegressionTree(X, y, max depth)
[X1, ....., Xk] = Partitiondata(X, T)

Step 2: Train GP models
for each data partition (Xi,yi) (i ∈ k) do

Mi = learnGP(Xi, yi, gp params)
end for

Our tree induction differs from the model tree approach in that, instead
of the target variance, we consider the MSE approach of CART. Since we are
interested in nonlinear models, we compute the MSE for each split using a sec-
ond order polynomial regression. We hypothesize that the standard deviation
of the target variable may not be enough to find homogeneous partitions with
respect to the models. In each recursive call of the algorithm (see Algorithm 2),
we attempt to find the best binary splitting criterion that divides the dataset X
into two subsets that can be accurately explained by second order polynomial
models, which is equivalent of running LASSO on the second order feature com-
binations of the original data set. To this end, for each feature f we consider
a fixed number (100) of scalar threshold values (evenly distributed in the fea-
ture domain). For every such pair (feature, threshold) we evaluate the quality
of the resulting split by running polynomial regression on the two data subsets
S1 = {X|Xf < t} and S2 = {X|Xf ≥ t}. The best pair is the one that mini-
mizes the sum of mean squared errors in these subsets. Finally, we invoke the
algorithm recursively for the resulting partitions until we reach the maximum
depth of the tree. The output of the algorithm is a regression tree with 2depth−1

internal nodes and 2depth leaves which correspond to partitions of the original
dataset. Various methods are available for determining the choice of depth for
the model tree [12]; here we use model complexity at the leaf nodes. Although
the model tree described above could be used as a predictive model by itself,
we attempt to further improve its prediction performance by replacing the sec-
ond order polynomial models in the terminal leaves of the tree with symbolic
regression based models. For each partitions we perform an independent GP
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run (see Algorithm 3) using a variant of the Age-Fitness Pareto Optimization
(AFPO, [14]) algorithm – a multi-objective method that relies on the concept
of genotypic age of an individual (model), defined as the number of generations
its genetic material has been in the population. The age attribute is intended
to protect young individuals before being dominated by older already optimized
solutions.

Algorithm 2. Polynomial Regression Tree
1: Input: X ∈ R

n×D,y ∈ R
n, depth

2: Output: Tree: T
3: if depth == 0 then
4: return TerminalNode(LASSO(X,y))
5: else
6: feature, threshold ← arg minf,t(LRerror(X|Xf < t,y) + LRerror(X|Xf ≥ t,y))

7: leftSubtree ← LinearRegressionTree(X|Xf < t,y, depth − 1)
8: rightSubtree ← LinearRegressionTree(X|Xf ≥ t,y, depth − 1)
9: return InternalNode(feature, threshold, leftSubtree, rightSubtree)

10: end if

Algorithm 3. Genetic Programming
1: Input: X ∈ R

n×D,y ∈ R
n, gp params

2: Output: GP model: M
3: Initialize population of n random models
4: for number of generations do
5: Select random parents
6: Recombine and mutate parents to produce n offspring
7: Add offspring to the population
8: Calculate (error, age, size, complexity) for each model in the population
9: while population size > n do

10: Select k random models from the population
11: Determine local Pareto front among k selected models
12: Remove Pareto-dominated models from the population
13: end while
14: end for

The algorithm starts with a population of n randomly initialized individuals
each of which has age of one which is then incremented by one every generation.
In each generation, the algorithm proceeds by selecting random parents from
the population and applying crossover and mutation operators (with certain
probability) to produce n offsprings. The offspring is added to the population
extending its size to 2n. Then, Pareto tournament selection is iteratively applied
by randomly selecting a subset of individuals and removing the dominated ones
until the size of the population is reduced back to n. To determine which individ-
uals are dominated, the algorithm identifies the Pareto front using four objec-
tives (all minimized): prediction error, age, size and expressional complexity. We
measure the size of an individual (candidate solution) as the number of nodes
in its tree representation. It should be noted here that the regression equation is
derived as a tree structure and this tree is different than the hierarchical model
tree that is being constructed for the data. For assessing the model complexity,
we estimate the order of nonlinearity of the model [15].
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4 Data and Computation

MODIS (MODerate-resolution Imaging Spectroradiometer1) product MYD13Q1
at 250 m-16day spatio-temporal resolution is used to obtain the Normalized Dif-
ference Vegetation Index (NDVI), the most commonly used surrogate for veg-
etation [9]. Land surface temperature (LST) is similarly derived from MODIS
product MYD11A1, but at 1 km-1day spatio-temporal resolution. TRMM (Trop-
ical Rainfall Measuring Mission2) observations at 25 km-1month spatio-temporal
resolution is used for precipitation measurements. GTOPO303 is a global digital
elevation model (DEM) at 1 km resolution that is used for obtaining elevation
data for the rainforests. Slope is derived from elevation using standard differen-
tials [4]. Since broadleaf evergreens constitute the largest vegetation type found
in rainforests, we use a MODIS-derived landcover mask MCD12Q1 to retain
only the broadleaf evergreen pixels from the MODIS imagery of the rainforests.
All data sets (temporal and spatial resolutions) are selected on the basis of data
quality and availability.

Fig. 1. Data preprocessing pipeline for regression analysis.

For setting up the regression problem, significant amount of preprocessing
is needed for colocating and aligning these data products from various sources.
Figure 1 shows the end-to-end data preprocessing pipeline. Based on the need
of the problem, and the various data sets available, all data sets have been
reprojected into the same viewing angle and aligned at 1 km spatial resolution
through nearest neighbor interpolation, and averaging based compression. Since
seasons largely determine how rainforests respond to environmental influences,
we choose a monthly temporal granularity for the study and define the seasons

1 https://modis.gsfc.nasa.gov/.
2 https://pmm.nasa.gov/trmm.
3 https://lpdaac.usgs.gov/.

https://modis.gsfc.nasa.gov/
https://pmm.nasa.gov/trmm
https://lpdaac.usgs.gov/
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by aggregating monthly time series for each variable as follows: dry season (D)
from July to September, dry-to-wet transition (DW) during October, wet season
(W) from November to February, and wet-to-dry transition (WD) from March
to June. Noise removal is achieved using QA flags available from the MODIS
data products. Spatial smoothing over a square neighborhood surrounding each
pixel also helps in noise reduction. Land cover filtering indicates removing non-
broadleaf pixels while elevation and wetlands filtering removes highly elevated
and flooded areas, respectively. Lastly, drought pixels are anomalies with lower
vegetation values over years and are removed from the training data.

Regression Setup. Our regression problem is modeling the dry season vegeta-
tion as a function of climate and physiological variables in the current (dry)
season as well as past seasons going back up to one year. It is set up as
follows: NDV Ik = f(LSTi, TRMMi, Elev, Slope), where k = currentD and
i ∈ (Dcurrent,Dlast,WD,W,DW ) are season indices up to one year back in
time. The assumption that vegetation in the current season is only affected by
rainfall and precipitation within the last one year is based on Subject Mat-
ter Expert (SME) feedback and exploratory analysis with different temporal
dependencies. We randomly pick 100K examples (out of 700K) from the years
2003–2006 for training our GP-tree model. Year 2007 containing 160K samples
is used for validation. The training years chosen using domain knowledge repre-
sent drought years and normal years in precipitation. We set the depth of the
polynomial decision tree to 2 based on analysis of MSE and model complexity
at each leaf node. A tree of depth 2 produces 4 partitions. Once the partitions
are obtained using the polynomial regression tree, we spawn the GP optimiza-
tion routines on each partition with 5000 generations and population size of 50.
We use crossover probability of 0.9 and mutation probability of 0.1. Our list
of mathematical operations include addition, subtraction, multiplication, loga-
rithm, exponential, square, and cubic. We initialize 30 different optimizations
that generate 30 Pareto fronts of GP models. We pick the best model by com-
paring a subset of models from each front based on size, model complexity, and
mean squared error on validation set.

Infrastructure. The data preprocessing pipeline, as well as the modeling and
analysis framework have been run on NASA’s Pleiades Supercomputer with the
following hardware and software configuration. Each of the worker nodes are
based on the Intel Sandy Bridge architecture with dual 8 core 2.6 GHz pro-
cessors and with 32 GB of memory. All nodes’ operating systems are running
SGI ProPack for Linux kernel version 3.0. Pleiades utilizes a PBS scheduler
for job submission. The GP-tree algorithm is centralized and uses a master-
slave architecture only for parallelizing the splitting decisions for the various
feature-threshold choices (see Sect. 3.3). Once the data is partitioned, the sym-
bolic regression equations are computed at each node using massively parallel
search based optimization through genetic programming.
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5 Results Analysis

The GP-tree analysis yields 4 different partitions: two of them are temperature
limited and precipitation limited zones while two other partitions have a mix
of temperature, precipitation, and elevation affecting vegetation. Figure 2 shows
the nonlinear equations for each partition. Partitions are identified using blue
(leaf 0), cyan (leaf 1), yellow (leaf 2), and red (leaf 3) colors corresponding to
the spatial partitions in Fig. 3.

Fig. 2. Equations at 4 leaf nodes. Colored boxes indicate matching colors in spatial
map in Fig. 3 (Color figure online)

Fig. 3. (a) Partitions of the rainforests obtained through GP-tree (Color figure online)

Figure 3 makes it evident that the Amazonian and African rainforests have
characteristically different responses to climate, whereas the Indo-Malay rain-
forests have no defining nature, comprising of an equal mix of the different
partitions. The two main partitions encompassing the bulk of the Amazon river
basin are yellow described by Eq. 3 and blue described by Eq. 1 in Fig. 2.

The blue region occupying the central Amazon area is heavily dependent
on temperature from the month of October (LSTDW ), the positive sign indi-
cating that vegetation in that area prefers colder temperatures during the dry
to wet season transition. The presence of the TRMM terms in Eq. 1 indicates
vegetation dependence on seasonal rainfall as well. It shows resilience since a
relatively dry wet season (low rainfall during November–February) is compen-
sated by a wetter transition and vice versa. it also shows that vegetation in this
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Fig. 4. Partitioning (a) 2005 and (2010) pixels of Amazon and Africa using learned
GP-tree model (Color figure online)

region does not thrive in excessive rainfall. This can be explained as an effect
of the interruption of the adiabatic cooling process that forces temperatures to
rise in extreme cloud conditions, thereby effecting vegetation negatively. The
yellow partition in the north of the Amazon governed by Eq. 3 requires colder
temperatures along with longer rainfall spells overflowing from the wet season
to the transition season for increased greening of the trees. The cyan and red
partitions representing Eqs. 2 and 4 respectively are spread across the peripheral
regions of the Amazon basin. The southern periphery (cyan region) is heavily
dominated by wet season rainfall, as seen in Eq. 2. A similar cyan area can also
be seen flanking the southern Congo basin Africa. Geographically, both these
regions represent a transitional zone in the rainforests, where there is a mix
of broadleaf evergreens and savannas (grasslands) that completely depend on
rainfall for greening. On the other hand, it is apparent that bulk of the African
forests is governed by Eq. 4 described in red in Fig. 3. This is the most complex
model including precipitation and temperature covariates from almost all sea-
sons. Lack of copious rainfall in this region for the last two decades has ruined all
seasonal patterns for the broadleaf evergreens as they try to sustain themselves
through the low to moderate rainfall received during all seasons, while relying
on lower temperatures in this region.

These equations enable domain scientists to explain several observations
made in the last decade about these rainforests. Given the dependence of any
rainforest on appropriate rainfall and temperatures, the permanent state of
drought in the African Congos in the last 15 years have led the trees in that
region to gradually succumb to the drought indicated by a decreasing NDVI
trend [20] over the years. Even slight improvement in rainfall in certain years
results in those trees trying to adapt to a different steady state behavior, evident
from the appearance of yellow patches in the African red partition in Fig. 4a.
The Amazon droughts of 2005 and 2010 also manifest themselves similarly. The
trees in the drought-stricken regions of the Amazon, in an attempt to survive
under these extreme climatic conditions, adapt to a different steady state behav-
ior (a different equation). As seen in Fig. 4a, a large part of the blue river basin
region affected by the 2005 drought turns yellow to account for the sudden water
deficiency through increased photosynthetic activity [13]. Similarly, a small part
of the yellow region near the mouth of the Amazon river becomes blue after the
2010 drought hits that area, thereby resisting tree dieback due to the unfavor-
ably low rainfall and high temperatures caused by the El Niño phenomenon in
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that year. This study shows how the global rainforests, although suffering from
frequent droughts and rising temperatures, generally show very strong resilience
by adapting to changing conditions.

Model Performance. We compare performance of the GP-tree model with
4 different baselines: (i) a single linear model, (ii) a single symbolic regression
model, (iii) linear regression tree with linear models at the leaves, and (iv) poly-
nomial regression tree with linear models. We compare mean squared error on
a standard validation set (examples for year 2007) for each model. The MSEs
are shown in Table 1. The progressive improvement of error as we go from linear
to nonlinear model, and from a single global model to multiple models obtained
through hierarchical partitioning is evident from the error values. Our method
improves the state of the art (first baseline) by almost 43%.

Table 1. Table showing mean squared error for GP-tree and the baseline methods for
ecosystem modeling

GP-tree Baseline 1 Baseline 2 Baseline 3 Baseline 4

0.28 0.49 0.31 0.45 0.38

6 Conclusion

For ages, scientists have been trying to understand the effect on climate and other
environmental variables on vegetation. Given that the rainforests are the largest
carbon sinks, it is particularly important to understand how these forests react
under changing climatic conditions, and whether their future is at risk. Existing
studies using simple correlation analysis or linear regression models built at a
global level, have failed to capture the nuanced dependencies of vegetation in
micro regions within these rainforests on environmental factors. In this study
we use genetic programming based approach symbolic regression for discovering
equations that model the vegetation climate dynamics in the rainforests of the
world. Expecting micro-regions within the rainforests to have unique character-
istics compared to the overall general characteristics, we hierarchically partition
the space using a regression tree approach called GP-tree and nonlinear regres-
sion models for each partition. Our GP-tree framework discovers that these rain-
forests exhibit very different characteristics in different regions. We also see that
in the face of extreme climate events, the trees adapt to reach a different steady
state and therefore, exhibit resiliency.
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