
Fast Artificial Immune Systems

Dogan Corus(B), Pietro S. Oliveto, and Donya Yazdani

Rigorous Research, University of Sheffield, Sheffield, UK
{d.corus,p.oliveto,dyazdani1}@sheffield.ac.uk

Abstract. Various studies have shown that characteristic Artificial
Immune System (AIS) operators such as hypermutations and ageing can
be very efficient at escaping local optima of multimodal optimisation
problems. However, this efficiency comes at the expense of consider-
ably slower runtimes during the exploitation phase compared to stan-
dard evolutionary algorithms. We propose modifications to the tradi-
tional ‘hypermutations with mutation potential’ (HMP) that allow them
to be efficient at exploitation as well as maintaining their effective explo-
rative characteristics. Rather than deterministically evaluating fitness
after each bit-flip of a hypermutation, we sample the fitness function
stochastically with a ‘parabolic’ distribution which allows the ‘stop at
first constructive mutation’ (FCM) variant of HMP to reduce the linear
amount of wasted function evaluations when no improvement is found
to a constant. By returning the best sampled solution during the hyper-
mutation, rather than the first constructive mutation, we then turn the
extremely inefficient HMP operator without FCM, into a very effective
operator for the standard Opt-IA AIS using hypermutation, cloning and
ageing. We rigorously prove the effectiveness of the two proposed opera-
tors by analysing them on all problems where the performance of HPM
is rigorously understood in the literature.

Keywords: Artificial immune systems · Runtime analysis

1 Introduction

Several Artificial Immune Systems (AIS) inspired by Burnet’s clonal selection
principle [1] have been developed to solve optimisation problems. Amongst these,
Clonalg [2], the B-Cell algorithm [3] and Opt-IA [4,5] are the most popular. A
common feature of these algorithms is their particularly high mutation rates
compared to more traditional evolutionary algorithms (EAs). For instance, the
contiguous somatic hypermutations (CHM) used by the B-Cell algorithm, choose
two random positions in the genotype of a candidate solution and flip all the bits
in between1. This operation results in a linear number of bits being flipped in an

1 A parameter may be used to define the probability that each bit in the region actually
flips. However, advantages of CHM over EAs have only been shown when all bits in
the region flip.

c© Springer Nature Switzerland AG 2018
A. Auger et al. (Eds.): PPSN 2018, LNCS 11102, pp. 67–78, 2018.
https://doi.org/10.1007/978-3-319-99259-4_6

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-99259-4_6&domain=pdf

68 D. Corus et al.

average mutation. The hypermutations with mutation potential (HMP) used by
Opt-IA tend to flip a linear number of bits unless an improving solution is found
first (i.e., if no stop at first constructive mutation mechanism (FCM) is used,
then the operator fails to optimise efficiently any function with a polynomial
number of optima [6]).

Various studies have shown how these high mutation rates allow AIS to escape
from local optima for which more traditional randomised search heuristics strug-
gle. Jansen and Zarges proved for a benchmark function called Concatenated
Leading Ones Blocks (CLOB) an expected runtime of O(n2 log n) using CHM
versus the exponential time required by EAs relying on standard bit mutations
(SBM) since many bits need to be flipped simultaneously to make progress [7].
Similar effects have also been shown on the NP-Hard longest common subse-
quence [8] and vertex cover [9] standard combinatorial optimisation problems
with practical applications where CHM efficiently escapes local optima where
EAs (with and without crossover) are trapped for exponential time.

This efficiency on multimodal problems comes at the expense of being con-
siderably slower in the final exploitation phase of the optimisation process when
few bits have to be flipped. For instance CHM requires Θ(n2 log n) expected
function evaluations to optimise the easy OneMax and LeadingOnes bench-
mark functions. Indeed it has recently been shown to require at least Ω(n2)
function evaluations to optimise any function since its expected runtime for its
easiest function is Θ(n2) [10]. A disadvantage of CHM is that it is biased, in the
sense that it behaves differently according to the order in which the information
is encoded in the bitstring. In this sense the unbiased HMP used by Opt-IA are
easier to apply. Also these hypermutations have been proven to be considerably
efficient at escaping local optima such as those of the multimodal Jump, Cliff,
and Trap benchmark functions that standard EAs find very difficult [6]. This
performance also comes at the expense of being slower in the exploitation phase
requiring, for instance, Θ(n2 log n) expected fitness evaluations for OneMax

and Θ(n3) for LeadingOnes.
In this paper we propose a modification to the HMP operator to allow it

to be very efficient in the exploitation phases while maintaining its essential
characteristics for escaping from local optima. Rather than evaluating the fitness
after each bit flip of a hypermutation as the traditional FCM requires, we propose
to evaluate it based on the probability that the mutation will be successful. The
probability of hitting a specific point at Hamming distance i from the current
point,

(
n
i

)−1, decreases exponentially with the Hamming distance for i < n/2
and then it increases again in the same fashion. Based on this observation we
evaluate each bit following a ‘parabolic’ distribution such that the probability
of evaluating the ith bit flip decreases as i approaches n/2 and then increases
again. We rigorously prove that the resulting hypermutation operator, which we
call P-hypeFCM , locates local optima asymptotically as fast as Random Local
Search (RLS) for any function where the expected runtime of RLS can be proven
with the standard artificial fitness levels method. At the same time the operator
is still exponentially faster than EAs for the standard multimodal Jump, Cliff,
and Trap benchmark functions.

Fast Artificial Immune Systems 69

Hypermutations with mutation potential are usually applied in conjunction
with ageing operators in the standard Opt-IA AIS. The power of ageing at
escaping local optima has recently been enhanced by showing how it makes the
difference between polynomial and exponential runtimes for the Balance func-
tion from dynamic optimisation [11]. For very difficult instances of Cliff, ageing
even makes RLS asymptotically as fast as any unbiased mutation based algo-
rithm can be on any function [12] by running in O(n ln n) expected time [6].
However, the power of ageing at escaping local optima is lost when it is used
in combination with hypermutations with mutation potential. In particular, the
FCM mechanism does not allow the operator to accept solutions of lower quality,
thus cancelling the advantages of ageing. Furthermore, the high mutation rates
combined with FCM make the algorithm return to the previous local optimum
with very high probability. While the latter problem is naturally solved by our
newly proposed P-hypeFCM that does not evaluate all bit flips in a hypermuta-
tion, the former problem requires a further modification to the HMP. The simple
modification that we propose is for the operator, which we call P-hypeBM , to
return the best solution it has found if no constructive mutation is encountered.
We rigorously prove that Opt-IA then benefits from both operators for all prob-
lems where it was previously analysed in the literature, as desired. Due to space
limitations some proofs are omitted for this extended abstract2.

2 Preliminaries

Static hypermutations with mutation potential using FCM (i.e., stop at the first
constructive mutation) mutate M = cn distinct bits for a constant 0 < c ≤ 1
and evaluate the fitness after each bit-flip [6]. If an improvement over the original
solution is found before the Mth bit-flip, then the operator stops and returns
the improved solution. This behaviour prevents the hypermutation operator to
waste further fitness function evaluations if an improvement has already been
found. However, for any realistic objective function the number of iterations
where there is an improvement constitutes an asymptotically small fraction of
the total runtime. Hence, the fitness function evaluations saved due to the FCM
stopping the hypermutation have a very small impact on the global perfor-
mance of the algorithm. Our proposed modified hypermutation operator, called
P-hype, instead only evaluates the fitness after each bit-flip with a probability
that depends on how many bits have already been flipped in the current hyper-
mutation operation. Since previous theoretical analyses have considered c = 1
(i.e., M = n) [6], we also use this value throughout this paper. Let pi be the
probability that the solution is evaluated after the ith bit has been flipped. The
‘parabolic’ probability distribution is defined as follows, where the parameter γ
should be between 0 < γ ≤ 2 (Fig. 1):

2 A complete version of the paper including all the proofs is available on arXiv [13].

70 D. Corus et al.

1 2 n − 2 nn
2

2
n log n

2
en

1
e

1
2e

1
2 log n

1
log n

Mutation step

E
va
lu
at
io
n
pr
ob

ab
ili
ty

Fig. 1. The parabolic evaluation probabilities (1) for γ = 1/ log n and γ = 1/e.

pi =

⎧
⎪⎨

⎪⎩

1/e for i = 1 and i = n

γ/i for 1 < i ≤ n/2
γ/(n − i) for n/2 < i < n

(1)

The lower the value of γ, the fewer the expected fitness function evaluations
that occur in each hypermutation. On the other hand, with a small enough
parameter γ value, the number of wasted evaluations can be dropped to the
order of O(1) per iteration instead of the linear amount wasted by the tradi-
tional operator when improvements are not found. The resulting hypermutation
operator is formally defined as follows.

Definition 1 (P-hypeFCM). P-hypeFCM flips at most n distinct bits selected
uniformly at random. It evaluates the fitness after the ith bit-flip with probabil-
ity pi (as defined in (1)) and remembers the last evaluation. P-hypeFCM stops
flipping bits when it finds an improvement; if no improvement is found, it will
return the last evaluated solution. If no evaluations are made, the parent will be
returned.

In the next section we will prove its benefits over the standard static HMP
with FCM, when incorporated into a (1 + 1) framework (Algorithm1). However,
in order for the operator to work effectively in conjunction with ageing, a fur-
ther modification is required. Instead of stopping the hypermutation at the first
constructive mutation, we will execute all n mutation steps, evaluate each bit-
string with the probabilities in (1) and as the offspring, return the best solution
evaluated during the hypermutation or the parent itself if no other bitstrings
are evaluated. We will prove that such a modification, which we call P-hypeBM ,
may allow the complete Opt-IA to escape local optima more efficiently by P-
hypeBM producing solutions of lower quality than the local optimum on which
the algorithm was stuck while individuals on the local optimum die due to ageing.
P-hypeBM is formally defined as follows.

Fast Artificial Immune Systems 71

Algorithm 1. (1 + 1) Fast-IA
1: Initialise x uniformly at random.
2: while a global optimum is not found do
3: Create y = x, then y = P-hype(y);
4: If f(y) ≥ f(x), then x = y.
5: end while

Definition 2 (P-hypeBM). P-hypeBM flips n distinct bits selected uniformly at
random. It evaluates the fitness after the ith bit-flip with probability pi (as defined
in (1)) and remembers the best evaluation found so far. P-hypeBM returns the
mutated solution with the best evaluation found. If no evaluations are made, the
parent will be returned.

For sufficiently small values of the parameter γ only one function evaluation
per hypermutation is performed in expectation (although all bits will be flipped).
Since it returns the best found one, this solution will be returned by P-hypeBM

as it is the only one it has encountered. Interestingly, this behaviour is similar to
that of the HMP without FCM that also evaluates one point per hypermutation
and returns it. However, while HMP without FCM has exponential expected
runtime for any function with a polynomial number of optima [6], we will show
in the following sections that P-hypeBM can be very efficient. From this point
of view, P-hypeBM is as a very effective way to perform hypermutations with
mutation potential without FCM.

In Sect. 4, we consider P-hypeBM in the complete Opt-IA framework [4–6]
hence analyse its performance combined with cloning and ageing. The algorithm
which we call Fast Opt-IA, is depicted in Algorithm 2. We will use the hybrid age-
ing operator as in [6,11], which allows us to escape local optima. Hybrid ageing
removes candidate solutions (i.e. b-cells) with probability pdie = 1 − (1/(μ + 1))
once they have passed an age threshold τ . After initialising a population of μ
b-cells with age = 0, at each iteration the algorithm creates dup copies of each
b-cell. These copies are mutated by the P-hype operator, creating a population
of mutants called Phyp which inherit the age of their parents if they do not
improve the fitness; otherwise their age will be set to zero. At the next step, all
b-cells with age ≥ τ will be removed from both populations with probability
pdie. If less than μ individuals have survived ageing, then the population is filled
up with new randomly generated individuals. At the selection phase, the best μ
b-cells are chosen to form the population for the next generation.

3 Fast Hypermutations

We start our analysis by relating the expected number of fitness function evalu-
ations to the expected number of P-hype operations until the optimum is found.
The following result holds for both P-hype operators. The lemma quantifies the
number of expected fitness function evaluations which are wasted by a hyper-
mutation operation.

72 D. Corus et al.

Algorithm 2. Fast Opt-IA
1: Initialise a population of μ b-cells, P , created uniformly at random;
2: for each x ∈ P set xage = 0.
3: while a global optimum is not found do
4: for each x ∈ P set xage = xage + 1;
5: for dup times for each x ∈ P do
6: y = P-hype(x);
7: if f(y) > f(x) then yage = 0 else yage = xage;
8: Add y to Phyp.
9: end for

10: Add Phyp to P , set Phyp = ∅;
11: for each x ∈ P if xage ≥ τ then remove x with probability pdie;
12: if |P | < μ then add μ − |P | solutions to P with age zero generated uniformly

at random;
13: if |P | > μ then remove |P |−μ solutions with the lowest fitness from P breaking

ties uniformly at random.
14: end while

Lemma 1. Let T be the random variable denoting the number of P-hype oper-
ations applied until the optimum is found. Then, the expected number of total
function evaluations is at most: E[T] · O(1 + γ log n).

Proof. Let the random variable Xi for i ∈ [T] denote the number of fitness
function evaluations during the ith execution of P-hype. Additionally, let the
random variable X ′

i denote the number of fitness function evaluations at the ith
operation assuming that no improvements are found. For all i it holds that Xi �
X ′

i since finding an improvement can only decrease the number of evaluations.
Thus, the total number of function evaluations E[

∑T
i=1 Xi] can be bounded

above by E[
∑T

i=1 X ′
i] which is equal to E[T] · E[X ′] due to Wald’s equation [14]

since X ′
i are identically distributed and independent from T .

We now write the expected number of fitness function evaluations in each
operation as the sum of n indicator variables Yi for i ∈ [n] denoting whether
an evaluation occurs after the ith bit mutation. Referring to the probabilities

in (1), we get, E[X] = E

[
n∑

i=1

Yi

]
=

n∑

i=1

Pr{Yi = 1} = 1
e + 1

e + 2
n/2∑

i=2

γ 1
i ≤

2
e + 2γ (lnn/2 − 1). ��

In Lemma 1, γ appears as a multiplicative factor in the expected runtime
measured in fitness function evaluations. An intuitive lower bound of Ω(1/ log n)
for γ can be inferred since smaller mutation rates will not decrease the runtime.
While a smaller γ does not decrease the asymptotic order of expected evaluations
per operation, in Sect. 4 we will provide an example where a smaller choice of
γ reduces E[T] directly. For the rest of our results though, we will rely on E[T]
being the same as for the traditional static hypermutations with FCM while the
number of wasted fitness function evaluations decreases from n to O(1+γ log n).

Fast Artificial Immune Systems 73

Table 1. Expected runtimes of the standard (1 + 1) EA and (1 + 1) IAhyp versus the
expected runtime of the (1+ 1) Fast-IA. For γ = O(1/ log n), the (1 + 1) Fast-IA is
asymptotically at least as fast as the (1 + 1) EA and faster by a linear factor compared
to the (1 + 1) IAhyp for the unimodal and trap functions. For not too large jump and
cliff sizes (i.e., o(n/ log n)), the (1 + 1) Fast-IA has an asymptotic speed up compared
to the (1+ 1) IAhyp for the same parameter setting. For not too small jump and cliff
sizes both AISs are much faster than the (1 + 1) EA.

Function (1 + 1) EA (1+ 1) IAhyp (1+ 1) Fast-IA

OneMax Θ(n log n) [15] Θ(n2 log n) [6] Θ (n log n (1 + γ log n))

LeadingOnes Θ(n2) [15] Θ(n3) [6] Θ
(
n2 (1 + γ log n)

)

Trap Θ(nn) [15] Θ(n2 log n) [6] Θ (n log n (1 + γ log n))

Jumpd>1 Θ(nd) [15] O(n
(
n
d

)
) [6] O

(
(d/γ) · (1 + γ log n) · (

n
d

))

Cliffd>1 Θ(nd) [16] O(n
(
n
d

)
) [6] O

(
(d/γ) · (1 + γ log n) · (

n
d

))

We will now analyse the simplest setting where we can implement P-hype.
The (1 + 1) Fast-IA keeps a single individual in the population and uses P-hype
to perturb it at every iteration. The performance of the (1 + 1) IAhyp, a sim-
ilar barebones algorithm using the classical static hypermutation operator has
recently been related to the performance of the well-studied Randomised Local
Search algorithm (RLS) [6]. RLSk flips exactly k bits of the current solution to
sample a new search point, compares it with the current solution and continues
with the new one unless it is worse. According to Theorems 3.3 and 3.4 of [6],
any runtime upper bound for RLS obtained via Artificial Fitness Levels (AFL)
method also holds for the (1 + 1) IAhyp with an additional factor of n (e.g., an
upper bound of O(n) for RLS derived via AFL translates into an upper bound of
O(n2) for the (1 + 1) IAhyp). The following theorem establishes a similar relation-
ship between RLS and the (1 + 1) Fast-IA with a factor of O(1+γ log n) instead
of n. In the context of the following theorem, (1 + 1) Fast-IA≥ denotes the vari-
ant of (1 + 1) Fast-IA which considers an equally good solution as constructive
while (1 + 1) Fast-IA> stops the hypermutation only if a solution strictly better
than the parent is sampled.

Theorem 1. Let E
(
TAFL

A

)
be any upper bound on the expected runtime

of algorithm A established by the artificial fitness levels method. Then
E

(
TAFL
(1+ 1) Fast-IA>

)
≤ E

(
TAFL
(1+1) RLSk

)
· k/γ ·O(1+ γ log n). Moreover, for the

special case of k = 1, E
(
TAFL
(1+ 1) Fast-IA≥

)
≤ E

(
TAFL
(1+1) RLS1

)
· O(1 + γ log n)

also holds.

Apart from showing the efficiency of the (1 + 1) Fast-IA, the theorem also
allows easy achievements of upper bounds on the runtime of the algorithm,
by just analysing the simple RLS. For γ = O(1/ log n), Theorem 1 implies
the upper bounds of O(n log n) and O(n2) for classical benchmark functions
OneMax and LeadingOnes respectively (see Table 1). Both of these bounds are

74 D. Corus et al.

asymptotically tight since each function’s unary unbiased black-box complexity
is in the same order as the presented upper bound [12].

Corollary 1. The expected runtimes of the (1+ 1) Fast-IA to optimise
OneMax(x) :=

∑n
i=1 xi and LeadingOnes :=

∑n
i=1

∏i
j=1 xj are respec-

tively O (n log n (1 + γ log n)) and O(n2 (1 + γ log n)). For γ = O(1/ log n) these
bounds reduce to Θ(n log n) and Θ(n2).

P-hype samples the complementary bit-string with probability one if it can-
not find any improvements. This behaviour allows an efficient optimisation of
the deceptive Trap function which is identical to OneMax except that the opti-
mum is in 0n. Since n bits have to be flipped to reach the global optimum from
the local optimum, EAs based on SBM require exponential runtime with over-
whelming probability [17]. By evaluating the sampled bitstrings stochastically,
the (1 + 1) Fast-IA provides up to a linear speed-up for small enough γ compared
to the (1 + 1) IAhyp on Trap as well.

Theorem 2. The expected runtime of the (1+ 1) Fast-IA to optimise Trap is
Θ(n log n (1 + γ log n)).

The results for the (1 + 1) IAhyp on Jump and Cliff functions [6] can also
be adapted to the (1 + 1) Fast-IA in a straightforward manner, even though
they fall out of the scope of Theorem1. Both Jumpd and Cliffd have the same
output as OneMax for bitstrings with up to n − d 1-bits and the same opti-
mum 1n. For solutions with the number of 1-bits between n − d and n, Jump
has a reversed OneMax slope creating a gradient towards n − d while Cliff

has a slope heading toward 1n even though the fitness values are penalised by
an additive factor d. Being designed to accomplish larger mutations, the perfor-
mance of hypermutations on Jump and Cliff functions is superior to standard
bit mutation [6]. This advantage is preserved for the (1 + 1) Fast-IA as seen in
the following theorem.

Theorem 3. The expected runtime of the (1+ 1) Fast-IA to optimise Jumpd

and Cliffd is O
(
(d/γ) · (1 + γ log n) · (

n
d

))
.

For Jump and Cliff, the superiority of the (1 + 1) Fast-IA in comparison
to the deterministic evaluations scheme depends on the function parameter d.
If γ = Ω(1/ log n), the (1 + 1) Fast-IA performs better for d = o(n/ log n) while
the deterministic scheme (i.e., (1 + 1) IAhyp) is preferable for larger d. However,
for small d the difference between the runtimes can be as large as a factor of n
in favor of the (1 + 1) Fast-IA while, even for the largest d, the difference is less
than a factor of log n in favor of the deterministic scheme. Here we should also
note that for d = Ω(n/ log n) the expected time is exponentially large for both
algorithms (albeit considerably smaller than that of standard EAs) and the log n
factor has no realistic effect on the applicability of the algorithm.

Fast Artificial Immune Systems 75

4 Fast Opt-IA

In this section we will consider the effect of our proposed evaluation scheme on
the complete Opt-IA algorithm. The distinguishing characteristic of the Opt-IA
algorithm is its use of the ageing and hypermutation operators. In [6] a fit-
ness function called HiddenPath (Fig. 2) was presented where the use of both
operators is necessary to find the optimum in polynomial time. The function
HiddenPath provides a gradient to a local optimum, which allows the hyper-
mutation operator to find another gradient which leads to the global optimum
but situated on the opposite side of the search space (i.e., nearby the complemen-
tary bitstrings of the local optima). However, the ageing operator is necessary
for the algorithm to accept a worsening; otherwise the second gradient is not
accessible. To prove our upper bound, we can follow the same proof strategy
in [18], which established an upper bound of O(τμn + μn7/2) for the expected
runtime of the traditional Opt-IA on HiddenPath. We will see that Opt-IA
benefits from an n/ log n speed-up due to P-hype.

Fig. 2. HiddenPath [6]

Theorem 4. The Fast Opt-IA needs O(τμ + μn5/2 log n) fitness function eval-
uations in expectation to optimise HiddenPath with μ = O(log n), dup = 1,
1/(4 ln n) ≥ γ = Ω(1/ log n) and τ = Ω(n log2 n).

HiddenPath was artificially constructed to fit the behaviour of the Opt-IA
to illustrate its strengths. One of those strengths was the ageing mechanism’s
ability to escape local optima in two different ways. First, it allows the algorithm
to restart with a new random population after it gets stuck at a local optimum.
Second, ageing allows individuals with worse fitness than the current best to
stay in the population when all the current best individuals are removed by the
ageing operator in the same iteration. If an improvement is found soon after the
worsening is accepted, then this temporary non-elitist behaviour allows the algo-
rithm to follow other gradients which are accessible by variation from the local
optima but leads away from them. On the other hand, even though it is cou-
pled with ageing in the Opt-IA, the FCM mechanism does not allow worsenings.

76 D. Corus et al.

More precisely, for the hypermutation with FCM, the complementary bit-string
of the local optimum is sampled with probability 1 if no other improvements
are found. Indeed, HiddenPath was designed to exploit this high probability.
However, by only stopping on improving mutations, the traditional hypermu-
tations with FCM do not allow, in general, to take advantage of the power of
ageing at escaping local optima. For instance, for the classical benchmark func-
tion Cliffd with parameter d = Θ(n), hypermutation with FCM turned out to
be a worse choice of variation operator to couple with ageing than both local
search and standard-bit-mutation [18]. Ageing coupled with RLS and SBM can
reach the optimum by local moves, which respectively yields upper bounds of
O(n log n) and O(n1+ε log n) for arbitrarily small positive constant ε on their
runtimes. However, hypermutations with FCM require to increase the number
of 1-bits in the current solution by d at least once before the hypermutation
stops. This requirement implies the following exponential lower bound on the
runtime regardless of the evaluation scheme (as long as the hypermutation only
stops on a constructive mutation).

Theorem 5. Fast Opt-IA using P-hypeFCM requires at least 2Ω(n) fitness func-
tion evaluations in expectation to find the optimum of Cliffd for d = (1−c)n/4,
where c is a constant 1 > c > 0.

The following theorem will demonstrate how P-hypeFCM , that, instead of
stopping the hypermutation at the first constructive mutation, will execute all n
mutation steps, evaluate each bitstring with the probabilities in (1) and return
the best found solution, allows ageing and hypermutation to work in harmony
in Opt-IA.

Theorem 6. Fast Opt-IA using P-hypeBM with μ = 1, dup = 1, γ = 1/(n
log2 n) and τ = Θ(n log n) needs O(n log n) fitness function evaluations in expec-
tation to optimise Cliff with any linear d ≤ n/4 − ε for an small constant ε.

Note that the above result requires a γ in the order of Θ(1/(n log2 n)), while
Lemma 1 implies that any γ = ω(1/ log n) would not decrease the expected num-
ber of fitness function evaluations below the asymptotic order of Θ(1). However,
having γ = 1/(n log2 n) allows Opt-IA, with constant probability, to complete its
local search before any solution with larger Hamming distance is ever evaluated.
In Theorem 6, we observe that this opportunity allows the Opt-IA to hillclimb
the second slope before jumping back to the local optima. The following theorem
rigorously proves that a very small choice for γ in this case is necessary (i.e.,
γ = Ω(1/ log n) leads to exponential expected runtime).

Theorem 7. At least 2Ω(n) fitness function evaluations in expectation are exe-
cuted before the Fast Opt-IA using P-hypeBM with γ = Ω(1/ log n) finds the
optimum of Cliffd for d = (1 − c)n/4, where c is a constant 1 > c > 0.

5 Conclusion

Due to recent analyses of increasingly realistic evolutionary algorithms, higher
mutation rates, naturally present in artificial immune systems, than previously

Fast Artificial Immune Systems 77

recommended or used as a rule of thumb, are gaining significant interest in the
evolutionary computation community [19–22].

We have presented two alternative ‘hypermutations with mutation poten-
tial’ operators, P-hypeFCM and P-hypeBM and have rigorously proved, for sev-
eral significant benchmark problems from the literature, that they maintain the
exploration characteristics of the traditional operators while outperforming them
up to linear factor speed-ups in the exploitation phase.

The main modification that allows to achieve the presented improvements
is to sample the solution after the ith bit-flip stochastically with probability
roughly pi = γ/i, rather than deterministically with probability one. The anal-
ysis shows that the parameter γ can be set easily. Concerning P-hypeFCM , that
returns the first sampled constructive mutation and is suggested to be used in
isolation, any γ = O(1/ log(n)) allows optimal asymptotical exploitation time
(based on the unary unbiased black box complexity of OneMax and Leadin-

gOnes) while maintaining the traditional exploration capabilities. Concerning
P-hypeBM , which does not use FCM and is designed to work harmonically with
ageing as in the standard Opt-IA, considerably lower values of the parameter
(i.e., γ = 1/(n log2 n)) are required to escape from difficult local optima effi-
ciently (e.g., Cliff) such that the hypermutations do not return to the local
optima with high probability. While these low values for γ still allow optimal
asymptotic exploitation in the unbiased unary black box sense, they consider-
ably reduce the capability of the operator to perform the large jumps required
to escape the local optima of functions with characteristics similar to Jump, i.e.,
where ageing is ineffective due to the second slope of decreasing fitness. Future
work may consider an adaptation of the parameter γ to allow it to automatically
increase and decrease throughout the run [23,24]. Furthermore, the performance
of the proposed operators should be evaluated for classical combinatorial opti-
misation problems and real-world applications.

References

1. Burnet, F.M.: The Clonal Selection Theory of Acquired Immunity. Cambridge
University Press, Cambridge (1959)

2. de Castro, L.N., Von Zuben, F.J.: Learning and optimization using the clonal
selection principle. IEEE Trans. Evol. Comput. 6(3), 239–251 (2002)

3. Kelsey, J., Timmis, J.: Immune inspired somatic contiguous hypermutation for
function optimisation. In: Cantú-Paz, E., et al. (eds.) GECCO 2003. LNCS, vol.
2723, pp. 207–218. Springer, Heidelberg (2003). https://doi.org/10.1007/3-540-
45105-6 26

4. Cutello, V., Nicosia, G., Pavone, M., Timmis, J.: An immune algorithm for protein
structure prediction on lattice models. IEEE Trans. Evol. Comput. 11(1), 101–117
(2007)

5. Cutello, V., Nicosia, G., Pavone, M.: A hybrid immune algorithm with information
gain for the graph coloring problem. In: Cantú-Paz, E. (ed.) GECCO 2003. LNCS,
vol. 2723, pp. 171–182. Springer, Heidelberg (2003). https://doi.org/10.1007/3-
540-45105-6 23

https://doi.org/10.1007/3-540-45105-6_26
https://doi.org/10.1007/3-540-45105-6_26
https://doi.org/10.1007/3-540-45105-6_23
https://doi.org/10.1007/3-540-45105-6_23

78 D. Corus et al.

6. Corus, D., Oliveto, P.S., Yazdani, D.: On the runtime analysis of the Opt-IA arti-
ficial immune system. In: Proceedings of the GECCO 2017, pp. 83–90 (2017)

7. Jansen, T., Zarges, C.: Analyzing different variants of immune inspired somatic
contiguous hypermutations. Theor. Comput. Sci. 412(6), 517–533 (2011)

8. Jansen, T., Zarges, C.: Computing longest common subsequences with the B-Cell
algorithm. In: Coello Coello, C.A., Greensmith, J., Krasnogor, N., Liò, P., Nicosia,
G., Pavone, M. (eds.) ICARIS 2012. LNCS, vol. 7597, pp. 111–124. Springer, Hei-
delberg (2012). https://doi.org/10.1007/978-3-642-33757-4 9

9. Jansen, T., Oliveto, P.S., Zarges, C.: On the analysis of the immune-inspired B-Cell
algorithm for the vertex cover problem. In: Liò, P., Nicosia, G., Stibor, T. (eds.)
ICARIS 2011. LNCS, vol. 6825, pp. 117–131. Springer, Heidelberg (2011). https://
doi.org/10.1007/978-3-642-22371-6 13

10. Corus, D., He, J., Jansen, T., Oliveto, P.S., Sudholt, D., Zarges, C.: On easiest
functions for mutation operators in bio-inspired optimisation. Algorithmica 78(2),
714–740 (2016)

11. Oliveto, P.S., Sudholt, D.: On the runtime analysis of stochastic ageing mecha-
nisms. In: Proceedings of the GECCO 2014, pp. 113–120 (2014)

12. Lehre, P.K., Witt, C.: Black-box search by unbiased variation. Algorithmica 64(4),
623–642 (2012)

13. Corus, D., Oliveto, P.S., Yazdani, D.: Fast artificial immune systems. ArXiv e-
prints (2018). http://arxiv.org/abs/1806.00299

14. Mitzenmacher, M., Upfal, E.: Probability and Computing: Randomized Algorithms
and Probabilistic Analysis. Cambridge University Press, Cambridge (2005)

15. Droste, S., Jansen, T., Wegener, I.: On the analysis of the (1 + 1) evolutionary
algorithm. Theor. Comput. Sci. 276(1–2), 51–81 (2002)

16. Paixão, T., Heredia, J.P., Sudholt, D., Trubenová, B.: Towards a runtime compar-
ison of natural and artificial evolution. Algorithmica 78(2), 681–713 (2017)

17. Oliveto, P.S., Yao, X.: Runtime analysis of evolutionary algorithms for discrete
optimization. In: Auger, A., Doerr, B. (eds.) Theory of Randomized Search Heuris-
tics, pp. 21–52. World Scientific (2011)

18. Corus, D., Oliveto, P.S., Yazdani, D.: When hypermutations and ageing enable
artificial immune systems to outperform evolutionary algorithms. ArXiv e-prints
(2018). http://arxiv.org/abs/1804.01314

19. Oliveto, P.S., Lehre, P.K., Neumann, F.: Theoretical analysis of rank-based
mutation-combining exploration and exploitation. In: Proceedings of the CEC
2009, pp. 1455–1462 (2009)

20. Doerr, B., Le, H.P., Makhmara, R., Nguyen, T.D.: Fast genetic algorithms. In:
Proceedings of the GECCO 2017, pp. 777–784 (2017)

21. Corus, D., Oliveto, P.S.: Standard steady state genetic algorithms can hillclimb
faster than mutation-only evolutionary algorithms. IEEE Trans. Evol. Comput.
(2017)

22. Dang, D.-C., et al.: Emergence of diversity and its benefits for crossover in genetic
algorithms. IEEE Trans. Evol. Comput. (2017, to appear)

23. Doerr, B., Lissovoi, A., Oliveto, P.S., Warwicker, J.A.: On the runtime analysis of
selection hyper-heuristics with adaptive learning periods. In: Proceedings of the
GECCO 2018. ACM (2018, to appear)

24. Doerr, B., Doerr, C.: Optimal static and self-adjusting parameter choices for the
(1 + (λ, λ)) genetic algorithm. Algorithmica 80, 1658–1709 (2018)

https://doi.org/10.1007/978-3-642-33757-4_9
https://doi.org/10.1007/978-3-642-22371-6_13
https://doi.org/10.1007/978-3-642-22371-6_13
http://arxiv.org/abs/1806.00299
http://arxiv.org/abs/1804.01314

	Fast Artificial Immune Systems
	1 Introduction
	2 Preliminaries
	3 Fast Hypermutations
	4 Fast Opt-IA
	5 Conclusion
	References

