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Abstract. Extensive efforts so far have been devoted to the design of
effective surrogate models aiming at reducing the computational cost
for solving expensive black-box continuous optimization problems. There
are, however, relatively few investigations on the development of method-
ologies for combinatorial domains. In this work, we rely on the mathe-
matical foundations of discrete Walsh functions in order to derive a sur-
rogate model for pseudo-boolean optimization functions. Specifically, we
model such functions by means of Walsh expansion. By conducting a
comprehensive set of experiments on nk-landscapes, we provide empir-
ical evidence on the accuracy of the proposed model. In particular, we
show that a Walsh-based surrogate model can outperform the recently-
proposed discrete model based on Kriging.

1 Introduction

Context. Black-box optimization refers to the situation where no specific prop-
erties nor hypothesis are known about the problem to be solved. Nothing but
the objective value associated to a given (candidate) solution can be used by
the optimization process. For example, black-box optimization problems can be
found in engineering and multi-disciplinary design fields, and more broadly when
the problem formulation involves some numerical simulations [1]. Hence, solving
a black-box optimization problem consists in exploring a number of candidate
solutions, based solely on the evaluation of their fitness value. When the cost
of computing fitness values is time consuming, traditional black-box optimiza-
tion techniques, such as evolutionary algorithms and metaheuristics can have a
prohibitive computational cost. In this context, surrogate-assisted approaches,
such as Kriging and the Efficient Global Optimization (EGO) approach [11], are
methods of choice to ‘predict’ the quality of solutions without systematically
computing their objective values.
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Motivation. Surrogates models, also called meta-models, have well-established
foundations at the crossroad of optimization and machine learning [10]. Roughly
speaking, a surrogate model can be viewed as an estimate of the function being
optimized based solely of the points (learning data) sampled by the optimization
process so far. This (cheap) estimate is then used to sample and evaluate new
points that are hopefully beneficial for the optimization process, while signifi-
cantly reducing the overall computational cost. Except in few recent works [1,13],
most existing investigations from the literature on surrogates are with respect
to the continuous domain. When turning to the combinatorial setting, that is
when the decision variables are discrete, we can safely claim that the adaptation
of existing techniques is relatively scarce [1], and the development of dedicated
surrogate models is in its very infancy beginning. It is worth noticing that expen-
sive combinatorial optimization problems are a natural outcome for real-world
applications from complex scheduling or neural networks, among others [10].

Contribution. In this paper, we are interested in pushing a step toward the estab-
lishment of novel surrogate models for combinatorial optimization. We focus on
the class of pseudo-boolean functions for which the solution space is the set of
binary strings. Our work is based on the application of Walsh functions [16],
which form a complete orthogonal set of functions, and share common mathe-
matical properties with the trigonometric functions used in Fourier analysis. As
such, we propose to represent a pseudo-boolean function as a finite decomposi-
tion of Walsh functions, which enables us to derive a new surrogate model for this
class of optimization problems. Having the model established, we approximate its
coefficients (hyper-parameters) using different optimization and machine learn-
ing techniques for linear regression, namely conjugate gradient (CG) and Least-
Angle Regression (LARS). Using a comprehensive set of nk-landscapes [12], we
first evaluate the accuracy of the model. We then conduct a comparative study
with the recently-proposed Kriging surrogate model for combinatorial problems.
Our experimental results allows us to show that the designed Walsh-based surro-
gate model is able to provide a highly accurate approximation of the considered
instances, outperforming Kriging in a number of scenarios.

Outline. In Sect. 2, we provide an overview of the mathematical foundation
of Walsh functions and related works. In Sect. 3, we describe the proposed
Walsh-based model. In Sect. 4, we evaluate the accuracy of the model using
nk-landscapes. In Sect. 5, we conclude the paper and discuss further research.

2 Walsh Functions: Background and Related Work

2.1 Walsh Functions Basics and Evolutionary Computation

Continuous Walsh Decomposition. Walsh functions [16] constitute an enumer-
able set of functions ϕk : [0, 1] → {−1, 1} which composes a normal and orthog-
onal basis of the Hilbert space L2([0, 1]). Like other basis of functions such
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as trigonometric functions of the Fourrier basis, and although the Walsh func-
tions are not continuous since their values is either −1 or 1, they can be used
to decompose any function of the Hilbert space; see [16] for the mathematical
conditions. More formally, for any integer k ∈ IN with the binary representa-
tion k =

∑∞
j=0 kj2j and kj ∈ {0, 1}, the Walsh function ϕk is defined for any

(real-valued) x ∈ [0, 1] with a natural binary representation x =
∑∞

j=1 xj2−j

and xj ∈ {0, 1}, by ϕk(x) = (−1)
∑∞

j=0 kjxj+1 . Over the interval [0, 1], the
graphical representation of the Walsh functions can be viewed in a similar way
than the cosine functions. Indeed, for all x ∈ [0, 1], ϕ0(x) = 1 is the con-
stant function, the values taken by ϕ1 change from 1 to −1 at x = 0.5, and
so on. The orthogonality of Walsh functions means that for any positive inte-
gers j and k ∈ IN,

∫ 1

0
ϕj(x)ϕk(x)dx = δjk where δjk is the Kronecker delta.

Thus, for any function f from L2([0, 1]), and for any x ∈ [0, 1], we have that
f(x) =

∑∞
k=0 wkϕk(x), where wk ∈ IR are the coefficients given by the projec-

tion of f on ϕk: wk =
∫ 1

0
f(t)ϕk(t)dt. The order of a Walsh function ϕk, denoted

by o(ϕk), is defined by the number of binary digit equals to 1 in the binary rep-
resentation of k. For example, the function of order 0 is ϕ0, the functions of
order 1 are ϕ2p for all integers p � 0, the functions of order 2 are ϕ2p+2p′ for
all pairs of integers p �= p′ � 0, and so on. While the previous discussion is with
respect to a continuous function, similar considerations can be discussed for the
discrete case of pseudo-boolean functions.

Discrete Walsh Decomposition and EAs. Tightly related to evolutionary algo-
rithms (EA), discrete Walsh functions were considered by Bethke [2], a PhD
student of J. Holland in the late seventies. This was further extended by Gold-
berg [8], Forrest and Mitchell [6] to offer a relevant theoretical framework on the
properties of fitness functions related to the schemata theorem, and on deceptive
functions in EAs. In this context, the Walsh functions are defined for any pseudo-
boolean function as follows. For any integer k ∈ [0, 2n − 1] with the binary rep-
resentation k =

∑∞
j=0 kj2j and kj ∈ {0, 1}, the Walsh function ϕk : {0, 1}n →

{−1, 1} is defined for any binary string x = (x1, . . . , xj , . . . , xn) ∈ {0, 1}n as:
ϕk(x) = (−1)

∑n−1
j=0 kjxj . The so-defined (finite) set of discrete functions is a nor-

mal orthogonal basis for the space of pseudo-boolean functions. For any integer
j, and k ∈ [0, 2n − 1], 1

2n

∑
x∈{0,1}n ϕj(x)ϕk(x) = δjk

1. Therefore, any pseudo-
boolean function f : {0, 1}n → R can be written as a unique finite weighted sum
of Walsh functions.

∀x ∈ {0, 1}n, f(x) =
2n−1∑

k=0

wk.ϕk(x) s.t. wk =
1
2n

∑

x∈{0,1}n

f(x).ϕk(x) (1)

Schemata Theory. The average of fitness values over a schemata of order p can
be computed with a subset of Walsh functions of lower orders [8]. In fact, let us

1 Indeed, the matrix (ϕk(xj))jk of dimension 2n × 2n is a Hadamard matrix.
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recall that a schemata is a hypercube of the binary space. Usually, a schemata
is written with the alphabet {∗, 0, 1} where 0, and 1 give the fixed position bits
of the hyperplane. The order of the schemata is the number of 0/1 in the string.
For instance, the schemata h = ∗01∗∗∗0 is a schemata of length 7, and of order
3. The average fitness of a schemata h is then f(h) =

∑
k⊂h wk.ϕk(x) where

k ⊂ h means that the 1 in the binary representation of k corresponds to 0 or 1
of the schemata. Hence, it is possible to design deceptive functions to challenge
EAs [8].

Walsh Decomposition in Combinatorial Optimization. Besides their initial the-
oretical interest, there was recently a renewed interest to Walsh decomposition,
which remains the subject of active research in the optimization community [9].
In particular, in the so-called grey-box optimization setting [3], standard prob-
lems such as nk-landscapes, or max-SAT are regarded as a decomposition of
Walsh functions. Within such a perspective, the fitness value, the fitness dis-
tribution, or the best solution at a given Hamming distance is computationally
fast to compute, hence enabling the design of effective and efficient optimiza-
tion techniques. Additionally, the Walsh decomposition can be used to detect
accurate crossover points, and to identify independent sub-space problems that
lead to the solving of very large combinatorial optimization problems with an
impressively reduced cost [4].

2.2 Surrogate Models for Combinatorial Optimization

Surrogate Models. A standard surrogate-assisted optimization framework con-
sists in an iterative process, where at each iteration: (i) build a model on the
basis of the solutions (learning data) evaluated so far at previous iterations, (ii)
compute best (believed, predicted) solution(s) on the basis of the so-constructed
(cheap) model, (iii) evaluate the so-chosen solution(s) using the real (expensive)
black-box function f . Each of these three steps comes with different challenges
and different techniques and tools to address and implement. In our work, we are
interested in designing a surrogate model dedicated to pseudo-boolean functions.
We thereby focus very specifically on the very first step of the aforementioned
framework, that is, the definition and the building of a highly accurate model
that can eventually be used as a substitute of the real function. It is worth notic-
ing that this is of crucial importance towards the design of effective and efficient
surrogate-assisted optimization techniques.

Discrete Surrogates. As summarized in [17], when looking at the previous works
on surrogate models for discrete problems, a number of approaches can be found
from basic to more specialized ones. In straightforward approaches, the discrete
nature of variables is simply ignored, and standard machine learning techniques
is applied on the vector data. In most sophisticated approaches, either the model
is inherently discrete or a distance ‘measure’ between discrete solutions is used
to leverage existing continuous models. The work presented in this paper falls in
this last category, encompassing a number of noticeable techniques [1]. To cite
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a few, in [13], it is shown how to leverage existing distance-based surrogates,
by considering more general (not necessarily continuous) metric spaces. This
idea is then illustrated using Radial Basis Function Networks (RBFN). Later
in [18,19], a seemingly similar principle is adopted in order to derive a Kriging
(Gaussian Process) like surrogate model. Kriging has the interesting feature of
providing a measure of uncertainty when determining predictions. This can be
used to calculate the Expected Improvement (EI) of a solution, which is then
used as the main criteria to balance exploitation and exploration when sam-
pling candidate solutions in the so-called Efficient Global Optimization (EGO)
approach [11]. Such an EGO approach [19] is shown to outperform Kriging and
RBFN [13] on a number of nk-landscapes [12] considered as difficult adversarial
pseudo-boolean benchmark functions. In our work, we also validate empirically
our model using nk-landscapes as a case study, while comparing to the Kriging
approach considered as a baseline competitor. Notice that using the proposed
Walsh model to sample promising points (as performed in EGO) is left for future
work since our main goal is to investigate the accuracy of the Walsh model in
correctly rendering the original expensive function.

3 Surrogate Model Based on Walsh Functions

The Walsh-Based Surrogate Model. Given a pseudo-boolean function f :
{0, 1}n → R, we have a closed form decomposition of f using the set of Walsh
functions ϕk, as given in Eq. (1). It is worth noticing that the functions ϕk are
problem independent, and hence uniquely defined irrespective to f . The values
of the coefficients wk depend however on function f , as given in Eq. (1). They
are here assumed to be unknown and black-box. Moreover, although the num-
ber of coefficients is in general exponential in n, there might exist a significantly
large number of zero coefficients, namely, 2n. For instance, for nk-landscapes,
the number of non-zero coefficients is bounded by n×2k+1 [9] and the maximum
order is k + 1. Hence, our idea is to consider an approximation of f using solely
the Walsh functions of a constant order d � n and using an estimate ŵk of
the (unknown) coefficient wk. More formally, we shall assume that the pseudo-
boolean function f can be approximated by the following model constituting the
core of our proposed surrogate model:

∀x ∈ {0, 1}n, f̂(x) =
∑

k : o(ϕk)�d

ŵk.ϕk(x) (2)

Obviously, the previous equation is similar to standard (finite) Taylor series for
continuous function expansion. The larger the order d, the better the approxima-
tion; and the better the quality of the estimate coefficients ŵk, the more accurate
the expansion. In the following, we shall focus on how to provide a good estimate
of the Walsh coefficients, assuming that d is fixed to some constant. For clarity,
the choice of the setting of the order d is discussed later on.



186 S. Verel et al.

Model Approximation. Given the black-box nature of the pseudo-boolean func-
tion f , one idea would be to consider a sample of solutions for which we know
the true f values. Let us assume given such a set, denoted S. For now, we
do not make any further assumption on S. Then, the question is: find an esti-
mate ŵk of the coefficients wk using the data set {(x, f(x)) | x ∈ S}. One
answer to this question could be to simply use the mean as estimator by set-
ting ŵk = 1

|S|
∑

x∈S f(x)ϕk(x). By a routine verification, we can show that the
bias of the estimate is ŵk − wk =

∑
j �=k wj

1
|S|

∑
x∈S ϕj(x)ϕk(x), which is to be

interpreted as the degree of ‘non-orthogonality’ of the Walsh functions on S.
While being informative, such an estimate might be misleading, since it might
be challenging to design a sample data set S verifying such properties w.r.t.
Walsh functions. In the following, we discuss two techniques to estimate the
Walsh coefficients required by the proposed surrogate.

Mean Squared Error Estimation Using Conjugate Gradient (CG). The Walsh
decomposition of a pseudo-boolean function is a linear model where the predic-
tors are the Walsh functions’ values. As a consequence, classical methods for
non-sparse and sparse approximation can be used to estimate the coefficients
of the regression. Our first technique is based on a standard approach which
consists in minimizing the mean squared error of the surrogate (linear) model
with respect to data set S. More formally,

mse(ŵ) =
∑

x∈S

⎛

⎝
∑

k : o(ϕk)�d

ŵk.ϕk(x) − f(x)

⎞

⎠

2

(3)

We then find the coefficients ŵ∗ minimizing Eq. (3), that is: ŵ∗ =
argminwmse(w). To solve this equation, we propose to use a non-sparse method,
namely the conjugate gradient (CG) approach [14].

Least-Angle Regression (LARS) Coefficients Estimate. When the number of pre-
dictors in a linear regression is large, sparse techniques can be used to minimize
the number of non-zero coefficients. Among others, lasso is one classical technique
for sparse approximation [15]. In this work, we propose to use the least-angle
regression (LARS) algorithm [5]. The LARS algorithm is in the same family of
regularization/sparse methods and follows a forward stepwise selection regres-
sion mechanism. It has the major advantage of being computationally fast and
effective when fitting high-dimensional data of relatively small size. Hence, it is
a method of choice in our context since the number of Walsh functions of order d
might be greater than the number of samples in the training data set S.
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Table 1. Number of Walsh coeffi-
cients according to problem dimen-
sion n (columns), and order d (rows).

10 15 20 25

0 1 1 1 1

1 11 16 21 26

2 46 121 211 326

3 176 576 1351 2626

Order Setting. Finally, we need to specify
a value for the maximum order d to be set
in the estimate. Intuitively, the larger the
order, the larger the number of Walsh coef-
ficients to be estimated, and hence the bet-
ter the approximation. However, the larger
the number of coefficients, the more difficult
and time consuming their estimation using
the previously-described techniques. Let nd be the number of Walsh coefficients
of order d. Then, we have that: n0 = 1 and nd = nd−1 +

(
n
d

)
for d > 0. This

makes the choice of large d values problematic. Nonetheless, we argue that the
number of non-zero coefficients is typically much less than nd and a value of d of
at most 3, for which nd = O(n3), should be sufficient for an accurate approxima-
tion of difficult functions, as supported by our empirical results. Table 1 shows
the values of nd for different values of n and d.

4 Experimental Analysis

4.1 Experimental Setup and Methodology

Test Functions. As in previous studies [13,19], we consider nk-landscapes [12]
as benchmark pseudo-boolean functions. For every binary string x of size n,
f(x) is defined as the average value of the contributions associated with each
variable xi. For every i ∈ {1, . . . , n}, a component function fi : {0, 1}k+1 	→
[0, 1] assigns a real-valued contribution for every combination of xi and its
k epistatic interactions (xi1 , . . . , xik). In other words, the individual contri-
bution of a variable xi to f(x) depends on its value and on the values of
k < n other variables (xi1 , . . . , xik). The function f is hence defined as fol-
lows: f(x) = 1

n

∑n
i=1 fi(xi, xi1 , . . . , xik). The k epistatic interactions w.r.t. a

variable xi are set uniformly at random among the (n − 1) variables other
than xi [12]. The fi values are uniformly distributed in [0, 1]. It is important to
remark that by increasing the number of epistatic interactions k from 0 to (n−1),
problem instances can be gradually tuned from smooth to rugged, which make
nk-landscapes an abstract adversarial optimization benchmark that can even-
tually cover a wide range of (real-world) pseudo-boolean function classes, as
commented further in the following.

Experimental Setup. We consider a comprehensive set of nk-landscapes with
n ∈ {10, 15, 20, 25}, and k ∈ {0, 1, 2}. Notice that for k = 0, the function is linear
which makes it easy to optimize. For k = 1, the function is quadratic which, infor-
mally speaking, falls in the same class than the widely studied Unconstrained
Binary Quadratic Problem. For k = 2, every variable is in interaction with two
other ones which, informally speaking, recalls the max-3-SAT problem. For every
parameter combination (4 × 3 = 12), we generate 5 instances for which every
competing model/algorithm is run for 5 independent runs. The reported results
are over the 5 × 5 = 25 independent runs. All algorithms and experiments are
implemented in R using standard machine learning and optimization packages.
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Algorithm 1. Experimental procedure
Input: A test set Q

1 S0 ← ∅;
2 for t = 1, 2, . . . , Max Budget do
3 xt ← a solution generated uniformly at random;
4 St ← St−1 ∪ {(xt, f(xt))};

5 ̂ft ← build a surrogate model for f on the basis of (the training set) St;

6 εt ← a measure of the quality of the accuracy of ̂ft using the test set Q;

7 end

Validation Methodology. In our work, we focus on studying the accuracy of
the Walsh expansion surrogate in providing a high fidelity approximation. Con-
sequently, we follow the experimental procedure depicted in the template of
Algorithm 1. First, we generate a (test) set Q of N = 1000 solutions gener-
ated uniformly at random (i.e., each bit is set to 0 or 1 with equal probability)
which is used as input of our experimental procedure. For each instance, and for
every iteration t > 0 of Algorithm 1, we generate uniformly at random a new
solution xt and evaluate its true fitness value f(xt). Next, we build a surrogate
model f̂t using the (training) data set St = St−1 ∪ {xt}. We then record an
error measure (denoted εt) rendering the quality of the fit (f̂t, St) with respect
to the (test) data set Q. This shall allow us to study the ability of the surrogate
model to fit the real function as the size of the available sample data grows, that
is, as the available budget in terms of (expensive) function evaluations is given.
The maximum allowed budget is actually variable in the size of the considered
nk-landscape.

As a baseline, we use Kriging [7] as a state-of-the-art discrete surrogate
model, and the implementation provided in the R package CEGO2. The hyper-
parameters of the Kriging model are set following [19]. The R package lars6 is
used for the implementation of LARS with default hyper-parameters: lasso tech-
nique for the cross-validation, and a fraction set to s = 1. As an error measure,
we compute the mean absolute error (mae) and the mean squared error (mse)
of f̂ w.r.t Q. When the proposed Walsh model is experimented, we additionally
record the Walsh coefficients estimate (ŵk), and compute their R2 coefficient.

4.2 Training with CG Versus LARS

First, we consider the accuracy of the model when using the two fitting tech-
niques (CG and LARS) for estimating the Walsh coefficients (see Sect. 3). In
Fig. 1, we show the evolution of the mean absolute error as a function of the size
of the training set St, using nk-landscapes with n = 20 and k = 1. Notice that
similar results holds for the mean squared error and are omitted due to lack of
space.

2 Packages CEGO and LARS on CRAN: https://cran.r-project.org.

https://cran.r-project.org
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Fig. 1. Mean Absolute Error of fitness values using CG and Gradient techniques as a
function of the training set size for n = 20, and k = 1 (left). Scatter plot (right) of the
regression using LARS for n = 15, k = 1, and a random sample of size 60.

Figure 1 (left) shows that the Walsh model computed with LARS leads to a
significantly better fit than the CG based technique, while requiring a sample
of significantly lower size. Actually, the error of both methods converges to 0,
with LARS being significantly faster. This means that it requires much fewer
function evaluations to converge to a high fidelity Walsh approximate. In Fig. 1
(right), we show a scatter plot rendering the relative distribution of f̂(x) and
f(x) using the LARS for nk-landscapes with n = 15, and k = 1 trained on a
random sample set of size 60, and tested on the whole search space. The quality
of the regression visually approximates the original function for all fitness values.
Indeed, the residues can be bounded by a constant independent of the fitness
value: for any x ∈ {0, 1}n, |f̂(x) − f(x)| = |∑k(ŵk − wk)ϕk(x)|. Given that
|ϕk(x)| = 1, we obtain the upper bound |f̂(x) − f(x)| �

∑
k |ŵk − wk| which

interestingly does not depend on x.

4.3 Walsh Versus Kriging

In Fig. 2, we show results comparing the proposed Walsh model to Kriging.
Two main tightly related observations can be extracted. On the one hand, for
k = 0, both surrogates consistently provide similar accuracy. However, as the
test function is no more linear (k = 1 and k = 2), the difference is substantial
in favor of the proposed Walsh surrogate. From a fitness landscape analysis
perspective, higher values of k lead to more rugged (non-smooth) multi-modal
functions. In this case, and although Kriging has a better accuracy with very
few samples (very few function evaluations), the Walsh model is able to converge
much faster to a high quality fit. On the other hand, the difference becomes even
more substantial when scaling the dimension of the pseudo-boolean function. In
fact, for the highest values of k and n, it is clear that the performance of Kriging
drops very significantly, since it is not able anymore to provide a high accuracy
within a reasonable budget. This is to contrast with the Walsh model, which
converges to a zero absolute error within a few hundreds of function evaluations.
The high quality of the Walsh surrogate can be explained by the fact that it
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Fig. 2. Mean Absolute Error of fitness values on test set (1000 solutions) as a function
of the size of the training set. n ∈ {10, 15, 20, 25} (rows), k ∈ {0, 1, 2} (columns), and
the order of the Walsh expansion is k + 1.

is a deterministic model (for noise-free function) which provides a quasi-exact
modeling of the pseudo-boolean function once the coefficient value estimates are
close enough to their true values. This claim can be supported by a more focused
analysis on the quality of the coefficients estimates, which is discussed in the next
section while commenting on the impact of the Walsh expansion order.

4.4 Impact of the Walsh Expansion Order

In the previous results, the order of the Walsh decomposition was fixed to
d = k + 1 where k is the number of the epistatic interaction in the consid-
ered nk-landscape. However, one might ask what happens if the order is fixed
to a different value. This is what is depicted in Fig. 3, showing the coefficient
of determination (R2) to render the relative quality of the approximated coef-
ficients. Notice that the exact values of the Walsh coefficients at any order are
computed by the sum of Walsh decomposition of the component functions [9].

First, we can see that the R2 converges relatively quickly to 1 when the order
of the expansion is k+1. Hence, one can reasonably suggest that for other highly
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Fig. 3. R2 of Walsh coefficients as a function of the size of the training set. n ∈
{10, 15, 20, 25} (rows), k ∈ {0, 1, 2} (columns), and the order of the expansion (color).

multi-modal functions, it might hold that only a restricted number of (low)
order coefficients have non-zero values. In this case, only a restricted number of
coefficient might impact the accuracy of the Walsh surrogate model, which would
make it easier to build. Moreover, Fig. 3 shows that the coefficients of lower orders
can still be accurately estimated although the value of the order chosen for the
fit does not match with the maximum order of non-zero coefficients in the exact
Walsh expansion. This suggests that for other highly multi-modal functions, it
might hold that a small value of the order considered when fitting the Walsh
surrogate is still sufficient to provide a high fidelity rendering of the original
function. This property is of special interest since the lower the considered order,
the lower the number of coefficient to be estimated, and the lower the cost of
building the Walsh model. The cost of computing the surrogate model can in
fact constitute a critical issue, especially if it comes to dominate the cost of the
(expensive) function evaluation. In this respect, our LARS implementation of
the Walsh surrogate was found to have a better CPU runtime compared against
the Kriging implementation, by several orders of magnitude.
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5 Conclusions

In this paper, we introduced a framework allowing to apply the Walsh func-
tions basis in order to construct a novel discrete surrogate model for expen-
sive pseudo-boolean functions, which is shown to be highly accurate on a set
of nk-landscapes. Unlike previous distance/similarity based discrete surrogates,
the proposed model is based on a deterministic pseudo-exact approximation.
As such, it has some advantages and some shortcomings that, hopefully, will
provide new scientific challenges. Besides, embedding the Walsh-based model
within a conventional surrogate-assisted optimization framework would provide
a highly effective approach to expensive (real-world) pseudo-boolean problems.
In fact, not only building the Walsh surrogate is extremely fast compared against
Kriging, but its solving to optimality using the recently-proposed grey-box opti-
mization techniques [4] is fully plausible even for large-scale problems. This can
for instance be a relevant alternative to the use of EGO-like selection criteria
at a reduced cost. Additionally, generalizing the model to other non-necessarily
pseudo-boolean functions, like permutation problems, would be a major advance.
Finally, we believe that accommodating the deterministic nature of the model,
for instance by taking into account the error in the coefficients approximation
based on a probabilistic modeling might increase its potential in tackling a wide
range of large optimization problems.
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