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Abstract. Typical Artificial Immune System (AIS) operators such as
hypermutations with mutation potential and ageing allow to efficiently
overcome local optima from which Evolutionary Algorithms (EAs) strug-
gle to escape. Such behaviour has been shown for artificial example func-
tions such as Jump, Cliff or Trap constructed especially to show dif-
ficulties that EAs may encounter during the optimisation process. How-
ever, no evidence is available indicating that similar effects may also
occur in more realistic problems. In this paper we perform an analysis
for the standard NP-Hard Partition problem from combinatorial opti-
misation and rigorously show that hypermutations and ageing allow AISs
to efficiently escape from local optima where standard EAs require expo-
nential time. As a result we prove that while EAs and Random Local
Search may get trapped on 4/3 approximations, AISs find arbitrarily
good approximate solutions of ratio (1 + ε) for any constant ε within a
time that is polynomial in the problem size and exponential only in 1/ε.

1 Introduction

Artificial Immune Systems (AIS) take inspiration from the immune system of
vertebrates to solve complex computational problems. Given the role of the nat-
ural immune system to recognise and protect the organism from viruses and
bacteria, natural applications of AIS have been pattern recognition, computer
security, virus detection and anomaly detection [1–3]. Various AIS, inspired by
Burnet’s clonal selection principle, have been devised for solving optimisation
problems. Amongst these, the most popular are Clonalg [4], the B-Cell algo-
rithm [5] and Opt-IA [6].

AIS for optimisation are very similar to evolutionary algorithms (EAs) since
they essentially use the same Darwinian evolutionary principles to evolve pop-
ulations of solutions (here called antibodies). In particular, they use the same
natural selection principles to gradually evolve high quality solutions. The main
distinguishing feature of AIS to more classical EAs is their use of variation oper-
ators that typically have higher mutation rates compared to the standard bit
mutations (SBM) of EAs (such as the contiguous somatic mutations of the B-
Cell algorithm and the hypermutations with mutation potential of Opt-IA) and
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their use of ageing operators that remove old solutions i.e., that have spent a
long time without improving (local optima). Despite their popularity it is still
largely unclear on what problems an AIS will have better performance to that
of EAs. Also very little guidance is available on when a class of AIS should
be applied rather than another. Amongst the few available results, it has been
proven that there exist instance classes of both vertex cover [7] and the longest
common subsequence [8] NP-Hard problems that are hard for EAs equipped
with SBM and crossover for which the B-Cell algorithm is efficient The superior
performance is due to the ability of the contiguous somatic mutations of the
B-Cell algorithm to efficiently escape the local optima of these instances while
SBM require exponential expected time in the size of the instance.

Apart from these results, the theoretical understanding of AIS relies on anal-
yses of their behaviour for artificially constructed toy problems. Recently it has
been shown how both the hypermutations with mutation potential and the age-
ing operator of Opt-IA can lead to considerable speed-ups compared to the
performance of well-studied EAs using SBM for standard benchmark functions
used in evolutionary computation such as Jump, Cliff or Trap [9]. While the
performance of hypermutation operators to escape the local optima of these
functions is comparable to that of the EAs with high mutation rates that have
been increasingly gaining popularity since 2009 [10–14], ageing allows the opti-
misation of hard instances of Cliff in O(n log n), a runtime that is required
by the SBM of typical EAs to optimise any function with unique optimum i.e.,
SBM require Θ(n log n) to optimise its easiest function with unique optimum -
OneMax [15]. Although some of these speed-ups over standard EA performance
are particularly impressive, no similar evidence of superior performance of these
operators is available for more realistic problems.

In this paper we perform an analysis for Partition, a classical NP-Hard
combinatorial optimisation problem for which the performance of Random Local
Search (RLS) and of the (1 + 1) EA is understood [16–18]. Since Partition is
essentially a makespan scheduling problem with two machines, its relevance to
practical applications can be easily seen. It is well understood that both RLS and
the (1+1) EA may get stuck on local optima which lead to a worst case approx-
imation ratio of 4/3. In order to achieve a (1 + ε) approximation for arbitrary ε
a clever restart strategy has to be put in place. Herein, we first show the power
of hypermutations and ageing by proving that each of them solve to optimal-
ity instances that are hard for RLS and SBM EAs, by efficiently escaping local
optima for which the EAs struggle. Afterwards we prove that AIS using hypermu-
tations with mutation potential guarantee arbitrarily good solutions of approxi-
mation ratio (1 + ε) in expected time n(ε−(2/ε)−1)(1− ε)−2e322/ε + n322/ε +n3,
which reduces to O(n3) for any constant ε without requiring any restarts. On the
other hand, we prove that an AIS with SBM and ageing can efficiently achieve
the same approximation ratio in O(n2), automatically restarting the optimisa-
tion process by implicitly detecting when it is stuck on a local optimum. To the
best of our knowledge this is the first time either hypermutations or ageing have
been theoretically analysed for a standard problem from combinatorial optimi-
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Algorithm 1. (1+1) IAhyp [9] for minimisation
1: Set each bit in x to 1 with probability 1/2 and to 0 otherwise, then evaluate f(x).
2: while termination condition not satisfied do
3: y := x; Flip := {1, . . . , n};
4: while Flip �= ∅ and f(y) ≥ f(x) do
5: i := Sample Flip u. a. r.; Flip := Flip \ i; flip yi; evaluate f(y);
6: end while
7: If f(y) ≤ f(x), then x := y.
8: end while

sation and the first time performance guarantees of any AIS are proven in such
a setting.

Due to space limitations some proofs are omitted for this extended abstract1.

2 Preliminaries

Hypermutation with mutation potential operators are inspired by the high muta-
tion rates occurring in the natural immune system [6]. For the purpose of optimi-
sation, these high mutation rates may allow the algorithm to escape local optima
by identifying promising search areas far away from the current ones.

In this paper we will analyse the static hypermutation operator considered
in [9] for benchmark functions, where the maximum number of bits to be flipped
is fixed to M = cn throughout the optimisation process. Two variants of static
hypermutations have been proposed in the literature. A straightforward version,
where in each mutation exactly cn bits are flipped, and another one called stop at
first constructive mutation (FCM) where the solution quality is evaluated after
each of the cn bit-flips and the operator is halted once a constructive mutation
occurs. Since Corus et al. [9] proved that the straightforward version requires
exponential time to optimise any function with a polynomial number of optima,
we will consider the version with FCM. We define a mutation to be constructive
if the solution is strictly better than the original parent and we set c = 1 such
that all bits will flip if no constructive mutation is found before. For the sake of
understanding the potentiality of the operator, we embed it into a minimal AIS
framework that uses only one antibody (or individual) and creates a new one
in each iteration via hypermutation as done previously in the literature [9]. The
algorithm is essentially a (1 + 1) EA [20,21] that uses hypermutations instead
of SBM. The simple AIS for the minimisation of objective functions, called (1 +
1) IAhyp for consistency with the literature, is formally described in Algorithm1.

Another popular operator used in AIS is Ageing. The idea behind the oper-
ator is to remove antibodies which have not improved for a long time. Intu-
itively, these antibodies are not improving because they are trapped on some
local optimum, and they may be obstructing the algorithm from progressing in
more promising areas of the search space (i.e., the population of antibodies may

1 A complete version of the paper including all the proofs is available on arXiv [19].
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Algorithm 2. (μ + 1) EAageing [22] for minimisation
1: Create population P := {x1, · · · , xµ} with each bit in xi set to 1 with probability

1/2 and to 0 otherwise;
2: For all x ∈ P evaluate f(x) and set x[age] := 0.
3: while termination condition not satisfied do
4: For all x ∈ P set x[age] := x[age] + 1.
5: Select x ∈ P uniformly at random;
6: y := x and flip each bit in y with probability 1/n. Add y to P .
7: If f(y) < f(x), then y[age] := 0. Else, y[age] := x[age];
8: For all x ∈ P if x[age] ≥ τ then remove x from P ;
9: If |P | > μ then remove the individual from P with the highest f(x);

10: If |P | < μ then add enough number of randomly created individuals to P until
|P | = μ;

11: end while

quickly be taken over by a high quality antibody on a local optimum). The anti-
bodies that have been removed by the ageing operator are replaced by new ones
initialised at random.

Ageing operators have been proven to be very effective at automatically
restarting the AIS, without having to set up a restart strategy in advance, once
it has converged on a local optimum [23]. Stochastic versions have been shown to
also allow antibodies to escape from local optima [9,22]. As in previous analyses
we incorporate the ageing operator in a simple (μ+1) EA algorithmic framework
and for simplicity consider the static variant where antibodies are removed from
the population with probability 1 if they have not improved for τ generations.
The algorithm is formally defined in Algorithm2. We will compare the perfor-
mance of the AIS with the standard (1 + 1) EA [21,24] and RLS for which the
performance for Partition is known. The former uses standard bit mutation
i.e., it flips each bit of the parent with probability 1/n in each iteration, while
the latter flips exactly one bit.

Given n jobs with processing times p1, . . . , pn and pi > 0, the Partition
problem is that of scheduling the jobs on two identical machines, M1 and M2,
in a way that the overall completion time (i.e., the makespan) is minimised.
This simple to define scheduling problem is well studied in theoretical computer
science and is known to be NP-Hard [25]. Hence, it cannot be expected that any
algorithm finds exact solutions to all instances in polynomial time. However,
there exist efficient problem specific algorithms which guarantee solutions with
approximation ratio (1 + ε) in time O(n3/ε), in classical complexity measures,
which is polynomial both in n and 1/ε [26]. Let fA be the solution quality
guaranteed by algorithm A and fopt be the value of the optimal solution. Then
the approximation ratio for a minimisation problem is defined as fA/fopt.

For the application of randomised search heuristics a solution may eas-
ily be represented with a bitstring x ∈ {0, 1}n where each bit i represents
job i and if the bit is set to 0 it is assigned to the first machine (M1)
and otherwise to the second machine (M2). Hence, the goal is to minimise
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f(x) := max
{ ∑n

i=1 pixi,
∑n

i=1 pi(1 − xi)
}
, i.e., the processing time of the last

machine to terminate. Both RLS and the (1 + 1) EA have 4/3 worst case
expected approximation ratios for the problem (i.e. there exist instances where
they can get stuck on solutions by a factor of 4/3 worse than the optimal one)
[16,17]. However if an appropriate restart strategy is setup in advance, both
algorithms may be made into polynomial randomised approximation schemes
(PRAS, i.e., algorithms that compute a (1 + ε) approximation in polynomial
time in the problem size with probability at least 3/4) with a runtime bounded
by O(n ln(1/ε)) · 2(e log e+e)�2/ε� ln(4/ε)+O(1/ε) [16,17]. Hence, as long as ε does
not depend on the problem size, the algorithms can achieve arbitrarily good
approximations with an appropriate restart strategy.

In this paper we will show that AIS can achieve stronger results. Firstly, we
will show that both ageing and hypermutations can efficiently solve to optimality
the worst-case instances for RLS and the (1 + 1) EA. More importantly, we
will prove that ageing automatically achieves the necessary restart strategy to
guarantee the (1 + ε) approximation while hypermutations guarantee it in a
single run in polynomial expected runtime and with overwhelming probability.

3 Generalised Worst-Case Instance

The instance from the literature P ∗
ε leading to a 4/3 worst-case expected approx-

imation ratio for RLS and the (1 + 1) EA consists of two large jobs with long
processing times p1 := p2 := 1/3 − ε/4 and the remaining n − 2 jobs with short
processing times pi := (1/3 + ε/2)/(n − 2) for 3 ≤ i ≤ n (the sum of the pro-
cessing times are normalised to 1 for cosmetic reasons) [16]. Any partition where
one large job and half of the small jobs are placed on each machine is natu-
rally a global optimum of the instance (i.e., the makespan is 1/2). Note that
the sum of all the processing times of the small jobs is slightly larger than the
processing time of a large job. The local optimum leading to the 4/3 expected
approximation consists of the two large jobs on one machine and all the small
jobs on the other. The makespan of the local optimum is p1 + p2 = 2/3 − ε/2
and, in order to decrease it, a large job has to be moved to the fuller machine
and at the same time at least Ω(n) small jobs have to be moved to the emptier
machine. Since this requires to flip Ω(n) bits, which cannot happen with RLS
and only happens with exponentially small probability n−Ω(n) with the SBM
of EAs, their expected runtime to escape from such a configuration is at least
exponential.

In this section, to highlight the power of the AIS to overcome hard local
optima for EAs, we generalise the instance P ∗

ε to contain an arbitrary number
s = Θ(1) of large jobs and show how the considered AIS efficiently solve the
instance class to optimality by escaping from local optima efficiently while RLS
and the (1 + 1) EA cannot. Hence, hypermutations and ageing are efficient
on a vast number of instances where SBM and local mutations alone fail. The
generalised instance class G∗

ε is defined as follows.
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Definition 1. The class of Partition instances G∗
ε are characterised by an

even number of jobs n, an even number of large jobs s = Θ(1) and the following

processing times: pi =

{
1

2s−1 − ε
2s if i ≤ s

s−1
n−s · ( 1

2s−1 + ε
2(s−1) ) otherwise

where 0 < ε < 1/(2s − 1) is an arbitrarily small constant.

The instance class has the same property as the instance P ∗
ε . If all the large

jobs are placed on one machine and all the small jobs on the other, then at
least Ω(n) small jobs need to be moved in exchange for a large job to decrease
the discrepancy (the difference between the loads of the machines). Such a local
optimum allows to derive a lower bound on the worst-case expected approxima-
tion ratio of algorithms that get stuck there. Obviously the greater the number
of large jobs, the smaller the bound on the approximation ratio will be. We now
prove that the (1 + 1) EA has exponential expected runtime on G∗

ε . The proof
is similar to that of the 4/3 approximation [16]. It essentially shows that with
constant probability the algorithm gets trapped on the local optimum. Then the
statement will follow by showing that exponential expected time is required to
escape from there. That RLS also fails is essentially a corollary.

Theorem 1. The (1 + 1) EA needs at least nΩ(n) fitness function evaluations
in expectation to optimise any instance of G∗

ε .

In the following subsection we will show that hypermutations are efficient.
Afterwards we will do the same for ageing.

3.1 Hypermutations

We will start this subsection by proving some general statements about hypermu-
tations. The hypermutation operator flips all the bits in a bitstring successively
and evaluates the fitness after each step. Unless an improvement is found first,
each hypermutation operation results in a sequence of n solutions sampled in the
search space. This sequence of solutions contains exactly one bitstring for each
Hamming distance d ∈ [n] to the initial bitstring. Moreover, the string which
will be sampled at distance d is uniformly distributed among all the bitstrings of
distance d to the input solution. Thus, as we approach the middle, the number of
possible outcomes grows exponentially large but the first and the last few strings
sampled are picked among a polynomially large subset of the search space. We
will now provide two lemmata regarding the probability of particular outcomes
in the first and the last m bitstrings of the sequence.

Lemma 1. Given that no improvement is found, the probability that k specific
bit positions are flipped by the hypermutation operator in the first (or last) m ≥ k

mutation steps is at least
(

m−k+1
n−k+1

)k

.

Lemma 2. Let xi be the ith bitstring sampled by the hypermutation and si the
substring of xi which consists of bit positions S ⊂ [n]. For any given target
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substring s∗ and integer m > |S|, the probability that ∀i ∈ {m,m + 1, . . . , n −
m − 1, n − m}, si = s∗ is at least

(
m−|S|+1
n−|S|+1

)|S|
.

We can observe that the probability bounds we get from these lemmata are
polynomial if k (or |S|) is a constant. Moreover, if both k = Θ(1) and m = Ω(n)
we obtain probabilities in the order of Ω(1).

For G∗
ε , we would like to distribute two kinds of jobs evenly among machines.

While one type of job is constant in number, the other is in the order of Θ(n). So
the previous lemmata would provide reasonable probability bounds only for the
large jobs. For the small jobs we will make use of the fact that the configuration
we want is not any configuration, but an exact half and half split. Intuitively,
it is obvious that if all the jobs start on one machine, at exactly the n/2th bit
flip, the split will be half and half. However, as the starting distribution gets
further away from the extremes, it becomes less clear when the split will exactly
happen. Fortunately, the fact that the number of small jobs is large, will work
in our favor to predict the time of the split more precisely. Whilst the previous
lemmata provide bounds for the first and last bitflips of hypermutation, we will
use Serfling’s concentration bound [27] on hypergeometric distributions to prove
the following theorem about the bitflips in the middle.

Theorem 2. If the input bitstring of hypermutation has
(
1
2 + a

)
n 1-bits for

some constant a > 0, then the probability that any solution sampled after the
n a

2a−c th mutation step for any a > c > 0 to have more than n/2 1-bits is in the
order of e−Ω(nc2).

Corollary 1. If the input bitstring of hypermutation has
(
1
2 + a

)
n 1-bits for

some constant a > 0, then with probability 1 − e−Ω(nc2), there exists a k ∈
{n a−c

2a−c , . . . , n a
2a−c} for any positive a > c = ω(1/

√
n), such that the number of

1-bits in the kth solution sampled by hypermutation has exactly n/2 1-bits.

Now we have all the necessary tools to prove that the (1 + 1) IAhyp can
solve G∗

ε efficiently. The heart of the proof of the following theorem is to show
that from any local optimum, hypermutations identify the global optimum with
constant probability unless an improvement is found first. The proof then follows
because there are at most O(n) different fitness levels.

Theorem 3. The (1 + 1) IAhyp optimises the G∗
ε class of instances in O(n2)

expected function evaluations.

Since the worst case instance for the (1+1) EA [16] is an instance of G∗
ε with

s = 2, the following corollary holds.

Corollary 2. The (1 + 1) IAhyp optimises P ∗
ε in O(n2) expected function eval-

uations.
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3.2 Ageing

In this section we will show that the (μ + 1) EAageing can optimise the G∗
ε

instances efficiently. Our approach to prove the following theorem is to first
show that if a solution where the large jobs are equally distributed is sampled
in the initialisation, then it takes over the population and the (μ + 1) EAageing

quickly finds the optimum. The contribution of ageing is considered afterwards
to handle the case when no such initial solution is sampled. Then, we will show
that whenever the algorithm gets stuck at a local optima, it will reinitialise the
whole population after τ iterations and sample a new population.

Theorem 4. The (μ + 1) EAageing optimises the G∗
ε class of instances in

O(μn2 + τ) steps in expectation for τ = Ω(n2) and μ = O(log n).

Clearly the following corollary holds as P ∗
ε is an instance of G∗

ε .

Corollary 3. The (μ+1) EAageing optimises P ∗
ε in O(μn2 + τ) steps in expec-

tation for τ = Ω(n2) and μ = O(log n).

4 (1 + ε) Approximation Ratios

4.1 Hypermutations

In the next theorem we will show that the (1 + 1) IAhyp can efficiently find
arbitrarily good constant approximations to any Partition instance. Before we
state our main theorem, we will require the following helper lemma.

Lemma 3. Let xi be the ith bitstring sampled by the hypermutation, si the sub-
string of xi which consists of bit positions S ⊂ [n], and, f(x) :=

∑
j∈S xjwj a

linear function defined on the substring for some non-negative weights wj. Given
that the input bitstring of the hypermutation is 0n, the expected value of f(xi) is
i
n

∑
j∈S wj.

In the proof of the following theorem we first divide the search space into 22/ε

subspaces according to the distribution of the largest 2/ε jobs and then further
divide each subspace into the same n fitness levels used for the proof of the
(1 + 1) EA in [16]. However, we show that in each fitness level, hypermutations
have a good probability of either finding a (1 + ε) approximation or leaving the
fitness level for good. The statement then follows by summing over the n22/ε

fitness levels.

Theorem 5. The (1+1) IAhyp finds a (1+ ε) approximation to any instance of
Partition in at most n(ε−(2/ε)−1)(1 − ε)−2e322/ε + n322/ε + n3 fitness function
evaluations in expectation for any ε = ω(n−1/2).
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Proof. In order to prove our upper bound on the runtime, we will divide the run
of the algorithm into at most 22/ε phases and find a bound on the expected time
that is valid for all phases.

Following the proof of Theorem 3 in [16], we refer to the s := �2/ε	−1 ≤ n/2
jobs with the largest processing times as large jobs and to the rest as the small
jobs. Let P be the sum of the processing times of all jobs. Since p1 ≥ p2 ≥ . . . ≥
pn w.l.o.g., we know that pi ≤ εP/2 for all i > s because otherwise the sum of
the first s + 1 jobs would be larger than P .

Consider the 2s partitions of only the large objects. We sort these 2s parti-
tions according to non-increasing makespan and denote the ith partition in the
sequence as yi. Now, we can divide the solution space of the original problem
into subspaces Ai for i ∈ [2s], where Ai consists of all the solutions where the
large jobs are distributed as in yi. Let x∗

i denote the solution with the best fitness
value in Ai.

Let d(x) denotes the discrepancy of solution x. We define k as the smallest
index i that satisfies d(yi) ≤ ∑n

j=s+1 pj . Thus, for any large jobs configuration
yj for j < k, if all the small jobs are assigned to the emptier machine of yj , then
the load of the obtained solution is the same as the load of yj itself because the
discrepancy is larger than the sum of the processing times of the small jobs by
definition. Since the makespan of yj is a lower bound on the makespan of any
solution x ∈ Aj , the solution where all small jobs are assigned to the emptier
machine of yi is the best solution in Ai for all i < k. Again for i < k, we can
say that once the (1 + 1) IAhyp finds a solution with better fitness value than
x∗

i , any solution that belongs to any set Aj for j ≤ i will be rejected by the
algorithm due to its inferior fitness value. This allows us to divide the time until
a solution better than x∗

k−1 is found for the first time into k − 1 distinct phases
where during phase i the fitness of the current solution is between f(x∗

i−1) and
f(x∗

i ) (we define f(x∗
0) := P for completeness). We will now further divide the

expected length of phase i, into the expected time until x∗
i is found given an

arbitrary solution x that satisfies f(x∗
i−1) > f(x) > f(x∗

i ), and the expected
time until an improvement is found given that the current solution is f(x∗

i ).
We start with the expected time until x∗

i is found given an initial solu-
tion x such that f(x∗

i−1) > f(x) > f(x∗
i ) holds. Since f(x∗

i−1) > f(x), the
makespan of the underlying large job configuration of x is at least as good
as the makespan of yi and thus the makespan of x can be upper bounded
by the load obtained when all small jobs are assigned to the fuller machine
of yi. Since i < k we also know that the fuller machine of x∗

i has no small
jobs on it. Thus, during phase i we can bound the fitness in the interval
[f(yi), f(yi) +

∑n
j=s+1 pj ]. We further divide this interval into the following

levels, L� :=
{

x | f(yi) +
∑n

j=s+� pj ≥ f(x) > f(yi) +
∑n

j=s+�+1 pj

}
, implying

that for any solution at level L� there is at least one job with processing time
at least ps+� which can be moved to the emptier machine with probability 1/n
as the first bit-flip and yield a solution at level L�+1. Since there are at most n
levels for the phase i, the expected number of iterations until the level Ln−s+1,
which contains the solution x∗

i is discovered is at most n2.
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Secondly, we will bound the expected time until an improvement is found
given that the current solution is f(x∗

i ). In order to do this we will bound the
probability that a (1 + ε) approximation is obtained in a single iteration given
that no other improvements are found in the previous mutation steps of the
hypermutation operator by some value p≈. This will allow us to claim that in
expected p−1

≈ generations we will either find the approximation we sought or at
least leave the subspace Ai for good.

Consider the optimal configuration of large jobs y2s and denote its makespan
as L. Since both y2s and its complementary bitstring have the same makespan,
w.l.o.g., we will assume the fuller machines of yi and y2s are both M1. According
to Lemma 2, the s ≤ 2/ε large jobs are assigned identically to y2s between the
n(ε − ε2)th and n − n(ε − ε2)th bit-flips with probability at least

(
ε − ε2

)2/ε
e−1

Since the initial solution x∗
i does not assign any small jobs to M1 and the sum

of the processing times of the small jobs is less than P/2, by the n(ε − ε2)th
bit-flip the expected total processing time of small jobs moved from M2 to M1

is at most (ε − ε2)P/2 according to Lemma 3. Due to Markov’s inequality, with
probability at least 1 − ((ε − ε2)P/(ε)P ) = ε the moved sum is less than εP/2
and the makespan of the solution is at most L + εP/2. In general, OPT ≥ L
with OPT indicating the optimal makespan, since introducing the small jobs
cannot improve the makespan and also OPT ≥ P/2 since a perfect split is the
best possible partition. Thus (L + εP/2)/OPT is less than (1 + ε). This implies
that with probability

p≈ ≥ (ε − ε2)2/ε

e
ε =

ε(2/ε)+1

e(1 − ε)−2/ε
=

ε(2/ε)+1(1 − ε)2

e(1 − ε)−((1/ε)−1)2
≥ ε(2/ε)+1(1 − ε)2

e3

a (1 + ε) approximation is found unless an improvement is obtained before. The
total expected waiting time to observe either an approximation or an improve-
ment in all local optima yi for i < k is at most (1/ε(2/ε)+1)(1 − ε)−2e322/ε, since
k ≤ 2s ≤ 22/ε. If we add the time spent in between local optima, n222/ε, we
obtain the bound on the expected number of iterations until subspace Ak is
reached for the first time.

Once subspace Ak is reached, by definition the underlying large job config-
uration has a discrepancy which is not large enough to fit all small jobs. This
means that when the next local optimum is found, the discrepancy is less than
half of the processing time of a small job. Thus, the locally optimal solution is
a (1 + ε) approximation since the processing time of small jobs is at most εP/2.
Such a solution is found in n2 expected time after the first solution in Ak is sam-
pled. Summing up all the expected times bounded above, the expected runtime
we obtain is: (ε−(2/ε)−1)(1 − ε)−2e322/ε + n222/ε + n2. 
�

4.2 Ageing

The following theorem shows that the (1+ 1) EAageing can find (1 + ε) approx-
imations. The proof follows the same ideas used to prove that RLS and the
(1 + 1) EA achieve a (1 + ε) approximation if an appropriate restart strategy
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is put in place [16,17]. In particular, the main proof idea is to use the suc-
cess probability of the simple (1 + 1) EA and show that ageing automatically
causes restarts whenever the (1 + 1) EA fails to find the approximation. Hence,
a restart strategy is not necessary for the (1+1) EAageing to achieve the desired
approximation.

Theorem 6. Let τ = Ω(n1+c) where c = Ω(1). The (1 + 1) EAageing finds a
(1 + ε) approximation to any instance of Partition in at most
(en2 + τ)2(e log e+e)�2/ε� ln(4/ε)+�4/ε�−1 fitness function evaluations in expectation
for any ε ≥ 4/n.

5 Conclusion

To the best of our knowledge this is the first time that polynomial expected
runtime guarantees of solution quality have been provided concerning AIS for a
classical combinatorial optimisation problem. We presented a class of instances of
Partition to illustrate how hypermutations and ageing can efficiently escape
from local optima where the standard bit mutations used by EAs get stuck
for exponential time. Then we showed how this capability allows the AIS to
achieve arbitrarily good (1 + ε) approximations to any instance of Partition
in polynomial time for any constant ε. In contrast to standard EAs and RLS,
that require parallel runs or restart schemes to achieve such approximations,
the AIS find them in a single run. The result is achieved in different ways. The
ageing operator locates more promising basins of attraction by restarting the
optimisation process after implicitly detecting it has found a local optimum.
Hypermutations find improved approximate solutions efficiently by performing
large jumps in the search space. Naturally, the proof would also apply to the
complete Opt-IA [6,9] if the ageing parameter is set large enough, i.e., τ =
ω(nε−2/ε).
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function optimisation. In: Cantú-Paz, E. (ed.) GECCO 2003. LNCS, vol. 2723, pp.
207–218. Springer, Heidelberg (2003). https://doi.org/10.1007/3-540-45105-6 26

6. Cutello, V., Nicosia, G., Pavone, M., Timmis, J.: An immune algorithm for protein
structure prediction on lattice models. IEEE Trans. Evol. Comp. 11(1), 101–117
(2007)

https://doi.org/10.1007/3-540-45105-6_26


AIS Can Find Arbitrarily Good Approximations for Partition 27

7. Jansen, T., Oliveto, P.S., Zarges, C.: On the analysis of the immune-inspired B-cell
algorithm for the vertex cover problem. In: Liò, P., Nicosia, G., Stibor, T. (eds.)
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