
Exploration and Exploitation Without
Mutation: Solving the Jump Function

in Θ(n) Time

Darrell Whitley1(B), Swetha Varadarajan1, Rachel Hirsch1,
and Anirban Mukhopadhyay2

1 Colorado State University, Fort Collins, CO 80523, USA
{whitley,swetha.varadarajan,rachel.hirsch}@colostate.edu

2 University of Kalyani, Kalyani, Nadia 741235, West Bengal, India
anirban@klyuniv.ac.in

Abstract. A number of modern hybrid genetic algorithms do not use
mutation. Instead, these algorithms use local search to improve inter-
mediate solutions. This same strategy of combining local search and
crossover is also used by stochastic local algorithms, such the LKH heuris-
tic for the Traveling Salesman Problem. We prove that a simple hybrid
genetic algorithm that uses only local search and a form of deterministic
“voting crossover” can solve the well known Jump Function in Θ(n) time
where the jump distance is log(n).

1 Introduction

The Jump function is a function of unitation that uses the OneMax(x) function
as an intermediate form in the construction of the evaluation function. Functions
of unitation [15,16] are pseudo-Boolean functions where all bit string inputs that
have the same number of 1 bits have exactly the same evaluation. The Jump
evaluation function first computes OneMax(x), the number of 1 bits in string
x. A “gap” or“moat” is then created that the search must jump across to reach
the global optimum, where the global optimum is the string of all 1 bits [1].

This paper proposes a novel approach to solving the Jump function. A hybrid
genetic algorithm is used that improves the population using local search. The
hybrid genetic algorithm also uses a form of multi-parent recombination. This
hybrid genetic algorithm easily solves instances of the Jump function in Θ(n)
time when the jump distance is log(n). The use of a hybrid genetic algorithm
is, in fact, common practice in that part of the evolutionary computation com-
munity concerned with real world applications. Furthermore, if local search can
provide diversity, there is no need for mutation. Many highly effective evolution-
ary algorithms do not use mutation. Thus, a meta-level goal of this work is to
make theory more relevant to the community as a whole by focusing on hybrid
genetic algorithms, the aggressive use of recombination, and the role of diversity
in genetic algorithms.

c© Springer Nature Switzerland AG 2018
A. Auger et al. (Eds.): PPSN 2018, LNCS 11102, pp. 55–66, 2018.
https://doi.org/10.1007/978-3-319-99259-4_5

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-99259-4_5&domain=pdf


56 D. Whitley et al.

2 Background and Basics

Let x denote a bit string, let n denote string length, and let m be width of the
gap that must be jumped to reach the global optimum. The Jump function is
then defined as follows.

Jumpm,n(x) =

⎧
⎨

⎩

m + OneMax(x) if OneMax(x) ≤ (n − m)
or OneMax(x) = n

n − OneMax(x) otherwise

where OneMax(x) denotes the number of 1 bits in string x. The Jumpm,n

function is illustrated in the left side of Fig. 1. Another way to think about
the Jump function is also shown in the right side of Fig. 1. The Jump function
represents a worst case situation in as much as the global optimum is located on a
single point surrounded by a moat (the “gap” that must be jumped). Otherwise,
the entire landscape is a symmetric hill. We can think of the edge of the “moat”
as being a ridge encircling the global optimum, since all points at the edge of
the moat have the same evaluation. There are Choose(n,m) points in the search
space at the edge of the moat. The local optima at the edge of the moat are not
a connected plateau under 1 bit flip, since flipping 1 bit increases or decreases
the number of 1 bits in the string. Thus all of the Choose(n,m) points at the
edge of the “moat” are distinct local optima. But the same level set of points
are a single connected plateau under a 2 bit flip neighborhood operator.

Under “Black Box Complexity” the number of calls to the evaluation function
is typically used in place of the true runtime cost. In this paper we consider the
true runtime cost. Under normal black box optimization, each execution of the
Jump evaluation function takes Θ(n) time, since one must count all of the 1
bits in string x in order to compute OneMax(x). However, we can also create
an incremental, partial evaluation function that will execute in Θ(1) time.

We create an auxillary function Jumpm,n(x) = Jump1m,n(x′
i, eval(x′))

where string x is created by flipping the bit x′
i in string x′ to generate string x,

and eval(x′) = Jumpm,n(x′) stores the evaluation of string x′.
This will allow us to create alternative implementations of OneMax where

we invert the eval(x′) = Jumpm,n(x′) function to calculate OneMax(x’).

OneMax(x′) =
{

Jumpm,n(x′) − m if Jumpm,n(x′) > m
n − Jumpm,n(x′) otherwise

We can then create an incremental update to calculate OneMax(x).

OneMax(x) =
{

OneMax(x′) + 1 if x′
i = 0

OneMax(x′) − 0 otherwise

Lemma 1. An incremental implementation of the Jump evaluation function can
be executed in Θ(1) time when evaluating Jumpm,n(x) = Jump1m,n(x′

i, eval(x′))
assuming eval(xi) is given, and x and x′

i are Hamming distance 1 apart.



Solving the Jump Function Without Mutation 57

Fig. 1. An instance of the Jumpm,n(x) function, with m = 10 and n = 50 is shown on
the left. Another way of visualizing the Jump function is shown on the right. The global
optimum is at the center of a hill, surrounded by a “moat”. At the edge of the moat
(shown in red) are Choose(n, m) local optima under a single bit-flip neighborhood with
exactly the same evaluation. For crossover to be effective, there must be a diverse set
of solutions distributed along the edge of the moat. (Color figure online)

Proof. Assuming eval(x′
i) is given, then the Jumpm,n(x′) function can be

inverted in order to compute OneMax(x′) in Θ(1) time. OneMax(x) can be
computed in Θ(1) time given x′

i and the OneMax(x′) evaluation. The original
Jump function now executes in Θ(1) time given the OneMax(x) evaluation. �

2.1 Jansen’s and Wegener’s Classic Result

The Jump function suggests two very simple questions: given a multi-modal,
nonlinear function, can an evolutionary algorithm jump across short barriers in
the search space? Second, can crossover be useful in solving this class of functions,
or any other class of functions?

Jansen and Wegener [1] prove that a (1 + 1)ES using a mutation rate of
1/n and a gap of m bits has an expected running time of Θ(nm + n log n).
They then consider a relatively standard steady state genetic algorithm, with
two restrictions. First, they disallow duplicate strings, meaning that the same
string cannot occur in the population more than once. Second, the crossover
probabilities were unusually small.

When a genetic algorithm moves along a trajectory from a randomly gener-
ated population to a location on the edge of the moat, it tends to converge to a
small localized region on the edge of the moat because the population has lost
diversity. But for crossover to jump across the moat, the population must be
diverse. In effect, the population needs to surround the moat.

After the population reaches the edge of the moat, mutation must be high
enough to scatter and spread the population around the edge of the moat. At
the same time, crossover and selection must be low enough to allow this increase
in diversity. Thus, as stated by Jansen and Wegener, only in the final phase of



58 D. Whitley et al.

search is crossover critical. They provide the following expected running time
for their genetic algorithm:

Θ(μn(m(n)2 + log(μn)) + 22m(n)/pc)

where μ is the population size, and pc is the probability of crossover.

3 Hybrid Genetic Algorithms

The work of Jansen and Wegener was groundbreaking. However, there is still a
tendency in the theory community to overly focus on the (1+1)ES, or Holland’s
Simple Genetic Algorithm.

We consider instead a “hybrid genetic algorithm” or“memetic algorithm”
[11] where the population is improved by applying local search to all of the
individuals in the population every generation. We will use the “next ascent bit
climber” introduced by Dave Davis [4] to the genetic algorithm community. The
next ascent bit climber generates a random permutation, then flips the bits in the
order indicated by the permutation. The “next ascent bit climber” accepts each
improvement as it is found. After every bit has been flipped once, the process is
repeated with a new permutation until a local optimum is reached.

In the case of the Jump function, the initial population that is improved by
local search will either (1) include the global optimum by chance, or (2) reaches
the global optimum by improving a randomly sampled string adjacent to the
global optimum, or (3) all of the strings are at the edge of the “moat”. Sampling
the global optimum by chance occurs with probability 1/2n per sample. Sampling
a point adjacent to the global optimum occurs with probability n/2n; however,
the probability that “next ascent” will select exactly the right bit to improve
first is only 1/n. Thus, we will conservatively assume the global optimum is not
found without recombination.

Lemma 2. Assume a random initial population has been generated that is then
improved by the “next ascent bit climber” local search. Assuming the global opti-
mum is not generated randomly, or discovered by local search, then any constant
size population improved by using the “next ascent bit climber” will be uniformly
distributed around the edge of the “moat” in Θ(n) time.

Proof. It requires Θ(n) time to evaluate each member of the initial population
using a standard (not incremental) form of the Jumpm,n(x) function. Assuming
the population size is bounded by a constant, the initial population is evaluated
in Θ(n) time. Next, a Θ(1) implementation of the Jump function can be used to
implement local search. Because “next ascent bit climber” tries every bit in the
string once before flipping any bit a second time, the bit climber must reach the
edge of the moat in at most n evaluations for every string in the population. We
can confirm the point is a local optimum by attempting another n bit flips. Since
each initial string was randomly selected, and the order of improving moves is
randomized as well, local search is equally likely to yield any point on the edge
of the moat. This work requires Θ(n) time. �



Solving the Jump Function Without Mutation 59

3.1 Deterministic Crossover: 3-Parent Voting Crossover

A number of simple test problems can be solved by exploiting low level hyper-
plane information. This is also true for the Jump function; it is trivial to compute
the averages of the first order hyperplane subspaces for functions of unitation,
and it is trivial to prove that any order-1 hyperplane with a single 1 bit in any
position is better on average than any order-1 hyperplane with a single 0 bit in
any position for the Jump function. Any crossover operator that can effectively
exploit first order hyperplane averages has a clear advantage.

Recently, a number of deterministic crossover operators have been proven to
be highly effective on classic NP-Hard problems. The partition crossover operator
has produced excellent results on large, one million variable NK-Landscapes
[2,17] without using mutation. The LKH search algorithm for the TSP also uses
Iterative Partial Transcription (IPT) [9,10,12]. In the area of scheduling, Deb
and Myburgh [5] used a deterministic form of block crossover and deterministic
repair operators (which they call “mutation” operators) to generate near optimal
solutions to one billion variable cast scheduling problems. All of these algorithms
use deterministic crossover operators to solve classic NP-Hard problems but none
of these very modern evolutionary algorithms uses random mutation operators.

Perhaps the best operator for exploiting low level hyperplane information
is “Voting Crossover.” Voting crossover uses an odd number of parents (e.g., 3
parents), and then each parent “votes” for a 1 bit or a 0 bit in every bit posi-
tion, where the majority wins. Thus, the result is deterministic. This operator
was first introduced at the PPSN conference in a highly cited paper by Eiben et
al. in 1994 [6]. It was given the name “Occurrence Based Scanning” crossover,
and in its most general form it could use any number of parents. (We argue
that the name “Voting Crossover” is more intuitive, more descriptive and eas-
ier to remember.) A randomized version of this crossover was also introduced
called “Uniform Scanning” crossover [6]. Under “Uniform Scanning” crossover,
the “vote” is interpreted probabilistically. For example, given 3 parents, if 2 par-
ents have a 1 bit and 1 parent has a 0 bit, then the 1 bit is inherited with 2/3
probability.

Eiben et al. [6] reported that multi-parent crossover operators yields superior
results on the classical DeJong test suite. On other benchmarks they considered,
the results were more mixed, but overall, multi-parent crossover operators were
competitive with classical operators such as 2 parent uniform crossover. A follow
up study also suggested that multi-parent crossover operators are more effective
on NK-Landscapes with low-epistasis [7]. This should not be surprising. One of
the problems with classical uniform crossover is that all bits that are shared are
inherited from the parents, but when the 2 parents differ, the bit assignment is
completely random. This means that uniform crossover just randomly picks a
string drawn from the largest hyperplane subspace that contains both parents.

We use 3 Parent Voting Crossover for two reasons. First, is very easy to math-
ematically characterize the outcome of using just 3 parents because crossover is
deterministic. Second, using just 3 parents allows for some diversity to remain in
the search process and the population; using 5 parents or 7 parents would create



60 D. Whitley et al.

more selection toward the bit pattern that (already) most commonly occurs in
the population in that particular position. This does not matter for the Jump
function, but could be important for other objective functions.

3.2 The Probability of Success (POS) for 3-Parent Voting Crossover

Lemma 3. Given 3 random parent strings with m 0 bits and (n − m) 1 bits
(strings on the edge of the gap), Voting Crossover yields the global optimum
with probability POS(n,m) for the Jump function, where:

POS(n,m) =
(n − m)!/(n − 3m)!

(n!/(n − m)!)2

Proof. Assume you have n buckets, and have m red marbles, m green marbles
and m blue marbles. We can use the red marbles to construct a bit string with
m bits of 0, and n − m 1 bits. Place each red marble in a random bucket that
does not already contain a red marble. This yields a bit string: a bucket without
a red marble is assigned a 1 bit, and a bucket with a red marble is assigned a 0
bit. A second string is constructed using the green marbles, and a third string
is constructed using the blue marbles.

After 3 strings are generated, if every bucket contains at most 1 marble then
3-parent voting crossover will jump to the global optimum: in every bit position
there is at most 1 vote (1 marble) for 0, and therefore 2 or more votes for 1.

Place the 1st red marble and 1st green marble and 1st blue marble randomly
into a bucket. The probability of zero conflicts for these 3 events is n/n · (n −
1)/n · (n − 2)/n because the marbles can go anywhere.

Place the 2nd red marble and 2nd green marble and 2nd blue marble ran-
domly into a bucket. The probability of zero conflicts for these 3 events is:

((n − 3)/(n − 1)) · ((n − 4)/(n − 1)) · ((n − 5)/(n − 1))

Generalizing, as each marble is placed, the enumerator is decreases by 1. But
the denominator is decreasing by 1 only after 1 marble of each color has been
placed, every 3 steps. This yields the following general result:

n!/(n − 3m)!
n!/(n − m)! · n!/(n − m)! · n!/(n − m)!

=
(n − m)!/(n − 3m)!

n!/(n − m)! · n!/(n − m)!

�

3.3 A Lower Bound on the Probabilities

An alternative way to calculate POS (equivalent by simple algebra) is as follows:

POS(n,m) =
(n − m)!/(n − 2m)!

n!/(n − m)!
· (n − 2m)!/(n − 3m)!

n!/(n − m)!



Solving the Jump Function Without Mutation 61

We will use this form to compute a simple but sufficient bound on the prob-
ability POS(n,m). Since there are m integers in the following sequence, we
automatically obtain the following result by taking the smallest number in the
enumerator and the largest number in the denominator.

(n − (2m − 1))m

nm
<

(n − m)!/(n − 2m)!
n!/(n − m)!

By identical logic:

(n − (3m − 1))m

nm
<

(n − 2m)!/(n − 3m)!
n!/(n − m)!

This yield a bound

(n − (2m − 1))m

nm
· (n − (3m − 1))m

nm
<

(n − m)!/(n − 2m)!
n!/(n − m)!

· (n − 2m)!/(n − 3m)!
n!/(n − m)!

See Fig. 2. From this bound, and we can obtain the following theorem:

Lemma 4. Assume m = Floor(log2(n)). Then for all positive integers:

Bound(POS(n, log2(n)) =
(n − (2m − 1))m

nm
· (n − (3m − 1))m

nm

is a non-decreasing function that converges in the limit to probability 1 for large
n. This function is a lower bound on POS(n, log2(n)).

Proof. When n is a power of 2, the following inequalities hold by simple algebra:

(n − (2m − 1))m

nm
<

(2n − (2(m + 1) − 1))(m+1)

(2n)(m+1)

and
(n − (3m − 1))m

nm
<

(2n − (2(m + 1) − 1))(m+1)

(2n)(m+1)

This is sufficient to prove the Bound function is non-decreasing.
Again assume that n is a power of 2. Now consider any integer n + x such

n < n + x < 2n where m is given by m = Floor(log2(n)). Then, by simple
algebra:

(n − (2m − 1))m

nm
<

((n + x) − (2m − 1))m

(n + 1)m

and
(n − (3m − 1))m

nm
<

((n + x) − (3m − 1))m

(n + 1)m

�



62 D. Whitley et al.

Fig. 2. The Probability of Success (POS) for Voting Crossover and the Lower Bound
on the Probability of Success. The true probability is not monotonic, but the Lower
Bound on the POS is a non-decreasing function that asymptotically converges to 1.0.

4 Probabilities and Populations

For Voting Crossover, even a single crossover yields a high probability of reaching
the global optimum (e.g., >50%) for n > 512. We can use the population to boost
that probability. But we will apply crossover more frequently than is normally the
case in a simple genetic algorithm. Because we are using 3-parent crossover, we
will allow each parent to be involved in up to 3 crossover events. This is related
to the concept of “Brood Selection”, where 2 parents can generate multiple
offspring. “Brood Selection” is critical to the highly successful EAX algorithm
for the Traveling Salesman Problem, where the number of offspring generated
each generation is typically 30 times the population size [13,14]. This allows
crossover to be utilized as an exploration operator.

We will assume each crossover event must be independent. For example, if
we recombine the three parents P1, P2, P3, we will then not allow the crossover
of parents P1, P2, P4, since P1 and P2 have already been paired in the previ-
ous crossover. For example, with a population size of 6, an independent set of
recombination events might include the following subsets of parents:

{{P1, P2, P3}, {P1, P4, P5}, {P2, P4, P6}, {P3, P5, P6}}
where each parent is involved in 2 recombination events, but no pair of parents
occurs in more than 1 recombination event. Let μ denote the population size and
let λ denote the number of offspring generated in one generation. Table 1 calcu-
lates the probabilities of discovering the global optimum in the first generation
of our hybrid genetic algorithm.

We next show both the theoretical results and empirical results based on
1000 runs of our hybrid genetic algorithm with Voting Crossover. Because our



Solving the Jump Function Without Mutation 63

Table 1. Theoretical probability analysis that the algorithm will converge to the global
maximum using 3 Parent Voting Crossover. A probability of “1” in this case means
that the probability is greater than 0.999999999. “μ” denoted population size, and λ
denoted the number of independent offspring generated.

N Bound Probability
(λ = 1)

μ = 7
(λ = 7)

μ = 11
(λ = 13)

μ = 13
(λ = 22)

μ = 15
(λ = 35)

μ = 25
(λ = 75)

32 0.011 0.05242 0.31402 0.57747 0.69412 0.84810 0.98237

64 0.051 0.14659 0.67031 0.87263 0.96941 0.99610 0.99999

128 0.143 0.29076 0.90972 0.98851 0.99947 0.99999 1

256 0.290 0.45779 0.98622 0.99964 0.99999 1 1

512 0.461 0.61534 0.99875 0.99999 1 1 1

1024 0.622 0.74326 0.99992 0.99999 1 1 1

211 0.750 0.83653 0.99999 1 1 1 1

212 0.843 0.89954 0.99999 1 1 1 1

213 0.910 0.94830 1 1 1 1 1

214 0.943 0.96470 1 1 1 1 1

215 0.967 0.97959 1 1 1 1 1

216 0.981 0.98834 1 1 1 1 1

217 0.989 0.99340 1 1 1 1 1

218 0.993 0.99629 1 1 1 1 1

219 0.996 0.99793 1 1 1 1 1

220 0.998 0.99984 1 1 1 1 1

calculations are precise and because Voting Crossover operator is deterministic,
the theoretical results and empirical results match more or less perfectly. This
can be seen in Fig. 3. We can now state the overall result.

Theorem 1. Let the gap used by the Jump function be m = Floor(log2(n)).
For sufficiently large n, a hybrid genetic algorithm which uses (1) a Θ(1) time
incremental evaluation function, (2) a population size bounded by a constant, (3)
“next ascent bit climber” local search and (4) Voting Crossover using 3 parents
converges to the global optimum of the Jumpm,n function in Θ(n) time with
probability approaching 1 in one generation using no mutation, assuming each
parent is allowed to be involved in up to 3 recombinations.

Proof. Lemma 1 establishes that local search can evaluate potential solutions
in Θ(1) time after the initial population has been evaluated. Lemma2 demon-
strates that the population will be uniformly distributed along the edge of the
“moat” in Θ(n) time after the first generation is improved by next ascent bit
climbing. By Lemma 3, the probability of generating the global optimum by a
single 3 parent Voting Crossover is at least POS(n, log2(n)) = (n−m)!/(n−3m)!

(n!/(n−m)!)2

and by Lemma 4 this probability is bounded by a nondecreasing function that



64 D. Whitley et al.

Fig. 3. The probability of finding the global optimum (jumping across the gap) in
one generation for a hybrid genetic algorithm using Voting Crossover as a function of
population size. The experimental data and the theoretical data match almost perfectly.

in the limit converges to 1 for large n. For smaller values of n we can use the
population and multiple recombinations to boost the probability of finding the
global optimum. Let p = POS(n, log2(n)) and let λ ≤ 3μ denote the number
of offspring generated by independent recombinations, where the parents are
located on the edge of the “moat” on the Jump function. Then the probability
of finding the global optimum in the first generation is given by: 1 − (1 − p)λ.
For all n ≥ 64 and all μ = 25, the probability of finding the global optimum is
greater than 0.99999. This probability also converges to 1 in the limit for large
n. The time to find a set of independent crossovers is bounded by a constant
when the population is of constant size. Each crossover takes Θ(n) time. But
the total number of applications of crossover is a constant when the population
size is bounded by a constant. �

5 Other Crossover Operators

While multi-parent crossover and voting crossover are in literature and have been
shown to be effective on some benchmarks and on low epistasis NK Landscapes,
one might ask what happens when a more conventional crossover operator is
used. The first answer is that the probability of successful crossover depends on
m but is independent of n when m is also independent of n. Thus, if we fix m
at some value such as m = 8, the ability of crossover to find the global optimum
in O(n) time can be preserved. But the “constant” involved (or more precisely,
the cost depending on m) can still vary dramatically.

“Uniform Crossover” is perhaps the worst possible choice of crossover oper-
ators. Assuming maximally different parents (that are still local optima), there
are 22m possible offspring, only one of which is the global optimum.

A better choice would be the HUX (Half Uniform Crossover) operator of
CHC [8]. HUX determines which bits are different in two parents, then selects
exactly one half of the non-shared bits from one parent and the remaining non-
shared bits from the other parent. If the two parents are maximally distant from
each other on the edge of the moat, then they have 2m bits that differ, and HUX



Solving the Jump Function Without Mutation 65

will select m bits from each parent. Thus, there are Choose(2m,m) possible off-
spring (compared to 22m possible offspring under Uniform crossover). The CHC
algorithm also boosts the probability that parents are maximally different by
“incest prevention.” Thus, when recombining parents, it prefers to pair parents
that are maximally different. When the populations used by CHC are improved
using next ascent bit climbing, CHC also finds the global optimum for JUMP
functions as long as the rate of crossover and the population size is sufficient
to allow on the order of Choose(2m,m) recombinations of maximally different
parents. For m = 8, Choose(16, 8) = 12, 870 recombinations with an associated
probability of success of 0.000077, while 216 = 65, 536 recombinations is needed
for Uniform crossover, with an associated probability of success of 0.000015.

6 Conclusions

We have shown that a hybrid genetic algorithm which improves the initial popu-
lation using next ascent bit climbing, and which uses 3 parent Voting Crossover
can solve the Jumpm,n function when m = log2(n) with probability asymptotic
to 1 for sufficiently large n in Θ(n) time. We would argue that this is not at
all surprising. Theoretically, it is easy to prove that the Jumpm,n is also solved
in Θ(n) time by calculating the averages of all of the order-1 hyperplanes. Any
combination of crossover and local search that actively exploits this property of
the Jump function should also arrive at the global optimum.

It is also the case that the Jump function becomes easier to solve for recom-
bination operators as n increases, because Choose(n,m) becomes larger and the
probability that two parents are different enough to have a successful recom-
bination increases. On the other hand, for mutation to make a jump of length
m becomes harder as n increases. Assuming that m mutations happen at once,
there are still Choose(n,m) ways to select m bits. To make the jump from a
local optima, exactly the right m bits must be selected.

The work presented here highlights the advantages of using crossover to
enhance exploration. There is no reason that two parents should have only 1
or 2 offspring (as is normally the case for genetic algorithms); there are many
biological species where two parents might have dozens of offspring at a time.
This idea, while common in the mutation driven (μ + λ)ES, has probably not
received the attention it deserves in a crossover driven genetic algorithm.

This work also emphasizes the critical role that diversity places in genetic
algorithms. We also want to acknowledge the work by Dang et al. [3] looking
at how diversity mechanisms, such as fitness sharing, and the use of an Island
model, can also make crossover more effective when solving the Jump function
when using a (μ + 1) genetic algorithm. These are all very simple ideas, and
common strategies in genetic algorithm applications.

Acknowledgements. This work was supported by a grant from the US National
Science Foundation CISE/ACE, SSI-SI2. Dr. Mukhopadhyay was supported by a
Fulbright-Nehru Academic and Professional Excellence Fellowship.



66 D. Whitley et al.

References

1. Jansen, T., Wegener, I.: The analysis of evolutionary algorithms-a proof that
crossover really can help. Algorithmica 34, 47–66 (2002)

2. Chicano, F., Whitley, D., Ochoa, G., Tinos, R.: Optimizing one million variable
NK landscapes by hybridizing deterministic recombination and local search. In:
Genetic and Evolutionary Computation Conference (GECCO), pp. 753–760. ACM
(2017)

3. Dang, D., et al.: Escaping local optima with diversity mechanisms and crossover.
In: Genetic and Evolutionary Computation Conference (GECCO), pp. 645–652.
ACM (2016)

4. Davis, L.: Bit-climbing, representational bias, and test suit design. In: Booker,
L., Belew, R. (eds.) International Conference on Genetic Algorithms, pp. 18–23.
Springer, Heidelberg (1991)

5. Deb, K., Myburgh, C.: Breaking the billion variable barrier in real world opti-
mization. In: Genetic and Evolutionary Computation Conference (GECCO), pp.
653–660. ACM (2016)

6. Eiben, A.E., Raué, P.-E., Ruttkay, Z.: Genetic algorithms with multi-parent recom-
bination. In: Davidor, Y., Schwefel, H.-P., Männer, R. (eds.) PPSN III 1994. LNCS,
vol. 866, pp. 78–87. Springer, Heidelberg (1994). https://doi.org/10.1007/3-540-
58484-6 252

7. Eiben, A.E., Schippers, C.A.: Multi-parent’s niche: N-ary crossovers on NK-
landscapes. In: Voigt, H.-M., Ebeling, W., Rechenberg, I., Schwefel, H.-P. (eds.)
PPSN IV 1996. LNCS, vol. 1141, pp. 319–328. Springer, Heidelberg (1996). https://
doi.org/10.1007/3-540-61723-X 996

8. Eshelman, L.: The CHC adaptive search algorithm: how to have safe search when
engaging in nontraditional genetic recombination. In: Foundations of Genetic Algo-
rithms (FOGA), vol. 1, pp. 265–283. Morgan Kauffman (1991)

9. Helsgaun, K.: General k-opt submoves for the Lin-Kernighan TSP heuristic. Math.
Program. Comput. 1(2–3), 119–163 (2009)

10. Helsgaun, K.: DIMACS TSP challenge results: current best tours found by LKH
(2013). http://www.akira.ruc.dk/keld/research/LKH/DIMACSresults.html

11. Moscato, P.: Memetic algorithms: a short introduction. In: Corne, D., Dorigo, M.,
Glover, F. (eds.) New Ideas in Optimization, pp. 219–234 (1999)

12. Möbius, A., Freisleben, B., Merz, P., Schreiber, M.: Combinatorial optimization by
iterative partial transcription. Phys. Rev. E 59(4), 4667–4674 (1999)

13. Nagata, Y., Kobayashi, S.: Edge assembly crossover: a high-power genetic algo-
rithm for the traveling salesman problem. In: International Conference on Genetic
Algorithms (ICGA), pp. 450–457. Morgan Kaufmann (1997)

14. Nagata, Y., Kobayashi, S.: A powerful genetic algorithms using edge assemble
crossover the traveling salesman problem. INFORMS J. Comput. 25(2), 346–363
(2013)

15. Rowe, J.: Population fixed-points for functions of unitation. In: Foundations of
Genetic Algorithms (FOGA), vol. 5, pp. 69–84. Morgan Kauffman (1998)

16. Srinivas, M., Patnaik, L.M.: On modeling genetic algorithms for functions of uni-
tation. IEEE Trans. Syst. Man Cybern. Part B (Cybern.) 26(6), 809–821 (1996)

17. Tinós, R., Whitley, D., Chicano, F.: Partition crossover for pseudo-boolean opti-
mization. In: Foundations of Genetic Algorithms, pp. 137–149 (2015)

https://doi.org/10.1007/3-540-58484-6_252
https://doi.org/10.1007/3-540-58484-6_252
https://doi.org/10.1007/3-540-61723-X_996
https://doi.org/10.1007/3-540-61723-X_996
http://www.akira.ruc.dk/keld/research/LKH/DIMACS results.html

	Exploration and Exploitation Without Mutation: Solving the Jump Function in (n) Time
	1 Introduction
	2 Background and Basics
	2.1 Jansen's and Wegener's Classic Result

	3 Hybrid Genetic Algorithms
	3.1 Deterministic Crossover: 3-Parent Voting Crossover
	3.2 The Probability of Success (POS) for 3-Parent Voting Crossover
	3.3 A Lower Bound on the Probabilities

	4 Probabilities and Populations
	5 Other Crossover Operators
	6 Conclusions
	References




