
Theoretical Analysis of Lexicase Selection
in Multi-objective Optimization

Thomas Jansen and Christine Zarges(B)

Department of Computer Science, Aberystwyth University,
Aberystwyth SY23 3DB, UK

{t.jansen,c.zarges}@aber.ac.uk

Abstract. Lexicase selection is a parent selection mechanism originally
introduced for genetic programming that has also been considered in
the context of multi-objective optimization. This is the first theoretical
runtime analysis of lexicase selection showing results for the bi-objective
leading ones trailing zeroes benchmark problem. The lexicase selection
operator is embedded into a simple hillclimbing algorithm and compared
with different selection operators from the literature that are based on
the classical dominance relationship. Strengths and weaknesses of the
operators are demonstrated providing insights into their working prin-
ciples. Results of experiments accompany the theoretical findings and
point towards interesting questions for future research.

Keywords: Runtime analysis · Multi-objective optimisation
Selection operators

1 Introduction

The choice of appropriate selection operators is a crucial step in the design
of evolutionary algorithms. Selection occurs twice in the typical evolutionary
cycle—as selection for reproduction when selecting search points as parents and
as selection for survival when deciding which search points will form the next
population. In principle, the same mechanisms can be used for both scenar-
ios and thus, it makes sense to consider common operators for both settings.
Classical examples for selection operators include uniform, fitness-proportional,
tournament and truncation selection (see [13] for an overview). A more recent
proposal in the context of genetic programming is lexicase selection [22], where
fitness evaluation is based on a number of test cases. However, it has been noted
that lexicase selection lends itself naturally to multi-objective optimisation [15].

We consider lexicase selection in the context of a pseudo-Boolean bi-objective
optimisation problem and compare it with three other multi-objective selection
mechanisms based on the classical dominance relationship. Lexicase selection has
a performance that is comparable to the best of three simple dominance-based
selection mechanisms and clearly outperforms two of them.

c© Springer Nature Switzerland AG 2018
A. Auger et al. (Eds.): PPSN 2018, LNCS 11102, pp. 153–164, 2018.
https://doi.org/10.1007/978-3-319-99259-4_13

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-99259-4_13&domain=pdf

154 T. Jansen and C. Zarges

We discuss motivation and background of this study in more detail in the
next section. We introduce the concrete algorithms and problems we study in
a more formal way in Sect. 3. Section 4 is devoted to the theoretical analysis
and contains our main results. We present results of empirical analysis in Sect. 5
that confirm the theoretical results and lead to open questions by considering
a modified version of the algorithm. We summarise our findings and discuss
directions for possible future research in Sect. 6.

2 Background

Our main goal is to perform a theoretical analysis of lexicase selection in the
context of discrete multi-objective optimization. Lexicase selection is a parent
selection mechanism that was introduced by Spector [22] to improve the perfor-
mance of genetic programming in situations where fitness evaluation is based on
(potentially a large number of) test cases. It is designed in a way that allows it
to be used in place of tournament selection (or any other parent selection mecha-
nism) without any other changes to the overall genetic programming algorithm.
It has since been used in applications [9,11] and analysed in some detail. This
includes comparing its performance to other selection mechanisms [7,10,12,18],
studying its impact on population diversity [6,8], and considering its effects and
performance in detail for a specific problem [19] (see also [5]). Since it can be
less effective for problems in the continuous domain a variant called ε-lexicase
selection for such continuous-valued problems has been introduced [15] and also
analysed [14]. To the best of our knowledge the work by La Cava et al. [14] is
the first theoretical analysis of a lexicase selection variant and it applies to the
special version for continuous domains. We present the first theoretical analy-
sis of the original lexicase selection method for discrete-valued problem and its
impact on the expected optimization time.

Despite its origin in genetic programming lexicase selection is a general par-
ent selection mechanism that can be employed in any kind of search algorithm
that performs a step that is essentially parent selection. This includes for exam-
ple evolutionary algorithms [1] and artificial immune systems [23]. We consider
a simple hillclimber and compare lexicase selection with other selection mecha-
nisms that have been used in this context. We will discuss details of all algorithms
and selection operators we consider in the next section.

We consider a well known benchmark problem for multi-objective optimisa-
tion, the leading ones trailing zeros problem (formally defined as LOTZ in the
following). It was introduced by Laumanns et al. [16] and was the first problem
to be used for a theoretical runtime analysis. This motivates its use in this study
which is a much more specific first in theoretical runtime analysis. LOTZ has
been analysed for a number of simple evolutionary algorithms for multi-objective
optimization (e. g., see [3,17]) and has also motivated the introduction of other,
similar benchmark problems (e. g., see [4,17]). We will formally introduce the
problem in the next section.

Theoretical Analysis of Lexicase Selection in Multi-objective Optimization 155

3 Algorithms, Problems, and Definitions

Our analysis focuses on lexicase selection, a parent selection method that was
introduced by Spector [22]. It aims at genetic programming where the fitness of
an individual is defined by its performance on a number of test cases. We consider
it here as a general parent selection method for multi-objective optimization and
formulate it in this context. We consider a multi-objective function f with c
components so that for all x we have f(x) = (f1(x), f2(x), . . . , fc(x)). Without
loss of generality we assume that the optimisation goal is to maximise each of
the c different components. For such a multi-objective function f we describe
lexicase selection as a method that selects one out of a pool P of parents. It goes
through the c different objectives in random order (selecting the order randomly
for each new selection operation) and eliminates for the current objective all
search points that are inferior to other search points in the parent pool P . When
this reduces the number of remaining potential parents to one the remaining
parent is returned as selected. If at the end there is more than one potential
parent left one is selected uniformly at random. We give a formal description as
Algorithm 1.

Algorithm 1. Lexicase Selection
1 for i ∈ {1, 2, . . . , c} in random order do
2 Remove from P all x with fi(x) < max

y∈P
{fi(y)}.

3 if |P | = 1 then
4 return remaining x ∈ P as selected

5 Select x ∈ P uniformly at random and return x.

Evolutionary algorithms make use of selection in two different places in the
evolutionary cycle: they use parent selection and selection for survival (e.g., see
[13] for a general description). In some sense selection for survival is the opposite
to parent selection since normally we select a worst individual to be removed from
the population. We can do the same with lexicase selection simply by replacing
the maximum by the minimum in line 2 of Algorithm 1. This follows in spirit the
use of negative tournament selection in a well-known standard GP algorithm,
called TinyGP, in the field guide to GP [21]. We refer to this version as negative
lexicase selection and would use it whenever we need to decide which member
of a population should be discarded. In the context of this work, we will not be
needing this.

In multi-objective optimisation one usually considers Pareto optimality in
some form as optimisation goal. For a multi-objective function f : {0, 1}n → R

c

with f = (f1, f2, . . . , fc) we say that x weakly dominates y (x � y) if fi(x) ≥
fi(y) for all i ∈ {1, 2, . . . , c}. Note that we do not distinguish between dominance
between x and y and f(x) and f(y) here. Clearly, the same terminology can be
applied to both. We say that x dominates y (x � y) if x � y and there exists

156 T. Jansen and C. Zarges

some i ∈ {1, 2, . . . , c} with fi(x) > fi(y). If neither x � y nor y � x we say that
x and y are non-comparable. We say that x ∈ {0, 1}n is non-dominated if there
is no y ∈ {0, 1}n such that y � x. The Pareto set is the set of all non-dominated
search points in {0, 1}n. Its image under f is called the Pareto front.

When using an optimization heuristic for a multi-objective function one is
usually interested in not only finding some solution that belongs to the Pareto
set but a set of solutions such that the image of this set equals (or approximates)
the Pareto front.

We analyse two different points of time. Let x1, x2, . . . be the sequence of
search points that a multi-objective heuristic optimization algorithm generates.
First, we consider the first point of time when a search point that belongs to the
Pareto set is discovered (i.e., the smallest T1 such that xT1 belongs to the Pareto
set and all xi with i < T1 do not belong to the Pareto set). Second, we consider
the first point of time when the whole Pareto front is discovered (i.e., the smallest
T2 such that {f(x1), f(x2), . . . , f(xT2)} is the Pareto front and for all i < T2 we
have that {f(x1), f(x2), . . . , f(xi)} is not the Pareto front. Clearly, T1 and T2

are random variables if the optimization algorithm makes random choices. We
will analyze their expectation in the following. Note that the definitions of T1

and T2 do not impose any requirements on the algorithm. It is not necessary that
the algorithm knows that T1 or T2 have been reached. For T2, it is not necessary
that the algorithm keeps a representative for each point of the Pareto front
somewhere. This allows us not to discuss the use of populations and archives
and still analyse the performance of any multi-objective optimisation algorithm.
If in an application it is desirable to output the Pareto front once it is found an
archive that stores a representative for each non-dominated solution could easily
be used.

Since this is a first theoretical run time analysis of lexicase selection it makes
sense to start with an algorithm that is as simple as possible. In the context
of evolutionary algorithms this is often the so-called (1 + 1) EA. It is similar to
local search because it has a population of size only 1 and creates one offspring
in each round, selecting the better of parent and offspring for survival. Different
from local search it uses standard bit mutations, a global mutation operator that
flips each bit independently with probability 1/n (where n is the number of bits).
While in expectation only 1 bit flips (the same number as for local search) any
number of bits can flip so that a single mutation can reach any point in the search
space with positive probability. While local search and the (1 + 1) EA are often
similar it is known that the global mutation can be the cause of very different
behaviour [2]. In particular in the context of multi-objective optimization it is
known that global mutations make the analysis considerably more difficult. This
is the reason why usually results for SEMO, a simple evolutionary optimizer
employing the same local steps as local search, are much easier to obtain than
for GEMO, the same optimizer but with the same global mutations as used in
the (1 + 1) EA [17]. This is the reason why we consider random local search here.
For the sake of completeness we give a formal description as Algorithm 2.

Theoretical Analysis of Lexicase Selection in Multi-objective Optimization 157

Algorithm 2. Random Local Search (RLS)
1 Select x ∈ {0, 1} uniformly at random.
2 while termination criterion not met do
3 y := x
4 Select one bit in y uniformly at random and flip this bit.
5 Use a selection mechanism to determine which of {x, y} replaces x.

When considering RLS and analysing T1 and T2 it is important to note that
we analyse the sequence of search points x that RLS generates. We do not take
into account any search points y that do not replace x as new current search
point.

Clearly, lexicase selection is not the only possibility to turn an evolutionary
algorithm (or other heuristic optimiser like RLS) into an algorithm that can be
used for multi-objective optimisation. Giel and Lehre [4] consider four different
operators, three very simple and straightforward ones and one slightly more com-
plicated on a different benchmark function. We adopt the three simple selection
mechanisms to have a baseline for comparison here.

Definition 1. The strong selection operator prefers a new search point y over x
if y dominates x. The weak selection operator prefers a new search point y over
x if y weakly dominates x. The weakest selection operator prefers a new search
point y over x if y weakly dominates x or x and y are not comparable.

We see that all three selection operators are different from lexicase selection
and we will see how this influences the performance of RLS in the next section.
We will refer to the four different algorithms as RLS with lexicase selection, RLS
with strong selection, RLS with weak selection, and RLS with weakest selection
in the following.

As mentioned earlier we use LOTZ as our benchmark function. The function
LOTZ was introduced by Laumanns et al. [16] to facilitate theoretical analysis
and it was important in the development of a theory-grounded understanding
of evolutionary multi-objective optimization. This is the reason why we use the
same function here. Our results will be specific to LOTZ, of course. We hope
they will serve as a useful first step.

LOTZ is a bi-objective function and similar in structure to the well-known
leading ones problem (e. g., see [13] for some background on this example prob-
lem). It asks to maximize the number of leading 1-bits and trailing 0-bits at the
same time.

Definition 2. The function LOTZ : {0, 1}n → N
2 is defined as

(
n∑

i=1

i∏
j=1

x[j],

n∑
i=1

n∏
j=i

(1 − x[j])
)

.

It is well known and not difficult to see that the Pareto front of LOTZ equals
{(0, n), (1, n − 1), (2, n − 2), . . . , (n − 1, 1), (n, 0)} and that the Pareto set equals

158 T. Jansen and C. Zarges

{000 · · · 000, 100 · · · 000, 110 · · · 000, . . . , 111 · · · 110, 111 · · · 111}. The function is
extreme in the sense that Pareto set and Pareto front have equal size. Each
member of the Pareto front has only one representative in the search space.

4 Analysis

We analyse the performance of RLS with all four different selection operators
(lexicase selection, strong selection, weak selection, weakest selection) on LOTZ.
We consider both points of time that we defined in the previous section, the first
point of time when a point on the Pareto front is found and also the first point
of time when all points on the Pareto front have been found at least once.

Lemma 1. The expected time until RLS with any of the four different selection
operators (lexicase selection, strong selection, weak selection, weakest selection)
finds a point on the Pareto front of LOTZ is O

(
n2

)
.

Proof. We consider the current search point x. Let l ∈ {0, 1, . . . , n−2} denote the
number of leading 1-bits in x (i.e., x[1] = x[2] = · · · = x[l] = 1 and x[l + 1] = 0),
let r ∈ {0, 1, . . . , n − 2} denote the number of trailing 0-bits in x (i.e., x[n] =
x[n − 1] = · · · = x[n − r + 1] = 0 and x[n − r] = 1). Note that l > n − 2 or
r > n − 2 imply that x is already at the Pareto front (where r + l = n holds).

Let l′ and r′ denote the corresponding numbers in the new search point y.
The probability to increase either l or r by 1 in a mutation equals 2/n because
it suffices to flip either x[l + 1] or x[n − r]. In this case we have either l′ = l and
r′ = r + 1 or l′ = l + 1 and r′ = r.

In both cases each of the four selection mechanisms will prefer y over x
because y is not inferior in any criterion and strictly better in one.

After at most n such steps we have r+ l = n and the Pareto front is reached.
The expected waiting for each event equals n/2, thus the total expected waiting
time is bounded by n2/2 = O

(
n2

)
. ��

It is not hard to make Lemma 1 more precise and prove that the expected
time is actually Θ

(
n2

)
, i.e., the bound O

(
n2

)
is asymptotically tight. However,

since we are more interested in the time it takes to explore the Pareto front
there is no point in making this more precise. The next results will prove that
the time to find the first point of the Pareto front is insignificant in comparison
to the time it takes to explore the whole Pareto front.

Theorem 1. RLS with strong selection and RLS with weak selection never find
more than a single point of the Pareto front of LOTZ.

Proof. We consider the situation after the first point of the Pareto front of
LOTZ has been found. By definition of the Pareto front, no other search point
can dominate this search point. This implies that RLS with strong selection
is stuck at this search point and will never go to a second search point on the
Pareto front. By definition of LOTZ, no other search point can weakly dominate
this search point because each point of the Pareto front of LOTZ has only

Theoretical Analysis of Lexicase Selection in Multi-objective Optimization 159

one representative point in the search point. This implies that RLS with weak
selection is stuck at this search point and will never go to a second search point
on the Pareto front. ��

We see that RLS with strong and weak selection fail to optimise LOTZ
in the sense that both are not able to find the whole Pareto front, even when
given infinite time. The following result shows that RLS with lexicase selection
is efficient in finding the complete Pareto front on LOTZ.

Theorem 2. The expected time until RLS with lexicase selection finds each
point of the Pareto front of LOTZ is Θ

(
n3

)
.

Proof. We first prove an upper bound of O
(
n3

)
for the time to find the whole

Pareto front of LOTZ. We start at a point of time when the current search point
x is at the Pareto front. In the same way as in the proof of Lemma1 let l denote
the number of leading 1-bits in x and r denote the number of trailing 0-bits in
x. Note that l + r = n since x is at the Pareto front. Let l′ and r′ denote the
corresponding numbers in the new search point y that is created as a mutant of
x.

There are at least one and at most two positions such that either l′ = l − 1
and r′ = r + 1 or l′ = l + 1 and r′ = r − 1. For all other positions we have either
l′ < l and r′ = r or l′ = l and r′ < r. In this latter case the lexicase selection
will prefer x over y.

We now consider the other case, the one that happens with probability at
least 1/n and at most 2/n. In both cases it depends on the order of selection
criteria if x or y is preferred. In both cases there is one order where x is preferred
over y and one order where y is preferred over x. Thus, we see that y replaces x
with probability 1/2 in this case and in total with probability at least 1/(2n) and
at most 1/n. Since the situation is completely symmetric x is replaced with a y
that has a smaller or greater number of 1-bits with equal probability (except for
the fringe cases l = n and r = n). This implies that we can identify the changes
of l (or, equivalently r) as an unbiased random work on {0, 1, . . . , n} where each
step is taken with equal probability (except for the fringe cases l = n and r = n)
and the expected waiting time between two steps is between n and 2n. It is well
known (e.g., see [20, Chap. 6.5]) that the time to have visited each state (also
know as cover time) is at most 2n · 2n2 = 4n3. This implies the upper bound of
O

(
n3

)
.

For the lower bound it suffices to notice that for the chain graph that cor-
responds to the unbiased random work on {0, 1, . . . , n} the cover time is Θ

(
n2

)
and all the probabilities we considered were tight. Thus, the expected time is
Θ

(
n3

)
. ��

While strong and weak selection are both unsuccessful on LOTZ lexicase
is not the only selection mechanism that is successful. The weakest selection
mechanism has the same asymptotic run time as the next theorem shows.

Theorem 3. The expected time until RLS with weakest selection finds each
point of the Pareto front of LOTZ is Θ

(
n3

)
.

160 T. Jansen and C. Zarges

Proof. If we consider two different points on the Pareto front they are always
not comparable. Thus, in the situation where the current search point x is on the
Pareto front and the new search point y is also on the Pareto front employing
the weakest selection mechanism implies that y will replace x because it will
prefer the new search point (see Definition 1). If the new search point is not the
Pareto front it will be dominated by the old search point. Thus, RLS with the
weakest selection performs the same kind of random walk on the Pareto front as
RLS with lexicase selection and the same runtime bounds apply. ��

It is worth noting that with lexicase selection a new search point at the
Pareto front will only be accepted with probability 1/2 while with the weakest
selection it will certainly be accepted. We therefore expect RLS with weakest
selection to be twice as fast as RLS with lexicase selection. We remark that the
same asymptotic runtime for LOTZ has been proven for the simple evolutionary
multi-objective optimizer (SEMO) [17].

5 Experimental Supplements

We present the results of experiments to accompany our theoretical findings. We
perform 100 runs for RLS (Algorithm2) with lexicase selection (Algorithm 1)
and with weakest selection (Definition 1) for n = 10, 20, . . . , 300. We visualise
the results using boxplots1 in Figs. 1 and 2. For both algorithms we consider the
time to reach the Pareto front (T1) and the time until all points on the Pareto
front have been sampled at least once (cover time T2). Recall that both algo-
rithms reach the Pareto front in time O

(
n2

)
(Lemma 1). Once the Pareto front

is reached, only points on the Pareto front will be accepted and the random
walk on the Pareto front has a cover time of Θ

(
n3

)
for both algorithms (The-

orems 2 and 3). The observed runtimes in our experiments nicely match these
theoretical bounds as can be seen in Fig. 3 where we plot the mean observed
number of function evaluations against a fitted polynomial based on our theo-
retical bounds. As expected, RLS with weakest selection is about twice as fast
as RLS with lexicase selection when considering cover time. It should be noted
that both algorithms exhibit a large variance when considering the cover time
for the Pareto front. Thus, we observe a considerable number of outliers in our
experiments. All statistical operations have been performed with R2.

Our theoretical results only consider mutations that flip exactly one bit. As
discussed previously, moving to global mutations such as standard bit mutations
in the (1 + 1) EA can have dramatic consequences. From our experiments, we can
indeed see that using standard bit mutations instead of one bit mutations has
a significant influence on the performance of the algorithm. We visualise results
for n = 10, 20, . . . , 70 using boxplots in Fig. 4. While the increase in time needed

1 Boxplots depict the minimum, maximum, median and first and third quartiles of
the observed runtimes. Circles indicate outliers, which are observations outside 1.5
times the interquartile range above the upper quartile and below the lower quartile.

2 http://www.r-project.org

http://www.r-project.org

Theoretical Analysis of Lexicase Selection in Multi-objective Optimization 161

10 30 50 70 90 120 150 180 210 240 270 300

0
50

00
10

00
0

15
00

0
20

00
0

25
00

0

n

F
itn

es
s

E
va

lu
at

io
ns

10 30 50 70 90 120 150 180 210 240 270 300

0.
0e

+
00

4.
0e

+
07

8.
0e

+
07

1.
2e

+
08

n

F
itn

es
s

E
va

lu
at

io
ns

Fig. 1. Experimental results for RLS with lexicase selection over 100 runs. Boxplots
show the number of fitness function evaluations until the Pareto front is reached (left)
and until the whole Pareto front has been sampled (right).

10 30 50 70 90 120 150 180 210 240 270 300

0
50

00
10

00
0

15
00

0
20

00
0

25
00

0

n

F
itn

es
s

E
va

lu
at

io
ns

10 30 50 70 90 120 150 180 210 240 270 300

0e
+

00
2e

+
07

4e
+

07
6e

+
07

8e
+

07
1e

+
08

n

F
itn

es
s

E
va

lu
at

io
ns

Fig. 2. Experimental results for RLS with weakest selection over 100 runs. Boxplots
show the number of fitness function evaluations until the Pareto front is reached (left)
and until the whole Pareto front has been sampled (right).

0 50 100 150 200 250 300

0
50

00
10

00
0

15
00

0
20

00
0

25
00

0

n

fit
ne

ss
 e

va
lu

at
io

ns

Time to reach Pareto front

observed means
fitted curve

0 50 100 150 200 250 300

0.
0e

+
00

5.
0e

+
06

1.
0e

+
07

1.
5e

+
07

2.
0e

+
07

2.
5e

+
07

3.
0e

+
07

n

fit
ne

ss
 e

va
lu

at
io

ns

Cover time

observed means
fitted curve

(a) RLS with lexicase selection:

0 50 100 150 200 250 300

0
50

00
10

00
0

15
00

0
20

00
0

25
00

0

n

fit
ne

ss
 e

va
lu

at
io

ns

Time to reach Pareto front

observed means
fitted curve

0 50 100 150 200 250 300

0.
0e

+
00

5.
0e

+
06

1.
0e

+
07

1.
5e

+
07

2.
0e

+
07

2.
5e

+
07

3.
0e

+
07

n

fit
ne

ss
 e

va
lu

at
io

ns

Cover time

observed means
fitted curve

(b) RLS with weakest selection

Fig. 3. The average number fitness function evaluations observed in our experiments
together with the fitted polynomials matching our theoretical results. For RLS with
lexicase selection we obtain 0.2476x2 − 11.41 (T1) and 1.285x3 − 21 190 (T2). For RLS
with weakest selection we obtain 0.2481x2 − 20.3 (T1) and 0.6479x3 − 50 520 (T2).

162 T. Jansen and C. Zarges

10 20 30 40 50 60 70

0
10

00
0

20
00

0
30

00
0

40
00

0

n

F
itn

es
s

E
va

lu
at

io
ns

10 20 30 40 50 60 70

0e
+

00
2e

+
08

4e
+

08
6e

+
08

8e
+

08
1e

+
09

n

F
itn

es
s

E
va

lu
at

io
ns

Fig. 4. Experimental results for the (1 + 1) EA with lexicase selection over 100 runs.
Boxplots show the number of fitness function evaluations until the Pareto front is
reached (left) and until the whole Pareto front has been sampled (right).

to find the Pareto front seems not too different (but with larger outliers), we
see that already for n = 70 the average number of fitness function evaluations
needed to sample the entire Pareto front is significant larger than the largest
outlier for the two algorithms using local mutations. We will examine this case
further in the conclusions when discussing questions for future work.

6 Conclusions

We have presented a first theoretical analysis of lexicase selection in the con-
text of discrete multi-objective optimisation. Considering a simple hillclimbing
algorithm we show that lexicase selection can be used to efficiently sample the
entire Pareto front of the well-known bi-objective benchmark function leading
ones trailing zeros (LOTZ). We compare lexicase selection with three multi-
objective selection mechanisms from the literature. We obtain asymptotically the
same optimisation times when using the mechanism with the weakest selection
pressure while classical selection mechanisms based on the (weak) dominance
relationship get stuck on the first search point sampled on the Pareto front.

Our study hints towards several interesting questions for future research. We
give some insights into these questions in the following, but leave the formal
analyses for future research. A comparison with indicator-based selection [24] or
considering problems with more than two objectives would also be interesting.

As discussed in the previous section, experiments indicate that moving from
local mutations to global mutations significantly increases the runtime of the
algorithm. We conjecture that the (1 + 1) EA with lexicase selection is not able
to find the entire Pareto front efficiently. One reason for this is that standard bit
mutations may hinder the algorithm to perform a random walk on the Pareto
front by preferring a non Pareto optimal search point over a Pareto optimal one.

Theoretical Analysis of Lexicase Selection in Multi-objective Optimization 163

Consider for example, the search points x = 150 050 (50 1-bits followed by 50 0-
bits) with fitness (50, 50) and y = 130 0 117 1 051 with fitness (30, 51) for n = 100,
where y is the result of a 2-bit mutation of x (flipping the bits at positions 31 and
49). With probability 1/2, lexicase selection chooses the second objective over
the first objective and thus, will accept y over x. After that any mutation only
effecting the 1-bits at positions 32–48 will be accepted. Note that the (1 + 1) EA
with weakest selection would also accept the new search point as x and y are
incomparable.

Since lexicase selection is a parent selection mechanism it would make sense
to consider populations, e.g., a (μ + 1) RLS or (μ + 1) EA. We conjecture that
simply using lexicase selection for parent selection and negative lexicase selection
for replacement will not be efficient. Again, the main reason is that search points
that have made some progress on the Pareto front can be lost and replaced by
search points that are not Pareto optimal. Consider for example a population
that contains x = 1n−1 0 and y = 10n−1 and assume that we have not found the
two extreme points on the Pareto front, yet. Moreover, we assume that x and y
are the two points with fewest trailing zeros and leading ones, respectively. That
means that the remaining search points points can be arbitrary points with less
than n− 1 but more than 1 leading ones and trailing zeros. In this case, lexicase
selection will select either x or y as parent (depending on the random order of
objectives). Assume w. l. o. g. that x was selected and z = 1n−3 0 1 0 was created
(flipping only the bit at position n − 2). If negative lexicase selection uses the
same objective for replacement, the offspring (that is not on the Pareto front)
will replace y. The latter happens with probably 1/2 and thus, we expect to
frequently lose points on the (extreme ends of the) Pareto front.

References

1. De Jong, K.A.: Evolutionary Computation. A Unified Approach. MIT Press, Cam-
bridge (2016)

2. Doerr, B., Jansen, T., Klein, C.: Comparing global and local mutations on bit
strings. In: Proceedings of the Genetic and Evolutionary Computation Conference
(GECCO 2008), pp. 929–936. ACM Press (2008)

3. Giel, O.: Expected runtimes of a simple multi-objective evolutionary algorithm.
In: Proceedings of the 2003 Congress on Evolutionary Computation (CEC 2003),
pp. 1918–1925 (2003)

4. Giel, O., Lehre, P.K.: On the effect of populations in evolutionary multi-objective
optimisation. Evol. Comput. 18(3), 335–356 (2010)

5. Helmuth, T.: General program synthesis from examples using genetic programming
with parent selection based on random lexicographic orderings of test cases. Ph.D.
thesis, University of Massachusetts Amherst (2015)

6. Helmuth, T., McPhee, N.F., Spector, L.: Effects of lexicase and tournament selec-
tion on diversity recovery and maintenance. In: Genetic and Evolutionary Compu-
tation Conference (GECCO 2016), Companion, pp. 983–990 (2016)

7. Helmuth, T., McPhee, N.F., Spector, L.: The impact of hyperselection on lexicase
selection. In: Proceedings of the Genetic and Evolutionary Computation Confer-
ence (GECCO 2016), pp. 717–724 (2016)

164 T. Jansen and C. Zarges

8. Helmuth, T., McPhee, N.F., Spector, L.: Lexicase selection for program synthesis:
a diversity analysis. In: Riolo, R., Worzel, B., Kotanchek, M., Kordon, A. (eds.)
Genetic Programming Theory and Practice XIII. GEC, pp. 151–167. Springer,
Cham (2016). https://doi.org/10.1007/978-3-319-34223-8 9

9. Helmuth, T., Spector, L.: Evolving a digital multiplier with the PushGP genetic
programming system. In: Genetic and Evolutionary Computation Conference
(GECCO 2013), Companion, pp. 1627–1634 (2013)

10. Helmuth, T., Spector, L.: Word count as a traditional programming benchmark
problem for genetic programming. In: Proceedings of the Genetic and Evolutionary
Computation Conference (GECCO 2014), pp. 919–926 (2014)

11. Helmuth, T., Spector, L.: General program synthesis benchmark suite. In: Proceed-
ings of the Genetic and Evolutionary Computation Conference (GECCO 2015), pp.
1039–1046 (2015)

12. Helmuth, T., Spector, L., Matheson, J.: Solving uncompromising problems with
lexicase selection. IEEE Trans. Evol. Comput. 19(5), 630–643 (2015)

13. Jansen, T.: Analyzing Evolutionary Algorithms. The Computer Science Perspec-
tive. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-17339-4

14. La Cava, W., Helmuth, T., Spector, L., Moore, J.H.: A probabilistic and multi-
objective analysis of lexicase selection and epsilon-lexicase selection. Evol. Comput.
(2018, to appear). http://doi.org/10.1162/evco a 00224

15. La Cava, W., Spector, L., Danai, K.: Epsilon-lexicase selection for regression. In:
Proceedings of the Genetic and Evolutionary Computation Conference (GECCO
2016), pp. 741–748 (2016)

16. Laumanns, M., Thiele, L., Zitzler, E., Welzl, E., Deb, K.: Running time analysis
of multi-objective evolutionary algorithms on a simple discrete optimization prob-
lem. In: Guervós, J.J.M., Adamidis, P., Beyer, H.-G., Schwefel, H.-P., Fernández-
Villacañas, J.-L. (eds.) PPSN 2002. LNCS, vol. 2439, pp. 44–53. Springer, Heidel-
berg (2002). https://doi.org/10.1007/3-540-45712-7 5

17. Laumanns, M., Thiele, L., Zitzler, E.: Running time analysis of multiobjective
evolutionary algorithms on pseudo-boolean functions. IEEE Trans. Evol. Comput.
8(2), 170–182 (2004)

18. Liskowski, P., Krawiec, K., Helmuth, T., Spector, L.: Comparison of semantic-
aware selection methods in genetic programming. In: Genetic and Evolutionary
Computation Conference (GECCO 2015), Companion, pp. 1301–1307 (2015)

19. McPhee, N.F., Donatucci, D., Helmuth, T.: Using graph databases to explore the
dynamics of genetic programming runs. In: Riolo, R., Worzel, B., Kotanchek, M.,
Kordon, A. (eds.) Genetic Programming Theory and Practice XIII. GEC, pp. 185–
201. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-34223-8 11

20. Motwani, R., Raghavan, P.: Randomized Algorithms. Cambridge University Press,
Cambridge (1995)

21. Poli, R., Langdon, W.B., McPhee, N.F.: A field guide to genetic programming
(2008). http://lulu.com, http://www.gp-field-guide.org.uk

22. Spector, L.: Assessment of problem modality by differential performance of lexicase
selection in genetic programming: a preliminary report. In: Genetic and Evolution-
ary Computation Conference (GECCO 2012), Companion, pp. 401–408 (2012)

23. Timmis, J.: Artificial immune systems. In: Sammut, C., Webb, G.I. (eds.) Ency-
clopedia of Machine Learning and Data Mining, pp. 61–65. Springer, New York
(2017)

24. Zitzler, E., Künzli, S.: Indicator-based selection in multiobjective search. In:
Yao, X., et al. (eds.) PPSN 2004. LNCS, vol. 3242, pp. 832–842. Springer,
Heidelberg (2004). https://doi.org/10.1007/978-3-540-30217-9 84

https://doi.org/10.1007/978-3-319-34223-8_9
https://doi.org/10.1007/978-3-642-17339-4
http://doi.org/10.1162/evco_a_00224
https://doi.org/10.1007/3-540-45712-7_5
https://doi.org/10.1007/978-3-319-34223-8_11
http://lulu.com
http://www.gp-field-guide.org.uk
https://doi.org/10.1007/978-3-540-30217-9_84

	Theoretical Analysis of Lexicase Selection in Multi-objective Optimization
	1 Introduction
	2 Background
	3 Algorithms, Problems, and Definitions
	4 Analysis
	5 Experimental Supplements
	6 Conclusions
	References

