
A Simple Proof for the Usefulness
of Crossover in Black-Box Optimization

Eduardo Carvalho Pinto1 and Carola Doerr2(B)

1 DreamQuark, Paris, France
2 Sorbonne Université, CNRS, LIP6, Paris, France

Carola.Doerr@lip6.fr

Abstract. The idea to recombine two or more search points into a new
solution is one of the main design principles of evolutionary computa-
tion (EC). Its usefulness in the combinatorial optimization context, how-
ever, is subject to a highly controversial discussion between EC practi-
tioners and the broader Computer Science research community. While
the former, naturally, report significant speedups procured by crossover,
the belief that sexual reproduction cannot advance the search for high-
quality solutions seems common, for example, amongst theoretical com-
puter scientists. Examples that help understand the role of crossover in
combinatorial optimization are needed to promote an intensified discus-
sion on this subject.

We contribute with this work an example of a crossover-based genetic
algorithm (GA) that provably outperforms any mutation-based black-
box heuristic on a classic benchmark problem. The appeal of our exam-
ples lies in its simplicity: the proof of the result uses standard mathe-
matical techniques and can be taught in a basic algorithms lecture.

Our theoretical result is complemented by an empirical evaluation,
which demonstrates that the superiority of the GA holds already for
quite small problem instances.

Keywords: Evolutionary computation · Crossover · Recombination
Runtime analysis

1 Introduction

Evolutionary Computation (EC) borrows inspiration from phenomena observed
in biological evolution processes. One of the fundamental design principles of EC
is crossover; i.e., the recombination of two or more candidate solutions into one
or several offspring. EC practitioners frequently report that crossover (which is
also referred to as sexual reproduction) brings significant performance gains. This
belief, however, is often challenged in the broader Computer Science (CS) com-
munity, and in particular in the subarea of Theoretical CS, yielding to very gen-
erally formulated statements that crossover cannot be beneficial in combinatorial
optimization. As an example we mention a quote by Christos Papadimitriou and

c© Springer Nature Switzerland AG 2018
A. Auger et al. (Eds.): PPSN 2018, LNCS 11102, pp. 29–41, 2018.
https://doi.org/10.1007/978-3-319-99259-4_3

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-99259-4_3&domain=pdf

30 E. C. Pinto and C. Doerr

colleagues, who formulated the claim that “Simulated annealing tends to work
quite well, but genetic algorithms do not”.1

In light of this discrepancy, it has been one of the main focus question in the
theory of EC community to contribute to a better understanding of when and
why crossover-based algorithms can perform better than purely mutation-based
ones. It seems quite notable that only very few examples exist where such an
effect can be rigorously proven.

1.1 Selected Theoretical Results on the Benefits of Crossover

We summarize a few selected results that prove an advantage of crossover in the
discrete black-box optimization context, and refer the interested reader to [16]
for an extended discussion. The first work observing a benefit of crossover-based
GAs over a standard evolutionary algorithm (EA) dates back to [11], where so-
called Jump functions are considered, in which algorithms are required to “jump”
a gap between local and global optima. As discussed in [3,16], several follow-
up works introduced similarly artificial problems to demonstrate an advantage
of crossover. The first classical combinatorial example for which recombination
could be shown to be beneficial was presented in [8]. In this work, a problem-
tailored crossover operation was shown to be advantageous for the all-pairs-
shortest-path problem.

These theoretical results, albeit being very appealing, do not answer the ques-
tion of how beneficial the use of crossover is in standard EAs, or for standard
benchmark problems. Starting with the work [14], the quest to prove advan-
tages of crossover for simple hill-climbing tasks has recently taken considerable
momentum. Sudholt proved that a greedy (μ + 1) GA with a diversity mech-
anism that avoids duplicates needs (1 + o(1)) e

2n ln n ≈ 1.359n ln n + o(n ln n)
function evaluations, on average, to optimize OneMax; the combinatorial opti-
mization problem asking to minimize the Hamming distance to an unknown bit
string z ∈ {0, 1}n. This runtime is better by a factor of two than the expected
(1 + o(1))en ln n optimization time of any evolutionary algorithm using only
standard bit mutation [15,17]. Sudholt also proved that the expected runtime of
the algorithm can be further reduced to approximately 1.19n ln n + o(n ln n) by
increasing the mutation rate from 1/n to (1 +

√
5)/(2n).

The results of [14] were generalized to less greedy (μ + 1) GAs in [16] and to
GAs avoiding the diversity mechanism in [3]. All these works show an advantage
of crossover-based (μ + 1) GAs over evolutionary algorithms using standard bit
mutation. They do not, however, beat the average performance of another very
common randomized optimization heuristic, Randomized Local Search (RLS).
The expected optimization time of RLS on OneMax is n ln(n/2) + γ n ± o(1),
with γ ≈ 0.5772156649 being the EulerMascheroni constant [4]. For a more
convincing argument in favor of crossover, one would like to have an example
for a crossover-based heuristic that outperforms not only mutation-based EAs
but also RLS as well as any other so-called unary unbiased black-box algorithm.

1 See, for example, here: https://www.simonsfoundation.org/2010/05/18/why-sex/.

https://www.simonsfoundation.org/2010/05/18/why-sex/

A Simple Proof for the Usefulness of Crossover 31

The notion of a unary unbiased black-box algorithm was introduced in [13] as a
model for purely mutation-based algorithms. While it was already proven in [13]
that any unary unbiased black-box algorithm has an expected optimization time
on OneMax of order at least n log n, a precise lower bound, which is n ln(n) −
cn ± o(n) for a constant c between 0.2539 and 0.2665, could be shown only
recently [7]. The expected optimization times proven in [3,14,16] are all by a
multiplicative factor of at least 1.19 larger than this bound.

In [9] it was shown that binary unbiased black-box algorithms exist that
achieve a linear expected optimization time on OneMax. While this can be seen
as a proof in favor of recombination, the algorithm is highly problem-tailored.
A more appealing example rigorously proving an advantage of crossover over
any unary unbiased black-box algorithm has been presented in [6]. The (1 +
(λ, λ)) GA uses only well-known and widely applied building blocks from the
EC literature (standard bit mutation, (biased) uniform crossover, and elitist
selection), but recombines them in a new way: by first mutating a best so-far
solution through standard bit mutation, the crossover operator becomes a “repair
mechanism”. For suitable parameter settings, the (1 + (λ, λ)) GA can achieve
linear expected optimization time on OneMax [5,6], and, by the lower bounds
of [7,13], therefore scales much more favorably with the problem dimension than
any unary unbiased black-box algorithm.

1.2 Our Results

In this work, we revisit the analysis of the greedy (μ + 1) GA with diversity
mechanism presented in [14]. Following the suggestion made in [1] we take a
more implementation-aware perspective on this algorithm, in that we do not
charge function evaluations for search points that are identical to one of their
direct ancestors. Put differently, we try to avoid creating such offspring, as they
do not provide any new information about the problem instance at hand. In the
absence of noise, this is how one would implement the (μ+λ) GA for all practical
purposes, cf. [1] for a discussion. We note that for the two variation operators
employed by the (μ + λ) GA, standard bit mutation and uniform crossover,
tracking whether or not an offspring equals one of its parents is very simple and
comes at almost no cost.

Quite surprisingly, we show that this simple modification yields performance
bounds that are strictly better than the above-mentioned n ln(n) − cn ± o(n)
lower bound valid for all unary unbiased black-box algorithms. More precisely,
we show that, for a suitably chosen mutation rate p, the modified greedy (μ +
1) GA with diversity mechanism achieves an 0.851..n ln(n) + o(n log n) expected
optimization time on OneMax. The proof of this result is surprisingly simple,
and can be taught in an undergraduate course.

2 The Greedy (µ + 1) GA

We present the crossover-based genetic algorithm (GA) for which we will prove
in Sect. 3 that it outperforms any mutation-based algorithm on the Hamming

32 E. C. Pinto and C. Doerr

distance problem OneMax. The algorithm is a (mild) modification of an algo-
rithmpreviously suggested for the studyof the effectiveness of crossover: the greedy
(μ + 1) GA presented in [14]. We present the original algorithm in Sect. 2.1, moti-
vate our modifications in Sect. 2.2, and describe the modified greedy (μ + 1) GA
in Sect. 2.3.

2.1 The Original Greedy (µ + 1) GA

The greedy (μ + 1) GA proposed by Sudholt in [14] is Algorithm 1 with lines
5 to 8 replaced by “Sample � from Bin(n, p)”. It maintains a population P of
μ individuals. P is initialized by sampling μ search points independently and
uniformly at random. Each iteration consists of two steps; a crossover step and
a mutation step. In the crossover step two parents x and y are selected uni-
formly at random (with replacement) from those individuals u ∈ P for which
f(u) = maxv∈P f(v) holds. From these two search points an offspring z′ is cre-
ated by uniform crossover cross(x, y), which samples a new search point by
choosing, independently for every position i ∈ [n] and uniformly at random,
whether to copy the entry of the first or the second argument. In the mutation
phase this offspring z′ is modified by standard bit mutation, which flips each
bit independently with some probability p ∈ (0, 1). The so-created offspring z is
evaluated. If z /∈ P and its fitness is at least as good as minv∈P f(v), it replaces
the worst individual in the population, ties broken uniformly at random. The
requirement z /∈ P is a so-called diversity mechanism.

From this description, we easily observe that from the whole population only
those with a best-so-far fitness value are relevant, the others are never selected for
reproduction, hence the attribute “greedy” in the name of this algorithm. When
there is only one search point of best-so-far function value, the crossover simply
creates a copy of this search point, and progress has to be made by mutation,
while in the case that at least two different search points with best-so-far fitness
exist, there is positive probability that crossover recombines these into a strictly
better solution. Sudholt proved that this probability is large enough for the
greedy (μ+1) GA to outperform its mutation-only analog, the (1+1) EA. More
precisely, it is shown in [14] that, for μ ≥ 2 and n ≥ 2, the expected optimization
time of the greedy (μ+1) GA on OneMax, i.e., the expected number of function
evaluations that the algorithm performs until it evaluates for the first time an
optimal solution, is at most

ln(n2p + n) + 1 + p

p(1 − p)n−1(1 + np)
+

8n

(1 − p)n
. (1)

As mentioned in the introduction, this bound was later generalized to a less
greedy variant of the (μ + 1) GA in [16] and to one avoiding the diversity mech-
anism in [3]. These generalizations are not relevant to this present work.

The bound in (1) is by a multiplicative factor of about 1/(1 + np) smaller
than the expected optimization time of the (1 + 1) EA. For p = 1/n this factor
evaluates to 1/2, showing that for this choice of p the greedy (μ+1) GA is about

A Simple Proof for the Usefulness of Crossover 33

a factor of two faster than the (1 + 1) EA. This advantage can be boosted by
choosing larger mutation rates. In fact, the expression in (1) is minimized for
p = (1 +

√
5)/(2n). With this mutation rate, the expected optimization time of

the greedy (μ + 1) GA on OneMax is at most 1.19n ln n + 35n. This is better
than the expected optimization time of the (1 + 1) EA, but worse than the
nHn/2 − 1/2 ≈ n ln(n) − 0.1159n + O(1) expected optimization time of RLS [4].

2.2 Standard Bit Mutation: Theory vs. Practice

When the offspring created in the crossover phase of the greedy (μ + 1) GA
equals one of its parents, the only source for a successful iteration is the standard
bit mutation operator applied in the mutation step. Standard bit mutation is
probably the most frequently used variation operator in evolutionary approaches
for the optimization of pseudo-Boolean problems f : {0, 1}n → R. We discuss
in this section that most EA practitioners do not take the literal definition of
standard bit mutation provided above too seriously, and implement a slightly
different variation operator instead.

We start our discussion by observing that for every mutation rate p ∈ (0, 1)
the probability that standard bit mutation merely creates a copy of the par-
ent individual is strictly positive. More precisely, the number � of bits that are
flipped by the standard bit mutation operator follows the binomial distribution
Bin(n, p). That is, for all k ∈ [0..n] := {0, 1, . . . , n} the probability to flip exactly
k bits equals

(
n
k

)
pk(1 − p)n−k. For k = 0 this expression evaluates to (1 − p)n.

The evaluation of copies, however, does not provide any new information about
the problem instance f , unless f is a dynamic function or its evaluation is noisy.

The question how to deal with these offspring disunites theoretical and empir-
ical research in evolutionary computation. While almost all theoretical runtime
results for evolutionary algorithms charge the algorithms for evaluating such
copies, the practitioner would typically not call the function evaluation for such
offspring. Two strategies are commonly used in practice. The first one, which is
the most common one for +-selection strategies, avoids to generate copies in the
first place, by sampling from a conditional distribution that assigns probability 0
to sampling the parent individual. An alternative strategy, that is more reason-
able for comma-selection, does include sampled copies of the parent individual
in the offspring population, but does not evaluate these as their function values
are already known. When the performance measure is based on counting func-
tion evaluations, both aforementioned strategies coincide for the (μ + 1)-type
algorithms considered in this work.

We now describe how the creation of copies can be avoided. To this end, we
first observe that a reasonable implementation of standard bit mutation would
first sample the number � of bits to flip, and then apply the mut� variation oper-
ator that flips � pairwise different, uniformly selected bits. As discussed above,
in the literal interpretation of standard bit mutation the number � is distributed
according to Bin(n, p). If we do not want to create copies, we only need to
change the distribution that we sample from. The most common implementa-
tion of standard bit mutation uses a resampling strategy in which � is sampled

34 E. C. Pinto and C. Doerr

Algorithm 1. The greedy (μ + 1) GAmod with mutation probability p for
the maximization of a given function f : {0, 1}n → R.

1 Choose x(1), . . . , x(μ) from {0, 1}n independently and u.a.r. and evaluate them;
2 for t = 1, 2, 3, . . . do
3 Choose x, y ∈ arg maxw∈P f(w) u.a.r. (with replacement);
4 if x �= y then z′ ← cross(x, y); else z′ ← x;
5 if z′ /∈ {x, y} then
6 Sample � from Bin(n, p);
7 else
8 Sample � from Bin>0(n, p);

9 Sample z ← mut�(z
′) and evaluate f(z);

10 if
(
z /∈ P and f(z) ≥ minw∈P f(w)

)
then

11 Choose v ∈ arg minw∈P f(w) u.a.r. and replace v by z;

from Bin(n, p) until a strictly positive value is sampled for the first time. Thus,
effectively, in this resampling approach, the mutation strength � is sampled from
the conditional binomial distribution Bin>0(n, p), which assigns to every k ∈ [n]
a probability of Bin(n, p)(k)/

∑∞
i=1 Bin(n, p)(i) =

(
n
k

)
pk(1−p)n−k/(1−(1−p)n).

2.3 The Modified Greedy (µ + 1) GA

We apply the resampling idea to the greedy (μ + 1) GA. To motivate this,
we briefly discuss the circumstances under which the solution created in the
crossover phase is identical to one of its parents. Note that only in this case we
need to enforce that at least one bit is flipped by the standard bit mutation, since
in the other case, the crossover may have successfully created a new solution that
is at least as good as its parents. When the population contains only one search
point of current-best function value, this one is (deterministically) selected twice
for the crossover step, so that the crossover operator cannot create diversity.
However, even in the presence of k > 1 different search points of best-so far
fitness, the probability to choose the same one twice equals 1/k.2 Furthermore,
it can happen that the parents are not identical, but the offspring copies one of
them. This event is also not unlikely: if we denote by d the Hamming distance
of the two selected parents x and y, the probability that the offspring created
by the uniform crossover cross equals either x or y is 1/2d−1. The situation
d = H(x, y) = 2 occurs quite frequently, resulting in a 1/2 probability that the
crossover reproduces one of the two parents. In all these cases, the chances to
make progress rely exclusively on the mutation phase.

2 See Sect. 3 for a discussion of the fact that sampling the parent without replacement
improves the expected optimization time of this algorithm on OneMax. We do not
apply this modified parent selection rule in the greedy (μ + 1) GAmod to highlight
that the main improvement stems from the modified mutation step.

A Simple Proof for the Usefulness of Crossover 35

Tracking whether or not the offspring created by crossover equals one of its
parents is very simple, and can be done efficiently while creating it. As argued
above, in such an event we would like to avoid that the mutation operator chooses
mutation strength � = 0. In line with common implementations of standard bit
mutation, we use the re-sampling strategy described in Sect. 2.2. With this re-
sampling strategy, the greedy (μ + 1) GA becomes Algorithm 1, which we refer
to as the greedy (μ + 1) GAmod.

3 Theoretical Investigation

Following very closely the proof of Theorem 2 in [14], it is not difficult to obtain
the following runtime statement, which is the main result of this paper.

Theorem 1. For n ≥ 2 and μ ≥ 2, the expected optimization time of the greedy
(μ+1) GAmod with mutation rate p on any OneMax function Omu : {0, 1}n →
[0..n], x �→ |{i ∈ [n] | xi = ui}| is at most

(1 − (1 − p)n)(ln(n2p + n) + 1 + p)
p(1 − p)n−1(1 + np)

+
8n

(1 − p)n
. (2)

Before presenting the proof for Theorem1, we first discuss its consequences,
and why it shows that the greedy (μ + 1) GAmod can hillclimb faster than any
unary unbiased black-box algorithm.

For mutation rate p = c/n, the upper bound (2) evaluates to

1 − (1 − c/n)n

c(1 − c/n)n−1(1 + c)
n ln(n) + Θ(n).

For large n, we can approximate the factor B(c, n) := 1−(1−c/n)n

c(1−c/n)n−1(1+c) in this

expression by A(c) := 1−exp(−c)
c exp(−c)(1+c) . Evaluating B(1, n) and minimizing A(c)

with respect to c gives the following result.

Corollary 1. For μ ≥ 2 the expected optimization time of the greedy (μ +
1) GAmod with mutation rate p = 1/n on OneMax is at most (1 +
o(1)) e−1

2 n ln(n) ≈ 0.859140914n ln(n) + o(n ln n) and for p = 0.773581/n it
is at most (1 + o(1))0.850953n ln(n).

By the result of [7], these two bounds are about 14 to 15% smaller than the
expected optimization time of any unary unbiased black-box algorithm. As far
as we know this is the first time that a “classic” GA is shown to outperform RLS
on OneMax—the only other evolutionary algorithm that we are aware of is the
(1 + (λ, λ)) GA with fitness-based [6] and self-adjusting [5] population size.

To study the convergence towards the mutation rate used in Corollary 1,
we summarize in the following table how the value of c that minimizes B(c, n)
changes with the problem dimension n. We also provide a numerical evaluation
of the factor B(1, n), the multiplicative factor of the n ln n term for the greedy
(μ + 1) GAmod with mutation rate p = 1/n.

36 E. C. Pinto and C. Doerr

n 10 100 500 1 000 5 000

c 0.783953 0.774577 0.773778 0.773679 0.773599

B(c, n) 0.831839 0.859091 0.850581 0.850766 0.850915

B(1, n) 0.840587 0.857340 0.858782 0.858961 0.859105

Proof (of Theorem 1). Following [14], we say that the algorithm is on fitness level
i if the best individual in the population has function value i. Like Sudholt, for
each i, we distinguish two cases.

Case i.1: there is exactly one search point x ∈ P with f(x) = i and for
all y ∈ P \ {x} it holds that f(y) < i. In this situation, the offspring z is the
outcome of standard bit mutation on x. The algorithm leaves this situation when
(a) f(z) > i or (b) f(z) = f(x) and z �= x. The probability for (a) to happen is
at least (n−i)p(1−p)n−1/(1−(1−p)n), since this is the probability that exactly
one of the zero bits is flipped in the mutation phase. Likewise, the probability of
event (b) is i(n−i)p2(1−p)n−2/(1−(1−p)n) ≥ i(n−i)p2(1−p)n−1/(1−(1−p)n).
Once the algorithm has left case i.1 it never returns to it. This is ensured by the
diversity mechanism, which allows to include z in the population only if it isn’t
there yet (line 10 of Algorithm 1). The total expected time spent in the cases
i.1, i = 0, . . . , n − 1 is therefore at most

1 − (1 − p)n

p(1 − p)n−1

n−1∑

i=0

1
(n − i)(1 + ip)

.

The same algebraic computations as in [14] show that this expression can be
bounded from above by

(1 − (1 − p)n)(ln(pn2 + n) + 1 + p)
p(1 − p)n−1(1 + np)

.

Case i.2: there are at least two different search points x and y with
f(x) = f(y) = i and, for all w ∈ P, f(w) ≤ i holds. For this case we can use
exactly the same arguments as Sudholt does for the original greedy (μ + 1) GA:
the probability to sample two different parents x �= y in the crossover step is
at least 1/2. Assuming that we are in this situation, it is not difficult to show
that the probability that the intermediate offspring z′ satisfies f(z′) > i is at
least 1/4, cf. [14] for an explicit proof. Conditioning on this event, we certainly
have z′ /∈ {x, y} so that the mutation strength � is therefore sampled from the
unconditional binomial distribution Bin(n, p). The probability to sample � = 0
equals (1−p)n. Putting everything together, we see that, starting in case i.2, the
total probability to leave fitness level i is at least (1 − p)n/8, so that the total
expected time spent in the cases i.2, i = 0, . . . , n − 1 is at most 8n/(1 − p)n.
�

The reader familiar with the notion of k-ary unbiased black-box algorithms
may wonder if the greedy (μ + 1) GAmod is unbiased, and of which arity it is.

A Simple Proof for the Usefulness of Crossover 37

We note without proof that it is unbiased, but that care has to be taken when
computing the arity of this algorithm. Line 10 of Algorithm1 seems to suggest
that the arity of this algorithm is μ + 1. Note however, that in particular for
the case μ = 2, only a mild modification of Algorithm1 is needed to obtain a
binary unbiased algorithm whose expected optimization time on OneMax also
satisfies the bound stated in Theorem 1. This not being the main focus of the
present work (rather are we interested in a simple example of a “classic” GA
that can be proven to outperform any unary unbiased black-box optimization
algorithm), we defer the details of this alternative to an extended journal version
of this work.

Additional Performance Gains. It is beyond the scope of this work to ana-
lyze the tightness of the upper bounds proven in Theorem1, and additional gains
may be possible by choosing different values for p. We also remark that RLSopt

(described below), the RLS-variant from [7] achieving the (up to lower order
term) optimal runtime among all unary unbiased black-box algorithms on One-
Max, uses fitness-dependent mutation rates. It is possible (and likely) that the
greedy (μ + 1) GAmod, as well, could profit further from choosing its mutation
rate in such an adaptive way. We have to leave this question for future work.

One may wonder why we have not abbreviated line 4 as “z′ ← cross(x, y)”,
regardless of whether or not x = y. This would of course give the same algorithm.
Our variant, however, makes it more explicit that it may happen that x = y is
sampled in line 3. As discussed above, when k := | arg maxw∈P f(w)| = 1, this
is always the case. But also for k > 1 this situation can occur, because the
sampling in line 3 uses replacement. If we focus, for a moment on the situation
μ = 2, then one might argue that it is more “natural” to do a crossover of
both parents in line 4, provided that they have the same function value. More
generally, one would want to enforce x �= y whenever k > 1. This modification
does not affect the cases i.1 in the proof of Theorem1, but it does increase the
success probability of the cases i.2 by a multiplicative factor of 2. With this
observation, we easily see that the additive 8n

(1−p)n term in the runtime bounds
for the (μ + 1) GA and the greedy (μ + 1) GAmod with mutation rate p can be
replaced by 4n

(1−p)n .

4 Empirical Evaluation

Complementing the theoretical results above, we now investigate the performance
of the greedy (2 + 1) GAmod on OneMax by empirical means, to shed light on its
behavior for small dimensions. As we shall see, our experiments confirm a consid-
erable advantage of the greedy (2+1) GAmod over RLS already for small problem
dimensions. We use this section also to compare the greedy (2 + 1) GAmod with
another crossover-based genetic algorithm, the self-adjusting (1+ (λ, λ)) GA sug-
gested in [6]. For a fair comparison, we modify the (1 + (λ, λ)) GA in the same
spirit in which we have modified the greedy (μ + 1) GA. Finally, we also provide
a comparison with RLSopt, the RLS variant that in each iteration chooses the

38 E. C. Pinto and C. Doerr

drift-maximizing mutation strength. We briefly describe these two algorithms
before we present our empirical findings.

Modifying the (1 + (λ, λ)) GA. It was shown in [5] that the (1 + (λ, λ)) GA
achieves a linear optimization time on OneMax when equipped with a self-
adjusting choice of the offspring population size. No static parameter choice can
achieve this performance [5] and experimental results presented in [6] suggest
that already for n ≥ 1 500 the self-adjusting choice of the population size out-
performs any static one.

For reasons of space, we cannot discuss the algorithm in great detail and
refer the reader to [5] for a discussion of the self-adjusting (1 + (λ, λ)) GA. In
line with our modifications of the greedy (μ+1) GA, we change the original (1+
(λ, λ)) GA by choosing the mutation strength � from the conditional Bin>0(n, p)
distribution (instead of sampling from Bin(n, p)) and by not evaluating those
offspring created in the crossover phase that are identical to one of their two
direct parents.

As in the original self-adjusting (1 + (λ, λ)) GA we use a mutation rate of
p = λ/n, a crossover bias c = 1/λ, and update strength F = 3/2. With this
parametrization, the probability of the original (1 + (λ, λ)) GA to sample a
mutation strength � = 0 equals (1 − λ/n)n ≈ exp(−λ). A choice of � = 0 results
in an entirely useless iteration that costs 2λ function evaluations. Note further
that particularly in the beginning (λ is close to one) but also in the last steps of
the optimization process (λ approaches

√
n), the probability that an offspring

created from cross1/λ(x, y) equals x or y is fairly large. It is therefore not surpris-
ing that our modified (1+(λ, λ)) GAmod indeed corresponds to how practitioners
have implemented the (1 + (λ, λ)) GA for an empirical evaluation [10].

None of our modifications can influence the asymptotic order of the opti-
mization time, since the linear performance of the original (1 + (λ, λ)) GA is
already asymptotically optimal [5]. What we do observe, however, is that our
modifications have a non-trivial impact on the leading constant.

RLS with Fitness-Dependent Mutation Strengths. RLSopt is the (1+1)-
type heuristic which in every iteration creates one offspring y from the parent x
by flipping a number of bits that is chosen to maximize the expected progress
towards the optimum. y replaces x if it is at least good; i.e., if f(y) ≥ f(x) holds.

It was proven in [7] that this drift maximizer is (almost) optimal among all
unary unbiased black-box algorithms. More precisely, it is shown that the per-
formance of any unary unbiased algorithm can be better by at most an additive
o(n) term.

To run RLSopt in our experiments, we have computed, for every tested dimen-
sion n and every fitness value v ∈ [0..n − 1] the value �∗

n,v that maximizes the
expected drift

B(n, v, �) := E[max{Om(y) − Om(x), 0} | Om(x) = v, y = mut�(x)]

=
�∑

i=��/2�

(
n−v

i

)(
v

�−i

)
(2i − �)

(
n
�

) , (3)

A Simple Proof for the Usefulness of Crossover 39

i.e., we do not work with the approximation proposed in [7] but the original drift
maximizer.

Experimental Results. Figure 1 shows experimental data for the performance
of the aforementioned algorithms on OneMax, for n ranging from 500 to 5 000.
The (1 + (λ, λ)) GA and the (1 + (λ, λ)) GAmod use self-adjusting λ values,
and for the greedy (2 + 1) GAmod we use mutation rate 0.773581/n and the
variant that recombines both parents if their function values are identical. In
the reported ranges, the expected performance of the original greedy (2+1) GA
from [14] with mutation rate p = (1 +

√
5)/(2n) is very similar to that of the

self-adjusting (1 + (λ, λ)) GA (cf. Fig. 8 in [6]); we do not plot these data points
to avoid an overloaded plot. Detailed statistical information for Fig. 1 can be
found in [2]. We observe that both the (1 + (λ, λ)) GAmod as well as the greedy
(2 + 1) GAmod are better than RLSopt already for quite small problem sizes.
We also observe that, in line with the theoretical bounds, the advantage of the
(1 + (λ, λ)) GAmod over the greedy (2 + 1) GAmod and over RLSopt increases
with the problem size.

Fig. 1. Average runtimes for 100 independent runs of the respective algorithms on
OneMax for different problem sizes n.

5 Conclusions

We have presented a simple example of a crossover-based heuristic that performs
better than any unary unbiased black-box algorithm on the OneMax benchmark
function. The mathematical proof is surprisingly easy, and raises the question
why the result has been previously overlooked, despite the considerable attention
that the usefulness of crossover question has received in the runtime analysis
community.

40 E. C. Pinto and C. Doerr

The main idea behind our proof is a more careful performance evaluation. We
therefore believe that the discussion how to measure the efficiency of an evolu-
tionary algorithm, which had previously been suggested in [12], should be taken
more seriously, in particular in light of the significant increase in the precision
of state-of-the-art runtime results. We believe this question to be particularly
relevant for the comparison of evolutionary algorithms with other standard opti-
mization approaches like local search.

The proof of Theorem1 does not invoke any involved mathematical machin-
ery, and can be taught to undergraduate students. We hope that this makes it
an appealing example for the discussion on the role of sexual reproduction in
combinatorial optimization.

Acknowlegement. We thank the anonymous reviewers of this paper for their con-
structive feedback, which has helped us to improve the presentation of our main result.
This research benefited from the support of the FMJH Program Gaspard Monge in
optimization and operation research, and from the support to this program from EDF.

References

1. Pinto, E.C., Doerr, C.: Discussion of a more practice-aware runtime analysis for
evolutionary algorithms. In: EA 2017, pp. 298–305 (2017)

2. http://www-desir.lip6.fr/∼doerr/CarvalhoDoerr-PPSN18-Crossover.pdf
3. Corus, D., Oliveto, P.S.: Standard steady state genetic algorithms can hillclimb

faster than mutation-only evolutionary algorithms. IEEE Trans. Evol. Comput.
(2018, to appear)

4. Doerr, B., Doerr, C.: The impact of random initialization on the runtime of ran-
domized search heuristics. Algorithmica 75, 529–553 (2016)

5. Doerr, B., Doerr, C.: Optimal static and self-adjusting parameter choices for the
(1 + (λ, λ)) genetic algorithm. Algorithmica 80, 1658–1709 (2018)

6. Doerr, B., Doerr, C., Ebel, F.: From black-box complexity to designing new genetic
algorithms. Theor. Comput. Sci. 567, 87–104 (2015)

7. Doerr, B., Doerr, C., Yang, J.: Optimal parameter choices via precise black-box
analysis. In: GECCO 2016, pp. 1123–1130. ACM (2016)

8. Doerr, B., Happ, E., Klein, C.: Crossover can provably be useful in evolutionary
computation. Theor. Comput. Sci. 425, 17–33 (2012)

9. Doerr, B., Johannsen, D., Kötzing, T., Lehre, P.K., Wagner, M., Winzen, C.: Faster
black-box algorithms through higher arity operators. In: FOGA 2011, pp. 163–172.
ACM (2011)

10. Goldman, B.W., Punch, W.F.: Fast and efficient black box optimization using
the parameter-less population pyramid. Evol. Comput. 23, 451–479 (2015).
https://github.com/brianwgoldman?tab=repositories

11. Jansen, T., Wegener, I.: The analysis of evolutionary algorithms - a proof that
crossover really can help. Algorithmica 34, 47–66 (2002)

12. Jansen, T., Zarges, C.: Analysis of evolutionary algorithms: from computational
complexity analysis to algorithm engineering. In: FOGA 2011, pp. 1–14. ACM
(2011)

13. Lehre, P.K., Witt, C.: Black-box search by unbiased variation. Algorithmica 64,
623–642 (2012)

http://www-desir.lip6.fr/~doerr/CarvalhoDoerr-PPSN18-Crossover.pdf
https://github.com/brianwgoldman?tab=repositories

A Simple Proof for the Usefulness of Crossover 41

14. Sudholt, D.: Crossover speeds up building-block assembly. In: GECCO 2012, pp.
689–702. ACM (2012)

15. Sudholt, D.: A new method for lower bounds on the running time of evolutionary
algorithms. IEEE Trans. Evol. Comput. 17, 418–435 (2013)

16. Sudholt, D.: How crossover speeds up building block assembly in genetic algo-
rithms. Evol. Comput. 25, 237–274 (2017)

17. Witt, C.: Tight bounds on the optimization time of a randomized search heuristic
on linear functions. Comb. Probab. Comput. 22, 294–318 (2013)

	A Simple Proof for the Usefulness of Crossover in Black-Box Optimization
	1 Introduction
	1.1 Selected Theoretical Results on the Benefits of Crossover
	1.2 Our Results

	2 The Greedy (+1) GA
	2.1 The Original Greedy (+1) GA
	2.2 Standard Bit Mutation: Theory vs. Practice
	2.3 The Modified Greedy (+1) GA

	3 Theoretical Investigation
	4 Empirical Evaluation
	5 Conclusions
	References

