
Runtime Analysis of Evolutionary
Algorithms for the Knapsack Problem
with Favorably Correlated Weights

Frank Neumann1(B) and Andrew M. Sutton2

1 Optimisation and Logistics, School of Computer Science,
The University of Adelaide, Adelaide, Australia

frank.neumann@adelaide.edu.au
2 Department of Computer Science, University of Minnesota Duluth, Duluth, USA

Abstract. We rigorously analyze the runtime of evolutionary algo-
rithms for the classical knapsack problem where the weights are favor-
ably correlated with the profits. Our result for the (1+1) EA generalizes
the one obtained in [1] for uniform constraints and shows that an opti-
mal solution in the single-objective setting is obtained in expected time
O(n2(logn + log pmax)), where pmax is the largest profit of the given
input. Considering the multi-objective formulation where the goal is to
maximize the profit and minimize the weight of the chosen item set at
the same time, we show that the Pareto front has size n+1 whereas there
are sets of solutions of exponential size where all solutions are incompa-
rable to each other. Analyzing a variant of GSEMO with a size-based
parent selection mechanism motivated by these insights, we show that
the whole Pareto front is computed in expected time O(n3).

1 Introduction

Evolutionary algorithms [2] and other bio-inspired algorithms have been applied
to a wide range of combinatorial optimization and engineering problems. They
imitate the evolution process in nature in order to generate good solutions for
a given optimization or design problem. The advantage of evolutionary compu-
tation methods lies in their easy applicability to new problems and they often
provide satisfying solutions to new problems at hand.

Evolutionary algorithms make uses of random decisions in their main oper-
ators such as mutation and selection and the area of runtime analysis considers
bio-inspired computing methods as a special class of randomized algorithms.
Substantial progress has been made over the last twenty years regarding the
theoretical understanding of bio-inspired computing techniques (see [3–5] for
comprehensive presentations). One of the classical problems studied quite early
in the literature are linear pseudo-Boolean functions. Although linear functions
are easy to optimize, the first proof that showed that a simple (1 + 1) EA opti-
mizes any pseudo-Boolean linear function in expected time O(n log n) was quite

c© Springer Nature Switzerland AG 2018
A. Auger et al. (Eds.): PPSN 2018, LNCS 11102, pp. 141–152, 2018.
https://doi.org/10.1007/978-3-319-99259-4_12

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-99259-4_12&domain=pdf

142 F. Neumann and A. M. Sutton

involved [6]. Later on, the result was considerably improved and simplified by
using drift analysis [7–9].

Considering linear functions with a linear constraint leads to the classical NP-
hard knapsack problem which in general can be solved in pseudo-polynomial time
by dynamic programming (see for example [10]). Although some early studies
on the runtime behavior of evolutionary algorithms have been carried out for
constrained combinatorial optimization problems including the knapsack prob-
lem [11], the area has been somehow neglected in the area of runtime analysis
until quite recently. The mentioned results mainly concentrated on special iso-
lated problem instances such as trap like problems. Considering general knapsack
instances it was shown in [12] that a multi-objective approach is able to achieve
a 1/2-approximation for the knapsack problem when using helper objectives.
Furthermore, the approximation ability of a specific multi-objective approach in
terms of the structure of knapsack instances was investigated in [13].

Recently, linear functions with a uniform constraint were studied in [1]. This
is equivalent to the knapsack problem where all items have unit weight. We
extend these studies to the class of knapsack problem with favorably correlated
weights, i.e. for any two items i and j and with profits pi ≥ pj implies wi ≤ wj .
We study the single-objective setting where the profit of the knapsack should be
maximized subject to the weights of the items meeting a given capacity bound
W . Furthermore, we investigate the multi-objective setting where the goal is to
maximize the profit and minimize the weight of the chosen items simultaneously.
For the single-objective setting, we generalize the result on uniform weights given
in [1] to knapsack instances with favorably correlated weights.

We subsequently investigate the multi-objective problem of maximizing profit
and minimizing weight for the knapsack problem with favorably correlated
weights. We study a variant of Global SEMO (GSEMO) [14,15] which is a base-
line algorithm frequently investigated in the area of runtime analysis for evo-
lutionary multi-objective optimization [16–19]. Investigating the multi-objective
setting, we show that even favorably correlated weights can lead to an exponen-
tially large set of search points that are all incomparable to each other. This can
potentially lead to a large population in evolutionary multi-objective algorithms
such as GSEMO that store at each time step all incomparable search points
found so far. Based on this, we introduce size-based parent selection mechanism
and show that GSEMO using this parent selection method computes the whole
Pareto front for the multi-objective setting in expected time O(n3).

The outline of the paper is as follows. In Sect. 2, we introduce the knapsack
problem with favorably correlated weights and the single- and multi-objective
formulations studied in this paper. We investigate the structure of the objective
space for the multi-objective setting and characterize optimal solutions for the
single-objective problem in Sect. 3. In Sect. 4, we analyze the (1 + 1) EA with
respect to its runtime behavior and analyze the runtime of a multi-objective
approach to compute the whole Pareto front in Sect. 5. Finally, we finish with
some conclusions.

Runtime Analysis of Evolutionary Algorithms for the Knapsack Problem 143

Algorithm 1. (1 + 1) EA
1 Choose x ∈ {0, 1}n uniformly at random.;
2 repeat
3 Obtain x′ from x by flipping each bit with probability 1/n.;
4 If f(x′) ≥ f(x), set x := x′;
5 until stop;

2 Algorithms and Problems

We consider the classical knapsack problem. The input is given by n items. Each
item i has an integer profit pi ≥ 1 and an integer weight wi ≥ 1, 1 ≤ i ≤ n. For
our investigations, we consider the special class of instances where the weights
are favorably correlated to the profits, i.e. for two items i and j, pi ≥ pj implies
wi ≤ wj . W.l.o.g, we assume p1 ≥ p2 ≥ . . . ≥ pn ≥ 1 and 1 ≤ w1 ≤ w2 . . . ≤ wn.
This means that item i dominates each item j with j > i. We consider the
search space {0, 1}n and for a search point x ∈ {0, 1}n, we have xi = 1 if item
i is selected and xi = 0 if it is not selected. We denote by p(x) =

∑n
i=1 pixi

the profit and by w(x) =
∑n

i=1 wixi the weight of x. Furthermore, we denote by
pmax = p1 the largest profit and by wmax = wn the largest weight of the given
input.

The knapsack problem with favorably correlated weights is a generalization
of the problem of optimizing a linear function with a uniform constraint inves-
tigated in [1] where we have wi = 1, 1 ≤ i ≤ n. As for the case of a uniform
constraint, the knapsack problem with favorably correlated weights can be easily
solved by a greedy algorithm which includes the items as they appear in the bit
string. However, analyzing the behavior of evolutionary algorithms is interesting
for this problem as it clarifies the working behavior of this type of algorithm for
the problem.

2.1 Single-Objective Optimization

In the single-objective case, we have given a weight bound W in addition to
the given weights and profits. The goal is to compute a solution x with weight
w(x) ≤ W and whose profit p(x) is maximal among all solution meeting this
weight constraint.

We investigate the classical (1+1) EA shown in Algorithm 1. It starts with a
solution x ∈ {0, 1}n chosen uniformly at random. In each iteration an offspring
x′ is produced by flipping each bit of the current solution x with probability
1/n. The offspring replaces the current solution if it is not worth with respect
to fitness. For the (1 + 1) EA, we consider the single-objective fitness function

f(x) = (c(x), p(x))

where c(x) = min{W − w(x), 0}. Note, that c(x) is strictly negative if x is
infeasible and that the absolute value of c(x) denotes the amount of constraint
violation. We maximize f with respect to the lexicographic order, i.e. we have

144 F. Neumann and A. M. Sutton

f(x) ≥ f(y) ⇔ (c(x) > c(y)) ∨ ((c(x) = c(y)) ∧ (p(x) ≥ p(y))).

This implies that for infeasible solutions the weight is reduced until a feasible
solution is obtained. Furthermore, each feasible solution has a better fitness than
any infeasible solution.

Analyzing the runtime of the (1+1) EA, we consider the expected number of
fitness evaluations until an optimal search point has been obtained for the first
time. This is called the expected optimization time of the algorithm.

2.2 Multi-objective Optimization

In the multi-objective setting, we aim to maximize the profit and minimize the
weight at the same time. We consider the multi-objective fitness function f ′(x) =
(w(x), p(x)) which gives the profit and weight of a given solution x. A solution
y (weakly) dominates a solution x (y � x) iff p(y) ≥ p(x) and w(y) ≤ w(x).
A solution y strongly dominates x if y � x and f ′(x) 	= f ′(y). The notion of
dominance translates to the objective vector.

The classical goal in multi-objective optimization is to compute for each
non-dominated objective vector v a solution x with f ′(x) = v. The set of all
non-dominated objective vectors is called the Pareto front of the given problem.

We consider the algorithm called GSEMO given in Algorithm2. The algo-
rithm has been frequently investigated in the area of runtime analysis of evolu-
tionary multi-objective optimization [15,16]. It can be seen as a generalization
of the (1 + 1) EA to the multi-objective case. It starts with a solution x chosen
uniformly at random from the considered search space and stores in its popu-
lation P for each non-dominated objective vector found so far a corresponding
solution. In each iteration an individual x ∈ P is chosen uniformly at random for
mutation and x produces then an offspring x′ by flipping each bit with probabil-
ity 1/n. In the selection step, x′ is added to the population if it is not strongly
dominated by any other individual in P . If x′ is added to the population all
individuals that are (weakly) dominated by x′ are removed from P .

For many multi-objective optimization problems the number of non-
dominated objective vectors can grow exponentially in the problem size n (these
problems are often referred to as intractable multi-objective optimization prob-
lems [20]). We will show that the Pareto front for the knapsack problem with
favorably correlated weights has size at most n + 1. However, we will show in
Sect. 3 that there are sets of solutions with size exponential in n that are all
incomparable to each other.

These exponentially many trade-offs motivate the following parent selection
mechanism to focus the search of GSEMO. We call the size of a solution x the
number of items it contains, i.e. the size is given by the number of its 1-bits |x|1.
In our size-based parent selection (see Algorithm 3), we determine the number of
1-bits j that a parent should have by choosing it uniformly at random from the
available sizes. Afterwards, we choose the solution with maximum profit from
the solutions in P having exactly j 1-bits. GSEMO with size-based parent selec-
tion differs from GSEMO by using Algorithm3 instead of line 5 in Algorithm2.

Runtime Analysis of Evolutionary Algorithms for the Knapsack Problem 145

Algorithm 2. GSEMO Algorithm
1 Choose x ∈ {0, 1}n uniformly at random;
2 Determine f ′(x);
3 P ← {x};
4 repeat
5 Choose x ∈ P uniformly at random;
6 Create x′ by flipping each bit xi of x with probability 1/n;
7 Determine f ′(x′);
8 if x′ is not strongly dominated by any other search point in P then
9 Include x′ into P ;

10 Delete all other solutions z ∈ P with f ′(z) � f ′(x′) from P

11 until stop;

Algorithm 3. Size-based Parent Selection
1 Let Pi = {x ∈ P | |x|1 = i}, 0 ≤ i ≤ n and I = {i | Pi �= ∅}.;
2 Choose j ∈ I uniformly at random and choose parent

x = argmax{p(y) | y ∈ Pj} with the largest profit.

Note that the population of the algorithm may still grow exponentially with the
problem size as the survival selection is not changed.

Analyzing the runtime of GSEMO with size-based parent selection, we con-
sider the expected number of iterations until for each Pareto optimal objective
vector a corresponding solution has been obtained. This is called the expected
optimization time of the multi-objective algorithm.

3 Structure of the Objective Space

We now examine our class of problems in terms of the structure of solutions
in the multi-objective space. Our investigations will also point out how optimal
solutions look like in the single-objective setting.

We first show that the Pareto front for any choice of the profit and weights
of our class of instances of the knapsack problem has a Pareto front of size n+1.
We define the set X∗ = {x | x = 1k0n−k, 0 ≤ k ≤ n} of size n + 1, containing all
strings that start with some (or no) 1-bits and have all remaining bits set to 0.

Theorem 1. The Pareto front consists of the set of objective vectors F =
{f(x) | x ∈ X∗}.
Proof. Let x be any search point with |x|1 = k which is not of the form 1k0n−k.
We have p(x) ≤ p(1k0n−k) and w(x) ≥ w(1k0n−k) as p1 ≥ . . . ≥ pn and w1 ≤
. . . ≤ wn which implies that x is (weakly) dominated by 1k0n−k. As every search
point x with |x|1 = k is (weakly) dominated by 1k0n−k, 0 ≤ k ≤ n, and all
solutions in X∗ are incomparable to each other due to strictly positive weights
and profits, the Pareto optimal objective vectors are given by the set F .
�

146 F. Neumann and A. M. Sutton

Let x∗ = arg max{p(x) | x ∈ X∗ ∧ w(x) ≤ W} be the feasible search point
with the largest profit in X∗. This search point has the property that it is the
feasible search point with the largest number of 1-bits in X∗. The following
corollary shows that x∗ is an optimal solution of the constrained single-objective
problem.

Corollary 1. Let x∗ ∈ X∗ be the feasible solution with the largest number of
1-bits that is feasible. Then x∗ is an optimal solution to the constrained single-
objective knapsack problem with favorably correlated weights.

Proof. From the proof of Theorem 1, we know that any search point is (weakly)
dominated by a search point in X∗. x∗ is the feasible solution with the largest
profit in X∗. This implies that x∗ has the maximum profit among all feasible
solutions as no feasible dominated solution can have a larger profit than x∗.
�

The previous observations show that all Pareto optimal objective vectors as
well as the maximum profit for the constrained single-objective problem have
corresponding solutions that all start with some (or no) 1-bits and have all
remaining bits set to 0.

An important questions that arises when considering evolutionary multi-
objective optimization is whether there can be many incomparable solutions
even if the Pareto front is small. This might cause difficulties to the search of
an evolutionary multi-objective algorithm. We now construct an exponentially
large set of solutions and corresponding objective vectors that are incomparable
to each other. We set pi = 2n−i and wi = 2i−1, 1 ≤ i ≤ n. Let n = 4k, k ≥ 1 a
positive integer. We define

S(k) = {0110, 1001}, if k = 1,

and
S(k) = {01x10, 10x01 | x ∈ S(k − 1)}, if k ≥ 2.

This recursively defines sets of solutions for a fixed value of k based on sets
for k−1. Sets for the k are obtained from sets for k−1 by adding two bits to the
left and two bits to the right of each string. The values of these bits are chosen in
the way that the strings obtained do not dominate each other. This can be done
as profits are exponentially decreasing and weights are exponentially increasing
according to their position in the string. An illustration of the (incomparable)
objective vectors for S(4) with |S(4)| = 24 = 16 and the corresponding Pareto
front for n = 16 is given in Fig. 1.

We now prove that the size of S(k) grows exponentially in n = 4k and that
all solutions in the set are incomparable to each other.

Theorem 2. Let n = 4k, k ≥ 1 a positive integer. Then S(k) contains 2k = 2n/4

search points which are all incomparable among each other.

Proof. The proof is by induction on k. For k = 1, we have two strings 0110 and
1001. We have p(0110) = 6 < p(1001) = 9 and w(0110) = 6 < w(1001) = 9

Runtime Analysis of Evolutionary Algorithms for the Knapsack Problem 147

0 1 2 3 4 5 6 7

weight 104

0

1

2

3

4

5

6

7

pr
of
it

104

Fig. 1. Illustration of Pareto front (blue) and incomparable objective vectors of S(4)
(red) for pi = 2n−i and wi = 2i−1, 1 ≤ i ≤ n when n = 16. (Color figure online)

which implies that the two strings are incomparable. For the induction step we
assume that the set S(k) consists only of incomparable solutions and show that
S(k + 1) also only includes incomparable solutions. For each string of S(k) we
add 2 digits to the left and 2 digits to the right and produce two new strings in
S(k+1) for each string in S(k). Hence, we have |S(k+1)| = 2 ·S(k)| = 2(n/4)+1.
Based on the assumption that all solution of S(k) are incomparable, we show
that all solutions in S(k + 1) are incomparable.

Assuming that the added bits all take on a value of 0, the profit and the
weight of each solution in S(k) increases by a factor of 4 where both values have
been less than 2n − 1 and are therefore less than 4 · (2n − 1) = 2n+2 − 4 after
the four 0-bits have been added. We now have to take into account the effect
of the 1-bits added in the two cases (01x10 and 10x01). Adding 01 to the left
and 10 to the right furthermore increases the profit by 2n+2 + 2 and the weight
by 2 + 2n+2. Adding 10 to the left and 01 to the right increases the profit by
2n+3 + 1 and the weight by 1 + 2n+3. All solutions of S(k + 1) where the same
pattern has been added are again incomparable after the addition as the profit
and weight increased by at least 2n+2 + 2 which is greater than the profit and
weight of any solution in S(n).

For the pattern 01x10 all solutions have profit at most 2n+3−1 and weight at
most 2n+3 − 1. For the pattern 10x01 all solutions have profit at least 2n+3 + 1
and weight at least 2n+3 + 1. Hence, solutions belonging to different patterns
are incomparable. This implies that all solutions of S(k + 1) are incomparable
which completes the proof.
�

Although the number of trade-offs that might occur is exponential, each non
Pareto optimal solution can be improved towards the Pareto front. The reason
for this is that any solution that is not Pareto optimal can be improved by
a certain number of 2-bit flips. Let x with |x|1 = k be a non Pareto optima
solution. We can transfer it into the Pareto optimal solution 1k0n−k by a set of
2-bit flips where the first bit that is flipped consists of an arbitrary 0-bit among
the first k bits and the second bit that is flipped consists of an arbitrary 1-bit

148 F. Neumann and A. M. Sutton

among the last n − k bits in x. Clearly each of these 2-bit flips is accepted as
they produce an offspring that dominates x. This means that any evolutionary
algorithm flipping two randomly chosen bits can obtain a some progress towards
the Pareto front even if it has to work with a large population.

4 Runtime Analysis of (1 + 1) EA

We first investigate the runtime behavior of the classical (1+1) EA and study the
time to obtain an optimal solution. The proof considers two phases. In the first
phase a feasible solution is obtained. After having obtained a feasible solution,
the expected time until for the first time an optimal solution has been obtained
is analyzed.

Theorem 3. The expected optimization time of the (1+ 1) EA on the knapsack
problem with favorably correlated weights is O(n2(log n + log pmax)).

Proof. We first show that the expected time until the (1 + 1) EA has produced
a feasible solution is O(n2) by adapting the O(n2) bound for optimizing linear
functions. Let x be an infeasible solution and consider the function

g(x) =

(
n∑

i=1

wi

)

− w(x)

giving the weight of the bits set to 0 in x. A feasible solution has value

W − w(x) = W −
n∑

i=1

wi + g(x) ≥ 0.

For technical reasons, set wn+1 = 0. We define fitness layer

Ai =

⎧
⎨

⎩
x

∣
∣
∣
∣
∣
∣

n+1∑

j=(n+1)−i

wj ≤ g(x) <

n+1∑

j=(n+1)−(i+1)

wj

⎫
⎬

⎭
, 0 ≤ i ≤ n − 1,

dependent on the value of g(x). Having an infeasible solution of layer x ∈ Ai,
one of the last n − i − 1 bits of x is currently set to 1. Flipping this bit produces
an offspring x′ ∈ Aj with j > i as it increases g(x) by at least wn−i−1. The
probability for such a mutation step is at least 1/(en). There are at most n
improvements until a feasible solution with W −w(x) = W −∑n

i=1 wi+g(x) ≥ 0
has been obtained which implies that a feasible solution is obtained after an
expected number of O(n2) steps.

Having reached a feasible solution, we consider the difference

Δ(x) = p(1k0n−k) − p(x),

where 1k0n−k is an optimal solution according to Corollary 1. We consider the
drift on Δ(x). As done in [1] for the case of uniform weights, we define

Runtime Analysis of Evolutionary Algorithms for the Knapsack Problem 149

loss(x) =
k∑

i=1

pix̄i, and surplus(x) =
n∑

i=k+1

pixi.

Note that Δ(x) = loss(x) − surplus(x). Let r be the number of zeros among
the first k bits in x (contributing to the loss) and s be the number of ones among
the last n − k bits in x (contributing to the surplus). Have have pi ≥ pj and
wi ≤ wj iff i ≤ j. This implies that each item belonging to the first k bits has a
profit at least as high as any profit of the last n − k bits and a weight at most
as high as any of the last n − k bits.

We consider different situations depending on the values of r and s. Our
analysis has similarities to the analysis of the (1 + 1) EA for the minimum
spanning tree problem carried out in [21].

If r > s, then any of the r missing bits among the first k bits can be flipped
and will be accepted. The sum of these gains is surplus(x) ≥ Δ(x) and the
expected progress in this situation is at least r

en · Δ(x) ≥ 1
en · Δ(x). If r = s,

then any of the missing r bits among the first k bits and any of the 1-bits among
the last n − k bits can be flipped to achieve an accepted solution. The sum of
the progress obtainable by these 2-bit flips is at least Δ(x) and the expected
progress in this situation is at least r2

en2 · Δ(x) ≥ 1
en2 · Δ(x). The situation r < s

is not possible for a feasible solution x as otherwise the search point 1k+10n−k−1

would be a feasible solution contradicting that 1k0n−k is an optimal solution.
Overall, we have at each time step t where the (1 + 1) EA has obtained a

feasible but non-optimal solution x of value Δt(x)

E[Δt+1(x) | Δt(x)] ≤
(

1 − 1
en2

)

Δt(x).

Using the multiplicative drift theorem [8] and the upper bound npmax and lower
bound 1 on Δ(x) for any non-optimal solution x, we get the upper bound of
O(n2(log n + log pmax)) on the expected time until the (1 + 1) EA has obtained
an optimal solution.
�

It should be noted that Ω(n2) is a lower bound for the (1 + 1) EA for knap-
sack instances with favorably correlated weights as this bounds already holds for
special instances where the weights are all 1 [1]. The reason for this lower bound
are special 2-bit flips that are necessary in the case that a current non-optimal
solution has a maximal number of 1-bits.

5 Runtime Analysis of GSEMO

We now analyze the expected runtime until GSEMO with size-based parent
selection has computed the whole Pareto front. The proof works by considering
a first phase in which a Pareto optimal solution is obtained. Afterwards missing
Pareto optimal solutions can be produced by flipping a specific bit to obtain a
still missing Pareto optimal objective vector.

150 F. Neumann and A. M. Sutton

Theorem 4. The expected optimization GSEMO with size-based parent selec-
tion on the knapsack problem with favorably correlated weights is O(n3).

Proof. We first upper bound the time until the algorithm has produced the
search point 1n. This solution is Pareto optimal as it has the largest possible
profit and once obtained will not be removed from the population. We follow
the proof for the O(n2) bound of optimizing linear pseudo-Boolean functions
and use fitness-based partitions weight respect to the profit of the solutions and
define fitness layer

Ai =

⎧
⎨

⎩
x

∣
∣
∣
∣
∣
∣

i∑

j=1

pj ≤ p(x) ≤
n∑

j=i+1

pj

⎫
⎬

⎭
, 0 ≤ i ≤ n − 1,

as the set of all search points whose profit is at least as high as the profit of
the first i profits and whose profit is less than the profits of the first i + 1
profits. Furthermore, the search point 1n constitute the optimal layer An of
profit p(1n) =

∑n
i=1 pi.

Consider the solution with the largest profit in the population. The prob-
ability to choose this solution x for mutation is at least 1/(n + 1) as the set
I contains at most n + 1 values and once it has been determined how many
1-bits the parent should have the individual with that number of 1-bits having
the largest profit is selected. Assume that the solution of largest profit currently
belongs to layer Ai, 0 ≤ i ≤ n − 1. In order to obtain a solution belonging to
layer Aj , j > i, one of the leading i + 1 bits is not set to 1 and can be flipped
to obtain a profit increase of at least pi+1. As x ∈ Ai before the mutation, this
leads to an offspring whose profit is increased by at least pi+1 and therefore
belonging to layer Aj with j > i. The probability to select the individual with
the largest profit in the population for mutation is 1/(n + 1) and flipping the
bit leading to an improvement in terms of fitness levels has probability at least
1/(en). There are n + 1 different fitness layers which implies that the search
point 1n is produced after an expected number of O(n3) steps.

In the following, we work under the assumption that the search point 1n has
already been included in the population. The search point 1n is Pareto optimal
as it has the largest possible profit and will stay in the population once it has
been obtained. Furthermore, for each Pareto optimal solution there does not
exist any other solution in the population that has the same number of ones.
As long as not all Pareto optimal objective vectors have been obtained, a new
Pareto optimal objective vector can be obtained by selecting a Pareto optimal
solution x with |x| = i for which Pareto optimal objective vector with solution
size i + 1 or i − 1 does not exist yet in the population. Flipping the 0-bit of
x corresponding to a largest profit not yet included in the solution leads to a
Pareto optimal solution y with |y| = i + 1 for 0 ≤ i ≤ n − 1. Similarly, flipping
the 1-bit of x corresponding to a largest profit selected in the solution leads to
a Pareto optimal solution y with |y| = i − 1 for 1 ≤ i ≤ n. Choosing such an
individual x for mutation has probability at least 1/(n + 1) and flipping the bit
necessary to increase the number of Pareto optimal objective vectors obtained

Runtime Analysis of Evolutionary Algorithms for the Knapsack Problem 151

has probability at least 1/(en). Hence a new Pareto optimal objective vector is
produced after an expected number of O(n2) steps. There are at most n Pareto
optimal objective vectors that have not been obtained after the search point 1n

has been included in the population. Hence, after an expected number of O(n3)
steps the population consists of n + 1 solutions, one for each Pareto optimal
objective vector.
�

It should be noted that using size-based parent selection where in each step
the solution with the smallest weight (instead of the largest profit) is selected
would lead to the same result. Here one would show that the search point 0n is
included in the population after an expected number of O(n3) steps (maximizing
(
∑n

i=1 wi) − w(x) and considering always the solution with the smallest weight
in the population) and show that the other Pareto optimal objective vectors are
included after an additional phase of an expected number of O(n3) steps.

6 Conclusions

Constrained combinatorial optimization problems play a crucial role in real-
world applications and evolutionary algorithms have been widely applied to
constrained problems. With this paper, we have contributed to the theoretical
understanding of evolutionary algorithms for constrained optimization problems
by means of rigorous runtime analysis. We generalized the result for the (1 + 1)
EA obtained for uniform weights given in [1] to favorably correlated weights.
Furthermore, we investigated the multi-objective formulation of the knapsack
problem. Our results show that although the Pareto front has size n + 1, there
can be exponentially large sets of non Pareto optimal objective vectors that are
all incomparable. Motivated by these insights, we introduced a size-based parent
selection mechanism and have shown that GSEMO using this parent selection
method is able to compute the whole Pareto front in expected time O(n3).

For future work, it would be interesting to analyze GSEMO with its standard
uniform parent selection. We conjecture that this algorithm would also be able
to obtain the whole Pareto front in expected polynomial time as each non Pareto
optimal solution can always make good progress towards the Pareto front.

Acknowledgment. This work has been supported through Australian Research
Council (ARC) grant DP160102401.

References

1. Friedrich, T., Kötzing, T., Lagodzinski, G., Neumann, F., Schirneck, M.: Analysis
of the (1+1) EA on subclasses of linear functions under uniform and linear con-
straints. In: Proceedings of the Fourteenth Conference on Foundations of Genetic
Algorithms (FOGA), pp. 45–54. ACM (2017)

2. Eiben, A.E., Smith, J.E.: Introduction to Evolutionary Computing. Natural Com-
puting Series. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-
44874-8

https://doi.org/10.1007/978-3-662-44874-8
https://doi.org/10.1007/978-3-662-44874-8

152 F. Neumann and A. M. Sutton

3. Auger, A., Doerr, B.: Theory of Randomized Search Heuristics: Foundations and
Recent Developments, vol. 1. World Scientific, Singapore (2011)

4. Neumann, F., Witt, C.: Bioinspired Computation in Combinatorial Optimization:
Algorithms and Their Computational Complexity. Springer, Heidelberg (2010).
https://doi.org/10.1007/978-3-642-16544-3

5. Jansen, T.: Computational complexity of evolutionary algorithms. In: Rozenberg,
G., Bäck, T., Kok, J.N. (eds.) Handbook of Natural Computing, pp. 815–845.
Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-540-92910-9 26

6. Droste, S., Jansen, T., Wegener, I.: On the analysis of the (1+1) evolutionary
algorithm. Theor. Comput. Sci. 276(1–2), 51–81 (2002)

7. He, J., Yao, X.: Drift analysis and average time complexity of evolutionary algo-
rithms. Artif. Intell. 127(1), 57–85 (2001)

8. Doerr, B., Johannsen, D., Winzen, C.: Multiplicative drift analysis. Algorithmica
64, 673–697 (2012)

9. Witt, C.: Tight bounds on the optimization time of a randomized search heuristic
on linear functions. Comb. Probab. Comput. 22, 294–318 (2013)

10. Kellerer, H., Pferschy, U., Pisinger, D.: Knapsack Problems. Springer, Heidelberg
(2004). https://doi.org/10.1007/978-3-540-24777-7

11. Zhou, Y., He, J.: A runtime analysis of evolutionary algorithms for constrained
optimization problems. IEEE Trans. Evol. Comput. 11(5), 608–619 (2007)

12. He, J., Mitavskiy, B., Zhou, Y.: A theoretical assessment of solution quality in
evolutionary algorithms for the knapsack problem. In: Proceedings of the IEEE
Congress on Evolutionary Computation (CEC), pp. 141–148. IEEE (2014)

13. Kumar, R., Banerjee, N.: Running time analysis of a multiobjective evolutionary
algorithm on simple and hard problems. In: Wright, A.H., Vose, M.D., De Jong,
K.A., Schmitt, L.M. (eds.) FOGA 2005. LNCS, vol. 3469, pp. 112–131. Springer,
Heidelberg (2005). https://doi.org/10.1007/11513575 7

14. Laumanns, M., Thiele, L., Zitzler, E.: Running time analysis of multiobjective
evolutionary algorithms on pseudo-Boolean functions. IEEE Trans. Evol. Comput.
8(2), 170–182 (2004)

15. Giel, O.: Expected runtimes of a simple multi-objective evolutionary algorithm.
In: Proceedings of the IEEE Congress on Evolutionary Computation (CEC), pp.
1918–1925. IEEE (2003)

16. Neumann, F., Wegener, I.: Minimum spanning trees made easier via multi-objective
optimization. Nat. Comput. 5(3), 305–319 (2006)

17. Friedrich, T., Neumann, F.: Maximizing submodular functions under matroid con-
straints by evolutionary algorithms. Evol. Comput. 23(4), 543–558 (2015)

18. Kratsch, S., Neumann, F.: Fixed-parameter evolutionary algorithms and the vertex
cover problem. Algorithmica 65(4), 754–771 (2013)

19. Qian, C., Yu, Y., Tang, K., Yao, X., Zhou, Z.: Maximizing non-monotone/non-
submodular functions by multi-objective evolutionary algorithms. CoRR
abs/1711.07214 (2017)

20. Ehrgott, M.: Multicriteria Optimization. Springer, Heidelberg (2005). https://doi.
org/10.1007/3-540-27659-9

21. Neumann, F., Wegener, I.: Randomized local search, evolutionary algorithms, and
the minimum spanning tree problem. Theor. Comput. Sci. 378(1), 32–40 (2007)

https://doi.org/10.1007/978-3-642-16544-3
https://doi.org/10.1007/978-3-540-92910-9_26
https://doi.org/10.1007/978-3-540-24777-7
https://doi.org/10.1007/11513575_7
https://doi.org/10.1007/3-540-27659-9
https://doi.org/10.1007/3-540-27659-9

	Runtime Analysis of Evolutionary Algorithms for the Knapsack Problem with Favorably Correlated Weights
	1 Introduction
	2 Algorithms and Problems
	2.1 Single-Objective Optimization
	2.2 Multi-objective Optimization

	3 Structure of the Objective Space
	4 Runtime Analysis of (1+1) EA
	5 Runtime Analysis of GSEMO
	6 Conclusions
	References

