
Destructiveness of Lexicographic
Parsimony Pressure and Alleviation

by a Concatenation Crossover in Genetic
Programming

Timo Kötzing1, J. A. Gregor Lagodzinski1, Johannes Lengler2,
and Anna Melnichenko1(B)

1 Hasso Plattner Institute, University of Potsdam, Potsdam, Germany
2 ETH Zürich, Zürich, Switzerland

anna.melnichenko@hpi.de

Abstract. For theoretical analyses there are two specifics distinguish-
ing GP from many other areas of evolutionary computation. First, the
variable size representations, in particular yielding a possible bloat (i.e.
the growth of individuals with redundant parts). Second, the role and
realization of crossover, which is particularly central in GP due to the
tree-based representation. Whereas some theoretical work on GP has
studied the effects of bloat, crossover had a surprisingly little share in
this work.

We analyze a simple crossover operator in combination with local
search, where a preference for small solutions minimizes bloat (lexico-
graphic parsimony pressure); the resulting algorithm is denoted Con-
catenation Crossover GP. For this purpose three variants of the well-
studied Majority test function with large plateaus are considered. We
show that the Concatenation Crossover GP can efficiently optimize these
test functions, while local search cannot be efficient for all three variants
independent of employing bloat control.

1 Introduction

Genetic Programming (GP) is a field of Evolutionary Computing (EC) where
the evolved objects encode programs. Usually a tree-based representation of
a program is iteratively improved by applying variation operators (mutation
and crossover) and selection of suitable offspring according to their quality (fit-
ness). Most other areas of EC deal with fixed-length representations, whereas
the tree-based representation distinguishes GP. This representation of variable
size leads to one of the main problems when applying GP: bloat, which describes
an unnecessary growth of representations. Solutions may have many redundant
parts, which could be removed without afflicting the quality, and search is slowed
down, wasted on uninteresting areas of the search space.

In this paper we study GP from the point of view of run time analy-
sis. While many previous theoretical works analyzed mutational GP with the
c© Springer Nature Switzerland AG 2018
A. Auger et al. (Eds.): PPSN 2018, LNCS 11102, pp. 42–54, 2018.
https://doi.org/10.1007/978-3-319-99259-4_4

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-99259-4_4&domain=pdf

Destructiveness of Lexicographic Parsimony Pressure 43

offspring produced by varying a single parent, we analyze a GP algorithm
employing a simple crossover with the offspring produced from two parents.
Although our crossover is far from practical applications of GP (it merely con-
catenates the two parent trees), this simple setting aims at understanding the
interplay between (our variant of) crossover, the problem of bloat and lexico-
graphic parsimony pressure, a method for bloat control introduced in [14]. Other
theoretical work in GP has analyzed different problems and phenomena, in par-
ticular for the Probably Approximately Correct (PAC) learning framework [10],
the Max-Problem [5,11,13] as well as Boolean functions [15,16,18].

For the effects of bloat in the sense of redundant parts in the tree, we draw
on previous theoretical works that analyzed this phenomenon, especially [2,19].
In these, the fitness function Majority as introduced in [6] was analyzed. Indi-
viduals for Majority are binary trees, where each inner node is labeled J
(short for join, but without any associated semantics) and leaves are labeled
with variable symbols; we call such trees GP-trees. The set of variable sym-
bols is {x1, . . . , xn} ∪ {x1, . . . , xn}, for some n. In particular, variable symbols
are paired: xi is paired with xi. For Majority, we call a variable symbol xi

expressed if there is a leaf labeled xi and there are at least as many leaves
labeled xi as there are leaves labeled xi; the positive instances are in the major-
ity. The fitness of a GP-tree is the number of its expressed variable symbols
xi. This setting captures two important aspects of GP: variable length repre-
sentations and that any given functionality can be achieved by many different
representations. However, the tree-structure, typically crucial in GP problems,
is completely unimportant for the Majority function.

Table 1. Overview of the results of the paper. A check mark denotes optimization in
polynomial time with high probability, a cross denotes superpolynomial optimization
time. A check mark with a subscript e denotes the results obtained experimentally.

Problem class Local search Crossover

w/bloat control w/o bloat control w/bloat control

+c-Majority × Theorem 1 e Figure 2 Theorem 10

2/3-Majority Theorem 2 e Figure 2 Theorem 10

2/3-SuperMajority Theorem 5 × Theorem 6 Theorem 13

We know that Majority can be efficiently optimized by a mutational GP
called (1 + 1) GP (see Algorithm 1 for details, basically performing a random-
ized local search). This holds in the case preferring shorter representations by
lexicographic parsimony pressure, as shown in [19], as well as in the case without
such preference [2]. Similar to recent literature on theory of GP, we will consider
lexicographic parsimony pressure as our method of bloat control and henceforth
only speak of bloat control to denote this method. We note, however, that the
GP literature knows many more methods for controlling bloat which is beyond
the scope of our theoretical analysis.

44 T. Kötzing et al.

In addition to weighted versions of Majority, another, similar fitness func-
tion Order (see also [3,20]) has been considered, but neither of these provide
us with a strong differences in the optimization behavior of different GP algo-
rithms. Thus, we propose three variants of Majority, called +c-Majority,
2/3-Majority and 2/3-SuperMajority, which negatively affect the optimiza-
tion of certain GP algorithms.

For +c-Majority a variable is expressed if its positive literals are not only
in the majority, but also there has to be at least c more positive than negative
literals. On the one hand, we show that a random GP-tree with a linear number
of leaves expresses any given variable with constant probability . On the other
hand, with constant probability such a tree has a majority of negative literals
of any given variable (indeed, there is a constant probability that the variable
has neither positive nor negative literals in the GP-tree). This yields a plateau
of equal fitness which can only be overcome by adding c positive literals, i.e.,
we need a rich set of neutral mutations that allow genetic drift to happen.
Bloat control suppresses this genetic drift by biasing the search towards smaller
solutions. Specifically, it may not allow to add positive literals one by one, which
results in an infinite run time (see Lemma 1). Note that allowing the local search
to add c leaves at the same time still results only in a small chance of O(n−c)
of jumping the plateau. Hence, the +c-Majority fitness function serves as an
example where bloat control explicitly harms the search.

For 2/3-Majority, a variable is expressed if its positive literals hold a 2/3
majority, i.e., if 2/3 of all its literals are positive. The fitness associated with 2/3-
Majority is the number of expressed variables while for 2/3-SuperMajority
each expressed variable contributes a score between 1 and 2, where larger majori-
ties give larger scores (see Sect. 2 for details). The variant 2/3-SuperMajority
is utilized to aggravate the effect of bloat since it rewards large numbers of (pos-
itive) literals. We show that local search with bloat control is efficient for these
two problems (Theorems 2 and 5). However, without bloat control local search
fails on 2/3-SuperMajority due to bloat (see Theorem 6).

Regarding optimization without bloat control, we obtain experimental results
as depicted in Fig. 2. They provide a strong indicator that, when no bloat con-
trol is applied, optimization of +c-Majority is efficient, in contrast to the case
of bloat control. The trend for 2/3-Majority indicates that optimization pro-
ceeds significantly more slowly without bloat control than with bloat control.
Nevertheless, optimization seems to be feasible in contrast to the case of 2/3-
SuperMajority.

Subsequently, we study a simple crossover which works as follows. The algo-
rithm maintains a population of λ individuals, which are initialized randomly
before a local search with bloat control is performed for a number of iterations.
As a local search we employ the (1 + 1) GP, a simple mutation-only GP which
iteratively either adds, deletes, or substitutes a vertex of the tree. We employ this
algorithm for a number of rounds large enough to ensure that each vertex of the
tree has been considered for deletion at least once with high probability, which
aims at controlling bloat. Afterwards, the optimization proceeds in rounds; in

Destructiveness of Lexicographic Parsimony Pressure 45

each round, each individual t0 is mated with a random other individual t1 by
joining t0 and t1 to obtain a tree t′ which contains both t0 and t1; then local
search is performed on t′ as before yielding a tree t′′. If t′′ is at least as fit as
t0, we replace t0 in the population by t′′. The algorithm is called Concatenation
since it joins two individuals, which is basically a concatenation. It is different
from other approaches for memetic crossover GP as found, for example, in [4].
Note that this crossover is very different from GP crossovers found in the lit-
erature because of its almost complete disregard for the tree structure of the
individuals. However, this crossover already highlights some benefits which can
be obtained with crossover, and it has the great advantage of being analyzable.

We show that the Concatenation Crossover GP with bloat control efficiently
optimizes all three test functions +c-Majority, 2/3-Majority as well as 2/3-
SuperMajority, due to its ability to combine good solutions (see Theorem10).
We summarize our findings in Table 1.

In Sect. 2 we state the formal definitions of algorithms and problems, as well
as the mathematical tools we use. Section 3 gives the results for local search with
bloat control, Sect. 4 for local search without bloat control and Sect. 5 for the
Concatenation Crossover GP. In Sect. 6 we show and discuss our experimental
results, before Sect. 7 concludes the paper.

Due to space restrictions, we only provide sketches for the proofs. A full
version of the paper can be found at https://arxiv.org/abs/1805.10169.

2 Preliminaries

For a given n we let [n] = {1, . . . , n} be the set of variables. The only non-
terminal (function symbol) is J of arity 2; the terminal set X consists of 2n
literals, where xi is the complement of xi:

F := {J}, J has arity 2, X := {x1, x1, . . . , xn, xn}.

For a GP-tree t, we denote by S(t) the set of leaves in t. By S+
i (t) and S−

i (t)
we denote the set of leaves that are xi-literals and xi-literals, respectively, and by
Si(t) := S+

i (t)∪S−
i (t) we denote the set of all i-literals. By S+(t) :=

⋃n
i=1 S+

i (t)
and S−(t) :=

⋃n
i=1 S−

i (t) we denote the set of all positive and negative leaves,
respectively. We denote the sizes of all these sets by the corresponding lower case
letters, i.e., s(t) := |S(t)|, si(t) := |Si(t)|, etc. In particular, we refer to s(t) as
the size of t.

On the syntax trees, we analyze the problems +c-Majority, 2/3-Majority,
and 2/3-SuperMajority, which are defined as

+c-Majority := |{i ∈ [n] | s+i ≥ s−
i + c}| ;

2/3-Majority := |{i ∈ [n] | si ≥ 1 and s+i ≥ 2
3si}| ;

2/3-SuperMajority :=
n∑

i=1

fi, where fi :=

{
0 , if si = 0 or s+i < 2

3si,

2 − 2s−
i −s+

i , otherwise.

https://arxiv.org/abs/1805.10169

46 T. Kötzing et al.

We call a variable contributing to the fitness expressed. Since both +c-
Majority and 2/3-Majority count the number of expressed variables, they
take values between 0 and n. The function 2/3-SuperMajority is similar to
2/3-Majority, but if a 2/3 majority is reached 2/3-SuperMajority awards a
bonus for larger majorities: the term fi grows with the difference s+i − s−

i . Since
fi ≤ 2, the function 2/3-SuperMajority takes values in [0, 2n]. Note that the
value 2n can never actually be reached, but can be arbitrarily well approximated.

In this paper we consider simple mutation-based genetic programming algo-
rithms which use a modified version of the Hierarchical Variable Length (HVL)
operator [21,22] called HVL-Prime as discussed in [3]. HVL-Prime allows trees
of variable length to be produced by applying three different operations: insert,
delete and substitute (see Fig. 1). Each application of HVL-Prime chooses one
of these three operations uniformly at random. We note that the literature also
contains variants of the mutation operator that apply several such operations
simultaneously (see [3,20]).

Given a GP-tree t, mutate t by applying HVL-Prime. For each application, choose
uniformly at random one of the following three options.

substitute Choose a leaf uniformly at random and substitute it with a leaf in X
selected uniformly at random.

insert Choose a node v ∈ X and a leaf u ∈ t uniformly at random. Substitute
u with a join node J , whose children are u and v, with the order of the
children chosen uniformly at random.

delete Choose a leaf u ∈ t uniformly at random. Let v be the sibling of u. Delete
u and v and substitute their parent J by v.

Fig. 1. Mutation operator HVL-Prime.

The first algorithm we study is the (1 + 1) GP. The algorithm is initialized
with a tree generated by sinit random insertions. Afterwards, it maintains the
best-so-far individual t. In each round, it creates an offspring of t by mutation.
This offspring is discarded if its fitness is worse than t, otherwise it replaces t.
We recall that the fitness in the case with bloat control contains the size as a
second order term. Algorithm 1 states the (1 + 1) GP more formally.

Algorithm 1. (1 + 1) GP with mutations according to Figure 1
1 Let t be a random initial tree of size sinit;
2 while optimum not reached do
3 t′ ← mutate(t);
4 if f(t′) ≥ f(t) then t ← t′;

Destructiveness of Lexicographic Parsimony Pressure 47

2.1 Crossover

The second algorithm we consider is population-based. When introduced by
Koza [12], Genetic Programming used fitness-proportionate selection and a
genetic crossover, however mutation was hardly considered. In subsequent works
many different setups for the crossover operator were introduced and studied. For
instance, in [21] combinations of GP with local search in the form of mutation
operators were studied and yielded better performance than GP.

Usually, two parents (a current solution and a mate) are used to generate
a number of offspring. These offspring are a recombination of the alleles from
both parents derived in a probabilistic manner. By modeling each individual as
a GP-tree, a crossover-point in both parents is decided upon due to a heuristic
and the subtrees attached to these points are exchanged creating new GP-trees.

In the Crossover hill climbing algorithm first described by Jones [7,8] only one
GP-tree is created from the current solution and a random mate. This offspring
is evaluated and replaces the current solution if the fitness is not worse.

We consider the following simple crossover: the Concatenation Crossover GP
working as follows (see also Algorithm 2). For a fixed population of GP-trees,
each GP-tree is chosen to be the parent once. For each parent we choose a mate
uniformly at random from the population and create one offspring by joining
the two trees using a new join-node. Before evaluating the offspring, we employ
a local search in the form of the (1 + 1) GP with bloat control. This local search
is performed for a fixed amount of iterations before we discard the GP-tree with
worse fitness. The fixed amount depends on the size of the tree and ensures the
absence of redundant leaves with high probability (see Lemma11). We note that
the amount of redundant leaves depends on the function to be optimized. The
functions we studied are variants of Majority, for other functions the amount
of iterations ensuring the absence of redundant leaves might be different.

The initial population is generated by creating λ random trees of size sinit
and employing the local search on each of them. We then proceed in rounds of
crossover as described above. We note that we assume all crossover operations
to be performed in parallel. Hence, the new population is based entirely on the
old population and not partially on previously generated individuals of the new
generation.

2.2 Terminology

For the analysis, it will be helpful to partition the set of leaves into three classes
as follows. The set C+(t) ⊆ S+(t) of positive critical leaves is the set of leaves
u, whose deletion from the tree results in a decreased fitness. Similarly, the set
C−(t) ⊆ S−(t) of negative critical leaves is the set of leaves u, whose deletion
from t results in an increased fitness. Finally, the set R(t) := [n]\(C+(t) ∪ C−(t))
of redundant leaves is the set of all leaves u, whose deletion from t does not affect
the fitness. Similar as before, we denote c−(t) = |C−(t)|, c+(t) = |C−(t)|, and
r(t) = |R(t)|.

48 T. Kötzing et al.

Algorithm 2. Concatenation Crossover-GP
1 Let LS(t) denote local search by the (1 + 1) GP with bloat control on tree t for

90s log s steps, where s is the number of leaves in t;
2 for i = 1 to λ do
3 Let ti be a random initial tree of size sinit;
4 ti ← LS(ti);

5 while optimum not reached do
6 for i = 1 to λ do
7 Choose m ∈ {1, . . . , λ} \ {i};
8 t′

i ← join(ti, tm);
9 t′′

i ← LS(t′
i);

10 if f(t′′
i) ≥ f(ti) then ti ← t′′

i ;

Given a time τ ≥ 0, we denote by tτ the GP-tree after τ iterations of
the algorithm. Additionally, we use S(τ), s(τ), Si(τ), . . . in order to denote
S(tτ), s(tτ), Si(tτ), Moreover, we apply the standard Landau notation O(·),
o(·), Ω(·), ω(·), Θ(·) as detailed in [1].

3 (1+1) GP with Bloat Control

In this section we study how local search with bloat control performs on the given
fitness functions. Theorem 1 shows that for small initial trees +c-Majority
cannot be efficiently optimized, while Theorem 2 shows that this is possible for
2/3-Majority. Finally, Theorem 5 considers 2/3-SuperMajority.

Theorem 1. Consider the (1+ 1) GP on +c-Majority with bloat control on
the initial tree with size sinit < n. If c > 1, with probability equal to 1, the
algorithm will never reach the optimum.

The proof is based on an optimal GP-tree for +c-Majority needing cn
leaves, but bloat control does not allow to add leaves without fitness gain.

Next we state the upper bound for the performance on 2/3-Majority. The
proof of Theorem2 is almost identical to the one of Theorem 4.1 in [2], the
bounds stated in Lemma 4.2 and Lemma 4.1 in [2] need to be suitably adjusted,
since these do not hold for 2/3-Majority.

Theorem 2. Consider the (1+ 1) GP on 2/3-Majority with bloat control on
the initial tree with size sinit. The expected time until the algorithm computes the
optimum is in O(n log n + sinit).

Corollary 3. Consider the (1+ 1) GP on 2/3-Majority with bloat control on
the initial tree with size sinit < n. The expected time until the algorithm computes
the optimum is in O(n log n).

Destructiveness of Lexicographic Parsimony Pressure 49

We turn to 2/3-SuperMajority with Theorem 5. The proof is based on the
following lemma showing that redundant leaves will be removed with sufficient
probability. Hence, insertions of positive literals can increase fitness.

Lemma 4. Consider the (1+ 1) GP on 2/3-SuperMajority with bloat control
with n ≥ 55 on the initial tree with size sinit < n. With probability at least
1 − (τ/(n log2 n))−1/(1+4/

√
log n) the algorithm will delete any given negative leaf

of the initial tree within τ ≥ n log2 n rounds. For a positive redundant leaf, with
the same probability it will either be deleted or turned into a positive critical leaf.

Theorem 5. Consider the (1+ 1) GP on 2/3-SuperMajority with bloat con-
trol on an initial tree with size sinit < n, and let ε > 0. Then, the algorithm will
express every literal after n2+ε iterations with probability 1 − o(1).

4 (1+1) GP Without Bloat Control

In this section we study the fitness function 2/3-SuperMajority, which facil-
itates bloat of the string.

Theorem 6. For any constant ν > 0, consider the (1+ 1) GP without bloat
control on 2/3-SuperMajority on the initial tree with size sinit = νn. There
is ε = ε(ν) > 0 such that, with probability 1 − o(1), an ε−fraction of the indices
will never be expressed. In particular, the algorithm will never reach a fitness
larger than (2 − 2ε)n.

We commence with some preparatory lemmas before proving the theorem.
First, we analyze how the size of the GP-tree evolves over time. We recall that
s(τ) is the number of leaves of the GP-tree at time τ .

Lemma 7. There is a constant 0 < η ≤ 1 such that, with probability 1 − o(1),
for all τ ≥ 0 we have s(τ) ≥ ητ .

In order to continue we need some more terminology. For an index i ∈ [n],
we recall that s+i (τ) and s−

i (τ) denote the number of xi- and xi-literals at time
τ , respectively, and si(τ) := s+i (τ) + s−

i (τ). We call index i touched in round τ ,
if a literal xi or xi is deleted, inserted or substituted, or if a literal is substituted
by xi or xi. We call the touch increasing if it is either an insertion or if a literal
is substituted by xi or xi. We call the touch decreasing if it is a deletion or
substitution of a xi or xi literal. We note that in exceptional cases a substitution
may be both increasing and decreasing. Let ρi(τ) be the number of increasing
touches of i up to time τ . We call a decreasing step critical if it happens at time
τ with si(τ) ≤ ητ/(4n), and we call γi(τ) the number of critical steps up to time
τ . Finally, we call a round accepting if the offspring is accepted in this round.

The approach for the remainder of the proof is as follows. First, we will show
that in the regime, where critical steps may happen (i.e, si(τ) ≤ ητ/(4n)), it is
more likely to observe increasing than decreasing steps. The reason is that a step
is only critical if there are relatively few i-literals, in which case it is unlikely to

50 T. Kötzing et al.

delete or substitute one of them, whereas the probability to insert an i-literal
is not affected. It will follow that si(τ) grows with τ , since otherwise we would
need many critical steps. Finally, if si(τ) keeps growing it becomes increasingly
unlikely to obtain a 2/3 majority. In order to state the first points more precisely
we fix a j0 ∈ N and call an index i bad (or more precisely, j0-bad) if the following
conditions hold: for all τ ≥ j0n and τ0 := j0n

(A) s+i (τ0) ≤ s−
i (τ0) ≤ j0 (B) τ/(2n) ≤ ρi(τ) ≤ 2τ/n

(C) γi(τ) ≤ 2τ/n (D) si(τ) ≥ ητ/(8n).

In particular, in (A) xi is not expressed at time τ0.

Lemma 8. For every fixed i0 > 0, with probability 1 − o(1) there are Ω(n) bad
indices.

Lemma 9. Every bad index has probability Ω(1) that it is never expressed, inde-
pendent of the other bad indices.

We note that Lemmas 8 and 9 imply Theorem 6 by a straightforward application
of the Chernoff bound.

5 Concatenation Crossover GP

In the following we will study the performance of the Concatenation Crossover
GP (Algorithm 2) on +c-Majority and 2/3-Majority with bloat control. As
observed in Theorem 1 the (1 + 1) GP with bloat control may never reach the
optimum when optimizing an initial tree of size sinit < n. We will deduce that
crossover solves this issue and the algorithm reaches the optimum fast. We com-
mence this section by stating the exact formulation of the mentioned result in
Theorem 10 followed by an outline of its proof. Finally, we show the correspond-
ing result for 2/3-SuperMajority in Theorem 13.

Theorem 10. Consider the Concatenation Crossover GP on +c-Majority or
2/3-Majority with bloat control on the initial tree with size 2 ≤ n/2 ≤ sinit ≤
b n (for constant b > 0). Then there is a constant cλ > 0 such that for all
cλ log n ≤ λ ≤ n2, with probability in (1 − O(n−1)), the algorithm reaches the
optimum after at most O(n log3(n)) steps.

The following two auxiliary lemmas are used to proof the theorem. Here,
they serve towards an outline of the proof. First, Lemma11 states the absence
of redundant leaves in a GP-tree t after the local search with a probability of
1 − n−5. This will be applied after every local search. We observe for two GP-
trees t1 and t2 without redundant leaves: if t′ is the tree resulting from joining
t1 and t2, then a variable i ∈ [n] is expressed in t′ if and only if it is expressed
in t1 or t2.

Second, Lemma 12 states that, with a probability of 1−n−5, each variable i ∈
[n] is expressed in at least one of λ/2 trees before the first crossover. Combining
both lemmas, for a fixed GP-tree t it will suffice to observe the time until t has
been joined with at least λ/2 different trees.

Destructiveness of Lexicographic Parsimony Pressure 51

Lemma 11. Consider the (1+ 1) GP with bloat control on either +c-Majority
or 2/3-Majority. For an initial tree with size 2 ≤ n/2 ≤ sinit ≤ bn (for
constant b > 0) after 90sinit log(sinit) iterations, with probability at least 1−n−5,
the current solution will have no redundant leaves.

Lemma 12. Consider the Concatenation Crossover GP on +c-Majority or
2/3-Majority with bloat control on initial trees with size 2 ≤ n/2 ≤ sinit ≤ b n
(for constant b > 0). Then there is a constant cλ > 0 such that for all λ ≥
cλ log n, with probability at least 1 − n−5, each variable will be expressed in at
least one of λ/2 trees before the first crossover.

Finally, we turn to 2/3-SuperMajority. For the proof we use a result from
the area of rumor spreading relating to the pull protocol [9,17] in order to study
the time until every individual of the population has every variable expressed.
The idea here is similar to previous proofs with crossover: expressed variables
can be collected with crossover. For this purpose we show that the number of xi

in individuals, which have a variable i expressed, is asymptotically larger than
the number of xi in individuals, which do not have i expressed.

Theorem 13. Consider the Concatenation Crossover GP without substitutions
with bloat control with initial tree size sinit = n/2 on 2/3-SuperMajority.
Then there is a constant cλ > 0 such that, for λ = cλ log n, each GP-tree in
the population has all variables expressed after at most O(n1+o(1)) steps with
probability at least 1 − O(n−4).

6 Experiments

This section is dedicated to complementing our theoretical results with experi-
mental justification for the otherwise open cells of Table 1, i.e. for the (1 + 1) GP
without bloat control on +c-Majority and 2/3-Majority.

All experimental results shown in Fig. 2 are box-and-whiskers plots, where
lower and upper whiskers are the minimal and maximal number of fitness eval-
uations the algorithm required over 100 runs until all variables are expressed or
the time limit of 1000000 evaluations is reached. The middle lines in each box
are the median values (the second quartile), the bottom and top of the boxes
are the first and third quartiles. Note that all experiments are platform indepen-
dent since we count number of fitness evaluations independently of real time.
The solid lines in the plots allow to estimate the asymptotic run time of the
(1 + 1) GP.

The left hand side of Fig. 2 concerns +c-Majority and shows that the
(1 + 1) GP with bloat control always fails (corresponding to Theorem1). We
used the (1 + 1) GP with sinit = 10n, c = 2 and n as indicated along the
x-axis. It is easy to see that bloat control leads the algorithm to local optima
and does not allow to leave it, whereas the (1 + 1) GP without bloat control finds
an optimum in a reasonable number of evaluations. Due to time and computa-
tional restrictions the constant c was chosen equal to 2. For larger c the run time
of the algorithm goes up significantly, but a similar pattern is visible.

52 T. Kötzing et al.

100 200 300 400 500 600 700 800 9001000

0

0.2

0.4

0.6

0.8

1

·106

n, number of variables

(1+1) GP with bloat control
(1+1) GP without bloat control

100 200 300 400 500 600 700 800 9001000

0

1

2

3

·105

n, number of variables

nu
m
be

r
of

ev
al
ua

ti
on

s

nu
m
be

r
of

ev
al
ua

ti
on

s

(1+1) GP without bloat control
(1+1) GP with bloat control

Fig. 2. Number of evaluations required by the (1 + 1) GP over 100 runs for each n
with the initial tree size sinit = 10n until all variables are expressed or the time limit,
equal to 1000000 evaluations, is reached. The left figure shows the experimental results
for +c − Majority with c = 2; the solid line is 28n log n. On the right figure is shown
2/3 − Majority; the blue solid line is 9n log n, the green solid line is 32n log n. (Color
figure online)

The right hand side of Fig. 2 shows the results of (1 + 1) GP on 2/3-
Majority, using sinit = 10n. One can see that bloat control is more efficient
in comparison with the (1 + 1) GP without bloat control. The set of median
values is well-approximated by w · n log n for a constant w, which leads us to
the conjecture that the algorithm’s run time is O(n log n). We did not analyze
the influence of sinit, but it might be significant especially for 2/3-Majority
without bloat control.

7 Conclusion

We defined three variants of the Majority problem in order to introduce some
fitness plateaus that are difficult to cross. The +c-Majority allows for progress
at the end of the plateau with large representation; in this sense, bloat is nec-
essary for progress. On the other hand, for 2/3-Majority, progress can be
made at the end of the plateau with small representation, so that bloat control
guides the search to the fruitful part of the search space. We also considered
2/3-SuperMajority which exemplifies fitness functions where bloat is inher-
ent due to the possibility of small improvements by adding an increasing amount
of nodes to the GP-tree. In this case we showed that not employing bloat control
leads to inefficient optimization.

In order to obtain results somewhat closer to practically relevant GP we
turned to crossover and showed how a Concatenation Crossover GP can effi-
ciently optimize all three considered test functions.

For future work it might be interesting to analyze the effect of other crossover
operators. In order to obtain a better understanding of such other operators,

Destructiveness of Lexicographic Parsimony Pressure 53

other test functions might be necessary making essential use of the tree structure
(all our test functions might as well use lists or even multisets of the leaves as
representations). Such test functions should not be too complex, which would
hinder a theoretical analysis, but still embody a structure frequently found in
GP, so as to inform about relevant application areas. The search for such test
functions remains a central open problem of the theory of GP.

References

1. Cormen, T.H., Leiserson, C.E., Rivest, R.L., Stein, C.: Introduction to Algorithms,
2nd edn. MIT Press, Cambridge (2001)

2. Doerr, B., Kötzing, T., Lagodzinski, J.A.G., Lengler, J.: Bounding bloat in genetic
programming. In: Proceedings of GECCO 2017, pp. 921–928. ACM (2017)

3. Durrett, G., Neumann, F., O’Reilly, U.M.: Computational complexity analysis of
simple genetic programming on two problems modeling isolated program semantics.
In: Proceedings of FOGA 2011, pp. 69–80 (2011)

4. Eskridge, B.E., Hougen, D.F.: Memetic crossover for genetic programming: evo-
lution through imitation. In: Deb, K. (ed.) GECCO 2004. LNCS, vol. 3103, pp.
459–470. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-24855-
2 57

5. Gathercole, C., Ross, P.: An adverse interaction between the crossover operator
and a restriction on tree depth. In: Proceedings of GP 1996, pp. 291–296 (1996)

6. Goldberg, D.E., O’Reilly, U.-M.: Where does the good stuff go, and why? How
contextual semantics influences program structure in simple genetic programming.
In: Banzhaf, W., Poli, R., Schoenauer, M., Fogarty, T.C. (eds.) EuroGP 1998.
LNCS, vol. 1391, pp. 16–36. Springer, Heidelberg (1998). https://doi.org/10.1007/
BFb0055925

7. Jones, T.: Crossover, macromutation, and population-based search. In: Proceedings
of ICGA 1995, pp. 73–80. Morgan Kaufmann Publishers Inc. (1995)

8. Jones, T.: Evolutionary algorithms, fitness landscape and search. Ph.D. thesis,
University of New Mexico (1995)

9. Karp, R.M., Schindelhauer, C., Shenker, S., Vöcking, B.: Randomized rumor
spreading. In: Proceedings of FOCS 2000, pp. 565–574 (2000)

10. Kötzing, T., Neumann, F., Spöhel, R.: PAC learning and genetic programming. In:
Proceedings of GECCO 2011, pp. 2091–2096 (2011)

11. Kötzing, T., Sutton, A.M., Neumann, F., O’Reilly, U.M.: The max problem revis-
ited: the importance of mutation in genetic programming. In: Proceedings of
GECCO 2012, pp. 1333–1340 (2012)

12. Koza, J.R.: Genetic programming: a paradigm for genetically breeding populations
of computer programs to solve problems. Technical report, Stanford, CA, USA
(1990)

13. Langdon, W.B., Poli, R.: An analysis of the MAX problem in genetic programming.
In: Proceedings of GP 1997, pp. 222–230 (1997)

14. Luke, S., Panait, L.: Lexicographic parsimony pressure. In: Proceedings of GECCO
2002, pp. 829–836 (2002)

15. Mambrini, A., Manzoni, L.: A comparison between geometric semantic GP and
cartesian GP for Boolean functions learning. In: Proceedings of GECCO 2014, pp.
143–144 (2014)

https://doi.org/10.1007/978-3-540-24855-2_57
https://doi.org/10.1007/978-3-540-24855-2_57
https://doi.org/10.1007/BFb0055925
https://doi.org/10.1007/BFb0055925

54 T. Kötzing et al.

16. Mambrini, A., Oliveto, P.S.: On the analysis of simple genetic programming for
evolving Boolean functions. In: Proceedings of EuroGP 2016, pp. 99–114 (2016)

17. Mercier, H., Hayez, L., Matos, M.: Optimal epidemic dissemination. CoRR
abs/1709.00198 (2017). http://arxiv.org/abs/1709.00198

18. Moraglio, A., Mambrini, A., Manzoni, L.: Runtime analysis of mutation-based
geometric semantic genetic programming on Boolean functions. In: Proceedings of
FOGA 2013, pp. 119–132 (2013)

19. Neumann, F.: Computational complexity analysis of multi-objective genetic pro-
gramming. In: Proceedings of GECCO 2012, pp. 799–806 (2012)

20. Nguyen, A., Urli, T., Wagner, M.: Single- and multi-objective genetic program-
ming: new bounds for weighted ORDER and MAJORITY. In: Proceedings of
FOGA 2013, pp. 161–172 (2013)

21. O’Reilly, U.M.: An analysis of genetic programming. Ph.D. thesis, Carleton Uni-
versity, Ottawa, Canada (1995)

22. O’Reilly, U.-M., Oppacher, F.: Program search with a hierarchical variable length
representation: genetic programming, simulated annealing and hill climbing. In:
Davidor, Y., Schwefel, H.-P., Männer, R. (eds.) PPSN 1994. LNCS, vol. 866, pp.
397–406. Springer, Heidelberg (1994). https://doi.org/10.1007/3-540-58484-6 283

http://arxiv.org/abs/1709.00198
https://doi.org/10.1007/3-540-58484-6_283

	Destructiveness of Lexicographic Parsimony Pressure and Alleviation by a Concatenation Crossover in Genetic Programming
	1 Introduction
	2 Preliminaries
	2.1 Crossover
	2.2 Terminology

	3 (1+1) GP with Bloat Control
	4 (1+1) GP Without Bloat Control
	5 Concatenation Crossover GP
	6 Experiments
	7 Conclusion
	References

