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Abstract. It is known that the (1 + 1)-EA with mutation rate c/n
optimises every monotone function efficiently if c < 1, and needs expo-
nential time on some monotone functions (HotTopic functions) if
c > c0 = 2.13692... We study the same question for a large variety
of algorithms, particularly for (1 + λ)-EA, (μ + 1)-EA, (μ + 1)-GA,
their fast counterparts like fast (1 + 1)-EA, and for (1 + (λ, λ))-GA.
We prove that all considered mutation-based algorithms show a similar
dichotomy for HotTopic functions, or even for all monotone functions.
For the (1 + (λ, λ))-GA, this dichotomy is in the parameter cγ, which
is the expected number of bit flips in an individual after mutation and
crossover, neglecting selection. For the fast algorithms, the dichotomy is
in m2/m1, where m1 and m2 are the first and second falling moment of
the number of bit flips. Surprisingly, the range of efficient parameters is
not affected by either population size μ nor by the offspring population
size λ.

The picture changes completely if crossover is allowed. The genetic
algorithms (μ + 1)-GA and (μ + 1)-fGA are efficient for arbitrary muta-
tions strengths if μ is large enough.

1 Introduction

For evolutionary algorithms (EAs), choosing a good mutation strength is a deli-
cate matter that is subject to conflicting goals. For example, consider a pseudo-
Boolean fitness function f : {0, 1}n → R and standard bit mutation, i.e., all bits
are flipped independently. On the one hand, if the mutation strength is too low,
then progress is also slow, and the algorithm will be susceptible to local optima.
On the other hand, if the mutation rate is too high and the parent is already close
to a global optimum, then typically the offspring, even if it has a “good” muta-
tion in it, will also have a large number of detrimental mutations. A well-known
example of this tradeoff are linear functions (e.g., OneMax), for which there is
an optimal mutation rate 1/n [16]. This rate minimises the expected runtime,
i.e., the expected number of function evaluations before the optimum is hit. Any
deviation from this mutation rate to either direction decreases performance.
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A different, more extreme example are strictly monotone pseudo-Boolean
functions.1 A function f : {0, 1}n → R is (strictly) monotone if for every x, y ∈
{0, 1}n with x �= y and such that xi ≥ yi for all 1 ≤ i ≤ n it holds f(x) > f(y).
In particular, every monotone function has a unique global optimum at (1 . . . 1).
Moreover, every such function is efficiently optimised by random local search
(RLS), which is the (1+1) algorithm that flips in each round exactly one random
bit. From any starting point, RLS finds the optimum after at most n improving
steps, and by a coupon collector argument it will optimise any monotone function
in time O(n log n). Thus, monotone functions might be regarded as trivial to
optimise, and we might expect every standard EA to solve them efficiently.

However, this is not so. Doerr et al. showed [7,8] that even the (1 + 1)-EA,
which flips each bit independently with mutation rate c/n, may have problems.
More precisely, for small mutation rate, c < 1, the (1 + 1)-EA has expected
runtime O(n log n), as desired, but for large mutation rate, c > 16, there are
monotone functions for which the (1+1)-EA needs exponential time. Lengler and
Steger [13] gave a simpler construction of such “hard” monotone functions, which
we call HotTopic (they didn’t provide a name), and which yield exponential
runtime for c > c0 := 2.13692... The basic idea of this construction is that at
every point in time there is some subset of bits which form a“hot topic”, i.e.,
the algorithm considers them much more important than the other bits. An
algorithm with a large mutation rate that focuses too much on the current hot
topic tends to deteriorate the quality of the remaining bits. If the hot topic
changes often, then the algorithm stagnates.

Since both low and high mutation rates have their disadvantages, many dif-
ferent strategies have been developed to gain the best of two worlds. In this paper
we pick a collection of either traditional or particularly promising methods, and
analyse whether they can overcome the detrimental effect of the HotTopic
functions for larger mutation rates. In particular, we consider (for constant μ, λ)
the classical (1 + λ)-EA, (μ + 1)-EA, and (μ + 1)-GA, the (1 + (λ, λ))-GA by
Doerr et al. [6], and the recently proposed fast (1 + λ)-EA, fast (μ + 1)-EA,
and fast (μ + 1)-GA [9], which we abbreviate by (1 + 1)-fEA, (1 + λ)-fEA and
(μ + 1)-fGA, respectively. Surprisingly, for mutation-based algorithms neither μ
nor λ have any effect on the results. While we do obtain a fine-grained landscape
of results (see below), one major trend is prevailing: crossover helps!

Results. In this section we collect our results for the different algorithms. Note
that, unless explicitly otherwise stated, we always assume that the parameters
μ, λ, c, γ of the algorithms are constant.

Classical EAs. For the classical evolutionary algorithm (1 + λ)-EA, we show
a dichotomy: if the mutation parameter c is sufficiently small, then the algo-
rithms optimise all monotone functions in time O(n log n), while for large c the
algorithm needs exponential time on some HotTopic functions. The interesting
question is: how does the threshold for c depend on the parameters λ? It may

1 We will be sloppy and drop the term “strictly” outside of theorems, but throughout
the paper we always mean strictly monotone functions.



A General Dichotomy of Evolutionary Algorithms on Monotone Functions 5

seem that a large λ bears some similarity with an increased mutation rate. After
all, the total number of mutations in each generation is increased by a factor
of λ. Thus, we might expect that the (1 + λ)-EA has difficulties with monotone
functions for even smaller values of c. However, this is not so. The bounds on the
mutation rate, c < 1 and c > c0, do not depend on λ. In fact, for the HotTopic
functions we can show that this is tight: if c < c0, then the (1 + λ)-EA and
the (μ + 1)-GA optimise all HotTopic functions in time O(n log n), while for
c > c0 it is exponentially slow on some HotTopic instances. The same result
on HotTopic holds for the (μ + 1)-EA. In particular, the threshold on c is
also independent of μ. For the (μ + 1)-EA, we could not show an upper runtime
bound for all monotone functions in the case c < 1, so currently we can not
exclude that the situation might get even worse for larger μ, as there may still
be other monotone functions which are hard for the (μ + 1)-EA with c < 1.

(μ + 1)-GA. It has been observed before that some algorithms may be sped
up by crossover. In particular, Sudholt [15] showed that the (μ + 1)-GA is by a
constant factor faster than the (μ+1)-EA on OneMax. For monotone functions
we also observe a change, but in extremis. We show that for the HotTopic
functions crossover extends the range of mutation rate arbitrarily. For every
c > 0, if μ is a sufficiently large constant, then the (μ+1)-GA finds the optimum
of HotTopic in time O(n log n). At present, there are no monotone functions
known on which the (μ + 1)-GA with arbitrary c and large μ = μ(c) is slow.
Thus it remains an intriguing open question whether the (μ + 1)-GA with large
μ is fast on every monotone function.

(1+(λ, λ))-GA. This algorithm creates λ offspring, and uses the best of them
to perform λ biased crossovers with the parent, see Sect. 2. The best crossover
offspring is then compared with the parent. This algorithm has been derived by
Doerr et al. [5,6] from a theoretical understanding of so-called black-box complex-
ity, and has been intensively studied thereafter [1–4]. Most remarkably, it gives
an asymptotic improvement on the runtime of the most intensively studied test
function OneMax, on which it has runtime roughly n

√
log n for static settings

(up to log log n terms), and linear runtime O(n) for dynamic parameter settings.
These runtimes are achieved with a non-constant λ = λ(n). The (1+ (λ, λ))-GA
is arguably the only known natural unbiased evolutionary algorithm that can
optimise OneMax faster than Θ(n log n).

The algorithm comes with three parameters, the offspring population size λ,
the mutation rate c/n by which the offspring are created, and a crossover bias
γ, which is the probability to take the offspring’s genes in the crossover. Again
we find a dichotomy between weak and strong mutation, but this time not in c,
but rather in the product cγ. In [4] it is suggested to choose c, γ in such a way that
cγ = 1. Note that this makes sense, because cγ is (neglecting possible biases by the
selection process) the expected number of mutations in the crossover child. Thus
it is plausible that it plays a similar role as the parameter c in classical algorithms.
Indeed we find that for cγ < 1 the runtime is small for every monotone function,
while for cγ > c0 it is exponential on HotTopic functions. As before, the bound
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is tight for HotTopic, i.e. for cγ < c0 the (1 + (λ, λ))-GA needs time O(n log n)
to optimise HotTopic.

Notably, the runtime benefits on OneMax carry over, at least to the Hot-
Topic function. Since the benefits on OneMax in previous work have been
achieved for non-constant parameter choices, we relax our assumption on constant
parameters for the (1 + (λ, λ))-GA. In particular, we show that for the optimal
static parameter and adaptive parameter settings in [9], the algorithm achieves
the same asymptotic runtime on HotTopic as on OneMax, in particular run-
time O(n) in the adaptive setup.

Unfortunately, it seems unlikely that the runtimes of o(n log n) for One-
Max carry over to arbitrary monotone functions, because they are achieved by
increasing c and λ with n (although cγ is left constant). For OneMax, if there
is a zero-bit that is flipped in one of the mutations, then this mutation is always
selected for crossovers. In the most relevant regime, where the expected number
of flipped zero-bits in any mutation is small (say, at most one), the probability
of being selected increases by a factor of Θ(λ) (from 1/λ to Θ(1)) if a zero-bit
is flipped. For monotone functions the probability to be selected does increase
with the number of flipped zero-bits. However, there is no apparent reason that
it should increase by a factor of Θ(λ), or by any significant factor at all.

Fast (1+1)-EA, Fast (1+λ)-EA, Fast (μ+1)-EA. These algorithms, which
we abbreviate by (1 + 1)-fEA, (1 + λ)-fEA, and (μ + 1)-fEA have recently been
proposed by Doerr et al. [9], and they have immediately attracted considerable
attention (e.g, [14]). The idea is to replace the standard bit mutation, in which
each bit is flipped independently, by a heavy-tailed distribution D. That is, in
each round we draw a number s from some heavy-tailed distribution (for exam-
ple, a power-law distribution with Pr[s = k] ∼ k−κ for some κ > 1, also called
Zipf distribution). Then the mutation is generated from the parent by flipping
exactly s bits. In this way, most mutations are generated by flipping only a small
number of bits, but there is a substantially increased probability to flip many
bits. This approach has given some hope to unify the best of the two worlds: of
small mutation rate and of large mutation rate.

For monotone functions, our results are rather discouraging. This is not com-
pletely unexpected since the algorithms build on the very idea of increasing the
probability of large mutation rates. We show a dichotomy for the (1 + 1)-fEA
with respect to m2/m1, where m1 := E[s] and m2 := E[s(s−1)] are the first and
second falling moment of the distribution D, although the results are subject
to some technical conditions.2 As before, if m2/m1 < 1, then the runtime is
O(n log n) for all monotone functions. On the other hand, if m2/m1 > c0 and
additionally p1 := Pr[D = 1] is sufficiently small, then the runtime on some
HotTopic instances is exponential. As for the other functions, we get a sharp
threshold for the parameter regime that is efficient on HotTopic, so we can
decide for each distribution whether it leads to fast or to exponential runtimes
on HotTopic. Due to a correction term related to p1 (Eq. (5) on page 9), it
2 Note that a heavy tail generally increases m2 much stronger than m1, so it increases

the quotient m2/m1.
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is possible to construct heavy-tail distributions which are efficient on all Hot-
Topic functions, but they must be chosen with great care. For example, no
power-law distribution with exponent κ ∈ (1, 2) is efficient, which includes the
choice κ = 1.5 that is used for experiments in [9,14]. Also, no distribution with
p1 < 4

9 Pr[D = 3] is efficient on HotTopic. In general, our findings contrast the
results in [9], where larger tails (smaller κ) lead to faster runtimes.

As before, without crossover larger values of λ and μ do not seem to have any
effect. For the (1 + λ)-fEA and (μ + 1)-fEA, we show exactly the same results
as for the (1 + 1)-fEA, except that we could not show runtime bounds for all
monotone functions if m2/m1 < 1. Rather, we only show them for HotTopic.
Thus it is still possible that larger values of λ, μ make things even worse.

Fast (μ + 1)-GA. As for the classical algorithms, crossover tremendously
improves the situation. For every distribution D with Pr[D = 1] = Ω(1), if
μ is a sufficiently large constant, then the (μ + 1)-fGA optimises HotTopic in
time O(n log n). As for the (μ + 1)-GA, it is an open question whether the same
result carries over to all monotone functions.

Further Results. For all algorithms, the regime of exponential runtime does not
just mean that it is hard to find the optimum, but rather the algorithms do not
even come close. More precisely, in all these cases there is an ε > 0 (depending
only on c or on the other dichotomy parameters) such that the probability that
any of the EAs or GAs finds a search point with at least (1 − ε)n correct bits
within a subexponential time is exponentially small as n → ∞. The size of ε can
be quite considerable if the parameter c is much larger than c0. For example,
simulations suggest for the (1 + 1)-EA that ε ≈ 0.15 for c = 4. On the other
hand, starting close to the optimum does not help either: for every ε > 0 there
are monotone function such that if the EAs or GAs are initialised with random
search points with εn incorrect bits, then still the runtime is exponential.

Summary. It appears that increasing the number of offspring λ or the popu-
lation size μ does not help at all to overcome the detrimental effects of large
mutation rate in evolutionary algorithms. All EAs are highly vulnerable even to
a very moderate increase of the mutation rate. Using heavy tails as in the fEAs
seems to make things even worse, although the picture gets more complicated.
On the other hand, using crossover can remedy the effect of large mutation rates,
and can extend the range of good mutation rates arbitrarily.

Intuition onHotTopic.We conclude the introduction with an intuition why the
HotTopic functions are hard to optimise for large mutation rates. Note that a
monotone function, by its very definition, has a local “gradient” that always points
into the same corner of the hypercube, in the sense that for each bit individually,
in all situations we prefer a one-bit over a zero-bit. The construction by Lengler
and Steger [13] distorts the gradient by assigning different positive weights to the
components. Such a distortion cannot alter the direction of the gradient by too
much. In particular, following the gradient will always decrease the distance from
the optimum. This is why algorithms with small mutation rate may find the opti-
mum; they follow the gradient relatively closely. However, the weights in [13] are
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chosen such that there is always a“hot topic”, i.e., a subdirection of the gradient
which is highly preferred over all other directions. Focusing too much on this hot
topic will lead to a behaviour that is very good at optimising this particular aspect
– but all other aspects will deteriorate a little because they are out of focus. Thus
if the hot topic is rather narrow and changes often, then advances in this aspect
will be overcompensated by a decline in the neglected parts, which leads overall
to stagnation.

This last sentence is not just a pessimistic allegory on scientific progress, but
it also describes evolutionary algorithms with large mutation rates. They rank
the currently preferred direction above everything else, and accept any mutation
that makes progress in that direction, regardless of the harm that such a muta-
tion may cause on other bits. This may lead to a drift away from the optimum,
since random walk steps naturally tend to increase the distance from the opti-
mum. For the fEAs or fGAs, this effect is amplified if the algorithm is close to the
optimum. In this case, the probability to find any improvement at all is small,
and improvements often occur in aggressive steps in which many bits are flipped.
Then the same step may cause many errors among the low-priority bits. For the
same reason, an adaptive choice of the mutation strength c may be harmful if it
increases the mutation parameter in phases of stagnation: close to the optimum,
most steps are stagnating, so an adaptive algorithm might react by increasing
the mutation parameter. This indeed increases the probability to find a better
search point in the hot topic direction (though not the probability to make any
improvement), and may thus lead fatally to a large mutation parameter.

2 Preliminaries and Definitions

Notation. Throughout the paper we will assume that f : {0, 1}n → R is a mono-
tone function, i.e., for every x, y ∈ {0, 1}n with x �= y and such that xi ≥ yi for
all 1 ≤ i ≤ n it holds f(x) > f(y).3 We will consider maximisation algorithms,
and we will mostly focus on the runtime of an algorithm, i.e., the number of
function evaluations before the algorithm evaluates the global maximum of f
for the first time. We say that an EA or GA is elitist [10] if the selection opera-
tor greedily chooses the fittest individuals to form the next generation. We call
an EA or GA unbiased [11] if the mutation and crossover are invariant under
the isomorphisms of {0, 1}n, i.e., if mutation and crossover are symmetric with
respect to the ordering of the bits, and with respect to exchange of the values 0
and 1. All algorithms considered in this paper are unbiased.

For n ∈ N, we denote [n] := {1, . . . , n}. We will use n for the dimension of
the search space, μ for the population size, λ for the offspring population size, c
for the mutation parameter, γ for the crossover parameter of the (1+(λ, λ))-GA,
and D,m1,m2 for the bit flip distribution of the fast EAs and GAs and its first
3 Note that this property might more correctly be called strictly monotone, but in

this paper we will stick with the shorter, slightly less precise term monotone. In all
other cases we use the standard terminology, e.g. the term increasing sequence has
the same meaning as non-decreasing sequence.



A General Dichotomy of Evolutionary Algorithms on Monotone Functions 9

and second falling moment E[s | s ∼ D] and E[s(s − 1) | s ∼ D], respectively.
Unless otherwise stated, we will assume that μ, λ, c, γ = Θ(1) and m1 = Ω(1).

Algorithms. Most algorithms that we consider fall into the class of (μ + λ)
evolutionary algorithms, (μ + λ)-EAs, or (μ + λ) genetic algorithms, (μ + λ)-
GAs. They can be described as follows. They maintain a population of size μ.
In each generation, λ additional offspring are created by mutation and possibly
crossover, and the μ search points of highest fitness among the μ+λ individuals
form the next generation. Thus we use an elitist selection scheme. In EAs, the
offspring are only created by mutation, in GAs they are either created by muta-
tion or by crossover. For mutation we use standard bit mutation as a default,
in which each bit is independently flipped with probability c/n, where c is the
mutation parameter. The only exception are the fast EAs and GAs, in which
first the number s of bit mutations is drawn from some distribution D = D(n),
and then exactly s bits are flipped, chosen uniformly at random. We will always
assume that μ, λ, c = Θ(1).

An exception to the above scheme is the (1 + (λ, λ))-GA [5]. Here the
population consists of a single search point x. Then in each round, we pick
s ∼ Bin(n, c/n), and create λ offspring from x by flipping exactly s bits in x
uniformly at random. Then we select the fittest offspring y among them, and we
perform λ independent biased crossover between x and y, where for each bit we
take the parent gene from y with probability γ, and the gene from x otherwise.
If the best of these crossover offspring is at least as fit as x, then it replaces x.
We will usually assume that λ, c, γ = Θ(1), unless otherwise mentioned.

Hard Monotone Functions: HotTopic. In this section we give the construc-
tion of hard monotone functions by Lengler and Steger [13], following closely
their exposition. The functions come with four parameters α, β, ρ, ε, and they
are given by a randomised construction. We call the corresponding function
HotTopicα,β,ρ,ε = HTα,β,ρ,ε = HT. The hard regime of the parameters is

1 > α � ε � β � ρ > 0, (1)

by which we mean that α ∈ (0, 1) is a constant, ε = ε(α) is a sufficiently small
constant, β = β(α, ε) is a sufficiently small constant, and ρ = ρ(α, ε, β) is a
sufficiently small constant.

Now we come to the construction. For 1 ≤ i ≤ eρn we choose sets Ai ⊆ [n]
of size αn independently and uniformly at random, and we choose subsets Bi ⊆
Ai of size βn uniformly at random. We define the level �(x) of a search point
x ∈ {0, 1}n by �(x) := max{�′ ∈ [eρn] : |{j ∈ B�′ : xj = 0}| ≤ εβn}, where we
set �(x) = 0, if no such �′ exists). Then we define f : {0, 1}n → R as follows:

HT(x) := �(x) · n2 +
∑

i∈A�(x)+1
xi · n +

∑
i�∈A�(x)+1

xi, (2)

where for � = eρn we set A�+1 := B�+1 := ∅.
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So the set A�+1 defines the hot topic while the algorithm is at level �, where
the level is determined by the sets Bi. It was shown in [13] that whp4 the (1 + 1)-
EA with c > c0 needs exponential time to find the optimum. One easily checks
that this function is monotone: the (monotone) term �(x)n2 dominates the rest,
and for constant values of � the remaining terms just give a linear function.

3 Results

We first give a generic result for strong dichotomies, i.e., we specify circumstances
under which an algorithm optimises every monotone function in time O(n log n).

Theorem 1 (Generic Easiness Proof). Consider an elitist algorithm A with
population size one that in each round generates an offspring by an arbitrary
method, and replaces the parent if and only if the offspring has at least the same
fitness. Let s01 denote the number of zero-bits in the parent that are one-bits in
the offspring, and vice versa for s10. Assume that there is a constant δ > 0 such
that for all x ∈ {0, 1}n,

E[s10 | parent = x and s01 > 0] ≤ 1 − δ, (3)

and

Pr[s01 > 0 | parent = x] = Ω( 1
n (n − OneMax(x))). (4)

Then whp the runtime of A on any (strictly) monotone functions is O(n log n).

The (1 + λ)-EA, the (1 + 1)-fEA, and the (1 + (λ, λ))-GA all fit the generic
description in Theorem1, modulo Condition (3). For the (1+(λ, λ))-GA, the pro-
cedure to generate the offspring is rather complicated, and involves several inter-
mediate mutation and crossover steps. Nevertheless, the procedure ultimately
produces a single offspring (the fittest of the crossover offspring) which com-
petes with the parent. The crucial step is in all cases to show that these settings
satisfy (3). For the (1 + (λ, λ))-GA with cγ < 1 and non-constant parameters
we cannot apply Theorem 1 directly. However, the proof is similar, and the con-
ditional expectation in (3) is still the crucial object to study.

Theorem 2. Let δ > 0. The following algorithms need whp O(n log n) genera-
tions on any (strictly) monotone function.

– The (1 + λ)-EA with c ≤ 1 − δ, c = Ω(1) and λ = O(1);
– the (1 + 1)-fEA with m2/m1 ≤ 1 − δ and m1 = Ω(1);
– the (1 + (λ, λ))-GA with cγ ≤ 1 − δ and cγ = Ω(1).

4 With high probability, i.e. with probability tending to one as n → ∞.
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Moreover, if the (1 + (λ, λ))-GA with cγ < 1 − δ uses the optimal static or
adaptive parameter choice from [4]5, then whp the runtime on HotTopic is
up to a factor Θ(1) the same as the runtime for OneMax.

We remark that the optimal runtime of the (1 + (λ, λ))-GA on OneMax is
O(n

√
log(n) log log log(n)/ log log n) for static parameters, and O(n) for adap-

tive parameter choices [4,6].
Our next theorem gives upper bounds on the runtime of the (1 + λ)-fEA on

any monotone function, provided that m2/m1 < 1, where m1 and m2 are the
first and second falling moments of the distribution D. We need to make the
assumption that the algorithm starts at most in distance εn to the optimum. It
is unclear whether this assumption is necessary, or an artefact of our proof.

Theorem 3. Let δ > 0 be a constant, let λ = O(1), and consider the (1 + λ)-
fEA with distribution D = D(n), whose falling moments m1,m2 satisfy m2/m1 ≤
1−δ and m1 = Ω(1). Then there is ε > 0 such that the (1+λ)-fEA starting with
any search point with at most εn zero-bits finds the optimum of every (strictly)
monotone functions in time O(n log n) whp.

Next we analyse the behaviour of a generic algorithm on HotTopic, which
will later serve as basis for all of our results on HotTopic for concrete algo-
rithms. The generic algorithm uses population size one, but we will show that,
surprisingly, (μ + 1) algorithm can be described by the same framework.

Theorem 4 (HotTopic, Generic Runtime). Let 0 < α < 1. Consider an
elitist, unbiased optimisation algorithm A with population size one that starts
with a random search point x and in each round generates an offspring y by an
arbitrary (unbiased) method, and replaces the parent x by y if HT(y) > HT(x).
For equal fitness, it may decide arbitrarily whether it replaces the parent. Let s
be the random variable that denotes the total number of bits in which parent and
offspring differ, and note that the distribution of s may depend on the parent.
For parent x, we define

Φ(x) :=
E[s(s − 1)(1 − α)s−1]

E[s(1 − α)s−1]
− ((1 − α)/α) · Pr[s = 1]

E[s(1 − α)s−1]
. (5)

(a) If there are constants ζ, ζ ′ > 0 such that

Φ(x) ≥ 1 + ζ ′ (6)

holds for all x ∈ {0, 1}n with at most ζn zero-bits, then whp A has exponen-
tial runtime on HotTopicα,β,ρ,ε with parameters β, ρ, ε as in (1).

5 In fact, the suggested parameter choice in [4,6] satisfies cγ = 1 instead of cγ < 1.
However, the runtime analysis in [6] only changes by constant factors if γ is decreased
by a constant factor. Thus Theorem 2 applies to the parameter choices from [4,6],
except that γ is decreased by a constant factor.
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(b) If there are constants ζ, ζ ′ > 0 such that

Φ(x) ≤ 1 − ζ ′ (7)

holds for all x ∈ {0, 1}n with at most ζn zero-bits, and if moreover Pr[s =
1] ≥ ζ and E[s(s − 1)] ≤ 1/ζ for all parents x, then whp A has runtime
O(n log n) on HotTopicα,β,ρ,ε with parameters β, ρ, ε as in (1).

(c) The statements in (a) and (b) remain true for algorithms that are
only unbiased conditioned on an improving step, if in (b) we have
Pr[improving step] ≥ ζ · d([n], x) as well. Moreover, (b) remains true for
algorithms that are only unbiased if x has more than ζn zero-bits, and pos-
sibly biased for at most ζn zero bits, if we replace (7) by the condition
E[s | HT(y) > HT(x)] ≤ 2 − ζ.

Finally, there is a constant η = η(ζ ′, α) > 0 independent of ζ such that (a), (b),
and (c) remain true in the presence of the following adversary A. Whenever an
offspring x′ is created from x that satisfies f(x′) > f(x), then A flips a coin.
With probability 1 − η, she does nothing. Otherwise, she draws an integer τ ∈ N

with expectation O(1) and she may change up to τ bits in the current search
point. For (a) we additionally require Pr[τ ≥ τ ′] = e−Ω(τ ′), while for (b) and (c)
we only require Pr[τ ≥ n1−η] = o(1/(n log n)).

We remark that (b) and (c) require parameters as in (1), and thus do not exclude
a large runtime on HotTopic for atypical parameters, e.g., for large ε.

It turns out that Theorem 4 suffices to classify the behaviour on HotTopic
for all algorithms that we study. On the first glance, this may seem surprising,
since some of them are population-based, while Theorem 4 explicitly requires
population size one. However, for small ε the populations typically collapse to μ
identical copies of the same search point, and the other cases can be attributed
to the adversary. In this way Theorem4 implies the following theorem.

Theorem 5 (HotTopic, Concrete Results). Let δ > 0. We assume that
μ, λ, c = Θ(1) and Pr[D = 1] = Ω(1), except for the (1 + (λ, λ))-GA, for which
we replace the condition on c by cγ = Θ(1). Let c0 = 2.13692.. be the smallest
constant for which the function c0x − e−c0(1−x) − x/(1 − x) has a solution α ∈
[0, 1]. For all α ∈ (0, 1), whp each of the following algorithms optimises the
function HotTopicα,β,ρ,ε with parameters β, ρ, ε as in (1) in time O(n log n).

– The (1 + λ)-EA with c ≤ c0 − δ.
– The (μ + 1)-EA with c ≤ c0 − δ.
– The (μ + 1)-GA with arbitrary c = Θ(1) if μ = μ(c) is sufficiently large.
– The (1 + (λ, λ))-GA with cγ ≤ c0 − δ.
– The (1 + λ)-fEA with m2/m1 ≤ 1 − δ; more generally, the (1 + λ)-fEA with

any distribution that satisfies (7) for s ∼ D, as well as Pr[D = 1] = Ω(1).6

6 Note that this is not a trivial consequence of Theorem 4, since (6), (7) are conditions
on the distribution for the best of λ offspring, while the condition here is on the
distribution D for generating a single offspring.
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– The (μ + 1)-fEA in the preceding case, if additionally Pr[D = 0] = Ω(1).
– The (μ + 1)-fGA with arbitrary D with Pr[D = 0] = Ω(1), if μ = μ(D) is

sufficiently large.

On the other hand, for α0 = 0.237134.., whp each of the following algorithms
needs exponential time to optimise the function HotTopicα0,β,ρ,ε with parame-
ters β, ρ, ε as in (1).

– The (1 + λ)-EA with c ≥ c0 + δ.
– The (μ + 1)-EA with c ≥ c0 + δ.
– The (μ + 1)-GA with c ≥ c0 + δ if μ = μ(c) is sufficiently small.7

– The (1 + (λ, λ))-GA with cγ ≥ c0 + δ.
– The (1+λ)-fEA with any distribution satisfying (6) for s ∼ D.6 In particular,

this includes the following cases.
• The (1+λ)-fEA with m2/m1 ≥ 1+δ, if Pr[D = 1] ≥ C/s0 for a sufficiently

large constant C > 0, where s0 := min{σ ∈ N | m2,≤σ ≥ (1 + δ/2)m1},
with m2,≤σ :=

∑σ
i=1 Pr[D = i]i(i − 1).

• The (1+λ)-fEA with any power law distribution with exponent κ ∈ (1, 2),
i.e. Pr[D ≥ σ] = Ω(σ−κ).

• The (1 + λ)-fEA with Pr[D = 1] ≤ 4
9 · Pr[D ≥ 3] − δ.

– The (μ + 1)-fEA in all preceding cases for (1 + λ)-fEA, if Pr[D = 0] = Ω(1).
– The (μ + 1)-fGA in all preceding cases for (1 + λ)-fEA if μ = μ(D) is suffi-

ciently small.7

Remark 1. For the fEAs we remark that the interesting regime κ ∈ [2, 3) is not
excluded by the negative results in Theorem 5, if Pr[D] is sufficiently large. In
particular, a calculation with MathematicaTM shows that the Zipf distribution8

with exponent κ ≥ 2 satisfies (7) for all α ∈ (0, 1). However, note that this holds
only if the distribution is exactly the Zipf distribution; changing any probability
even by a constant factor may lead to exponential runtimes.

4 Conclusions

We have studied a large set of algorithms, and we have shown that in all cases
without crossover, there is a dichotomy with respect to a parameter (c, cγ, or Φ,
where the latter one is related to m2/m1) for optimising the monotone function
family HotTopic. If the parameter is small, then the algorithms need time
O(n log n); if the parameter is large, then they need exponential time on some
instances. In the cases of (1 + λ)-EA, (1 + 1)-fEA (1 + (λ, λ))-GA, and for good
start points also of (1 + λ)-fEA, if the parameter is small, then we could show
that the algorithms are actually fast on all monotone functions. However, there
are many open problems left, and we conclude the paper by a selection of those.

7 This statement follows trivially from the other results by setting μ = 1, and it is
listed only for completeness.

8 i.e., Pr[D = k] = k−κ/ζ(κ), where ζ is the Riemann ζ function.
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– We have analysed the algorithms theoretically for the case n → ∞. Experi-
ments are sorely needed to understand the effects for small finite n.

– In some cases our runtime bounds for small parameter values hold only for
HotTopic, but the general status of monotone functions remains unclear
((μ + 1)-EA, (μ + 1)-fEA). So does a small mutation parameter guarantee a
small runtime on all monotone functions?

– We could show that genetic algorithms are superior to evolutionary algo-
rithms on the HotTopic functions. However, is the same true in general for
monotone functions? Is it true that the (μ + 1)-GA and the (μ + 1)-fGA are
fast for all monotone functions if μ is large enough?

– It seems important to understand more precisely how large μ should be in
GAs to cope with larger mutation parameters. For example, for the (μ + 1)-
GA with mutation parameter c, how large does m need to be so that it is still
fast on all HotTopic instances?

– By now a classical question is: are there monotone functions which are hard
for the parameter range [1, c0)? Most intriguingly: are there hard monotone
instances for the (1 + 1)-EA for every c > 1? For c = 1 it is known that the
runtime is polynomial, but is it always O(n log n)?

– Our proofs for population sizes μ > 1 rely on the fact that in all considered
algorithms diversity tends to be lost close to the optimum. Do the results
stay the same if diversity is actively maintained, for example by duplication
avoidance or by genotypical or phenotypical niching?

– How is the performance of algorithms that change the mutation strength
dynamically, e.g., with the 1/5-th rule? The introduction gives an intuition
why this might be bad, but intuition has failed before on monotone functions.

– While HotTopic is defined in a discrete setting, the underlying intuition is
related to continuous optimisation. Is there a continuous analogue of Hot-
Topic, and what is the performance of optimisation algorithms like the CMA-
ES or particle swarm optimisation?
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