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Abstract. An important challenge in black-box optimization is to be
able to understand the relative performance of different algorithms on
problem instances. This has motivated research in exploratory land-
scape analysis and algorithm selection, leading to a number of frame-
works for analysis. However, these procedures often involve significant
assumptions, or rely on information not typically available. In this paper
we propose a new, model-based framework for the characterization of
black-box optimization problems using Gaussian Process regression. The
framework allows problem instances to be compared in a relatively sim-
ple way. The model-based approach also allows us to assess the goodness
of fit and Gaussian Processes lead to an efficient means of model compar-
ison. The implementation of the framework is described and validated
on several test sets.

1 Introduction

A continuous black box optimization problem is defined as:

min f(x), x ∈ S ⊆ IRn (1)

where f() is the objective or fitness function and S is the feasible search space. It
is assumed that the form of f() is unknown but can be evaluated at any feasible
candidate solution. Many real world problems can be formulated in this way
and metaheuristic algorithms are specifically developed for this class of prob-
lems. The performance of an algorithm instance on a problem instance depends
on how well the assumptions made by the algorithm suit the structure of the
problem fitness landscape. Exploratory/fitness landscape analysis [10] aims to
develop landscape features for understanding black-box problems, based on a
sample of candidate solutions. A variety of different features have been pro-
posed to measure different properties of problem landscapes [14]. If we are able
to effectively characterize and compare problem instances, it should enable a
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better understanding of algorithms and facilitate automated algorithm selection
and configuration.

Evaluating the effectiveness of exploratory landscape analysis features and
their role in the algorithm selection techniques is a nontrivial experimental chal-
lenge. While a number of procedures have been explored in the literature, they
can be complex, involve the calculation of a set of landscape features and mul-
tiple stages of analysis that may require information not generally available for
new problems.

In this paper we propose a model-based framework for continuous black-box
problem comparison using Gaussian process (GP) regression. The advantages of
this framework are that a flexible model is used, the accuracy of which can be
measured, together with an appropriate way of comparing problems via their GP
models. We describe our specific implementation of the model-based framework
and evaluate the approach on a number of pre-designed test problem sets.

The paper is organized as follows: Sect. 2 summarizes existing frameworks
for problem characterization and their limitations. Our proposed model-based
framework for problem comparison is described in Sect. 3, highlighting its main
elements. In Sect. 4 we describe the experiments, including the problem sets used
based on controlled transformations. The experimental results are presented and
discussed in Sect. 5 followed by the concluding Sect. 6.

2 Existing Frameworks for Problem Characterization
and Algorithm Selection

An early framework for algorithm selection based on problem features was pro-
posed by Rice [20]. This framework is based on extracting problem characteristics
c ∈ C for the given problem f ∈ F and selecting an algorithm α ∈ A such that
the output (e.g. performance) y ∈ Y is maximized. The relationship between
Rice’s framework and more recent research in landscape analysis, meta-learning
models and algorithm portfolios is discussed in [14].

Many different features have been proposed in the literature for problem char-
acterization. But capturing and summarizing the structure of an arbitrary land-
scape is a difficult task [9]. Most features make very strong modelling assump-
tions (e.g. the R2 coefficient for a linear or quadratic model of the landscape) or
only use part of the information available in the sample (e.g. the sample skewness
or kurtosis of the f values in the sample). Using a set of features in combination
is a possibility [22], but the features are heterogeneous, making it difficult to
select and utilize features in a principled way [16].

A regression model based on landscape features and algorithm (CMA-ES)
hyperparameters is built in [13] to predict algorithm performance for a given
problem. A framework to analyze the performance of algorithms using prob-
lem features is given in [15]. It uses a set of nine selected features and applies
principal component analysis to reduce the feature space to two dimensions. An
algorithm footprint is estimated on the feature space to relate which feature



286 S. Saleem et al.

Framework 1. Model-based continuous problem comparison
Given: set of problem instances, sample size N , regression model.
for all problems do

Draw a sample of size N from the search space S.
Evaluate f over the sample.
Fit a regression model using the sample and f values.
Evaluate the goodness of fit of the model.

end for
Calculate pairwise (dis)similarities between models.
Output: Problem similarity values.
Results Analysis: Dimensionality reduction or other techniques.

values correspond to particular algorithm performance. Another framework sug-
gested in [11] uses algorithm rankings from the BBOB competition [5] to predict
the best algorithm for a set of benchmark problems. The results are related to
problem features to find some rules about the algorithm problem relationship.
This approach requires a carefully chosen set of test functions and performance
measures of the list of algorithms selected.

Most existing techniques that use problem features for algorithm selection or
performance prediction are retrospective, using information not generally avail-
able for new problem instances, such as reported algorithm performance data
or labelled categories of problems. Fundamentally, a way of comparing a set of
problems in terms of their relative distances to each other might be simpler and
yet still allow us to better understand the problem-algorithm mapping. In the
next Section we describe a framework aimed at this, using GP regression models.

3 A Model-Based Framework for Problem Comparison

The framework proposed here essentially involves fitting a regression model to
a sample of candidate solutions and fitness function values for a set of black-
box optimization problem instances. A goodness of fit or error measure is then
used to evaluate the regression model. Our framework compares problems by a
comparison of the regression models built for each problem. This provides a set of
pairwise distance or similarity values which characterize a problem set in terms
of their relative distances or similarities. Algorithm selection could then follow
based on the assumption that an algorithm that is effective for a given problem
instance is likely to also be effective for nearby problem instances. Calculating
features embeds a problem set in a somewhat arbitrary space, where selecting a
suitable similarity measure may be difficult. Assuming the sample contains some
information about the important landscape structure, a clear advantage of using
a flexible regression model is that increasing the sample size will typically result
in an improved model fit (i.e. a better representation of the problem landscape)
whereas in the case of estimating problem features, increasing the sample size
simply makes the feature estimate more robust.
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3.1 Problem Comparison Using Gaussian Processes

In principle any regression model could be used in the above framework, however
GPs are particularly well-suited to this task, as discussed below. Briefly, a GP is
defined as a collection of random variables such that their joint distribution is a
multivariate Gaussian, N (μ,Σ) [19]. A GP is completely specified by its mean
(E[f(x)]) and covariance (k(xi,xj)) functions. This defines a prior distribution
over the function space. Given a set of training data consisting of input vectors,
x and target values y, the posterior predictive distribution of the GP at a test
point, x∗, is Gaussian with mean and variance given by:

f̄∗ = kT
∗ (K + σ2

nI)−1y (2)

Var(f∗) = k(x∗,x∗) − kT
∗ (K + σ2

nI)−1k∗ (3)

where K is the (N × N) covariance matrix between all pairs of points in the
training set, k∗ is a vector of covariance values between the test point and the
training set, I is the identity matrix and σ2

n is an additive noise parameter (see
below).

In general, calculating a distance or difference between regression models can
be a complex task. However given two GPs, the distance calculation becomes
a difference between two multivariate Gaussian distributions. The difference
between two continuous probability density functions, p(x) and q(x), is com-
monly measured using the Kullback Leibler (KL) divergence:

dKL(p||q) =
∫ ∞

−∞
p(x) log

p(x)
q(x)

dx (4)

If we have two multivariate Gaussian distributions, Na(μa,Ka) and Nb(μb,Kb),
then the KL divergence can be written in closed form:

dKL(Na||Nb) =
1
2

log |KbK
−1
a | +

1
2
K−1

b ((μa − μb)(μa − μb)T + Ka − Kb) (5)

We use the Jeffreys divergence [7], dJ which is a symmetric version of the
KL divergence:

dJ(Na||Nb) =
1
2
(dKL(Na||Nb) + dKL(Nb||Na)) (6)

This gives us an efficient and direct way to calculate the difference between two
problems via the GP models of their landscapes. Similar problems are expected
to have relatively small divergence values and large divergence values will imply
that the problems are quite different from each other.

3.2 Gaussian Process Implementation Details

Building a GP regression model requires the selection of mean and covariance
functions. The mean function is assumed to be zero (the sample data can be
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centred by subtracting the sample mean prior to fitting the model). There are
many possible covariance functions that can be used to characterize the degree of
similarity between data points in the input space [18]. The squared exponential
covariance function is the most common choice [19]. The squared exponential
covariance function has the form:

k(xi,xj) = σ2
f exp

(
1

2l2
||xi − xj ||2

)
+ σ2

nδij (7)

where δij is the Kronecker delta function. The characteristic length scale l is
indicative of the smoothness of the function. This hyperparameter captures the
distance needed to move in any direction for the function values to become
uncorrelated. σ2

f is the signal variance. In addition, the noise variance σ2
n is a

hyperparameter of the GP which specifies the trade-off between the strength
of the prior and fitting observed data [19]. In this paper we use the squared
exponential covariance function as a spherical model across all dimensions of
our problem sample data (i.e. a single l parameter is used). The optimization
of these hyperparameters is important for fitting a GP. We use a standard app-
roach to this: conjugate gradient is used to maximize the log-likelihood [19]. The
hyperparameter optimization problem is not convex, so we use trial and error to
set hyperparameters in the ranges indicated by the problem data. Many values
worked well; for the results presented here the initialization used was l = 0.5,
σ2
f = 1000 and σ2

n = 0.1.
In case of very smooth functions, the correlation between the observations

is very high. This results in very similar rows/columns in the covariance matrix
which can lead to making it poorly conditioned. This is an important issue in the
implementation of GP’s. The inversion of the covariance matrix is done using the
Cholesky decomposition as it increases the tolerance towards the conditioning
problem [17].

3.3 Related Work

Surrogate models have been widely used in optimization, particularly for prob-
lems where evaluating f is expensive. The model is used in place of the actual
objective function. In using surrogate models it is important to balance the
number of samples used (which should be minimum) with the improvement in
approximation [3]. GPs as well as other models such as Random Forests and Sup-
port Vector Machines have been used [1]. Bayesian optimization algorithms use
GPs to find a better solution using a minimum number of function evaluations
[4,17]. A survey on the use of surrogate models in evolutionary computation is
given in [6]. A framework based on using GP to find the promising individuals
in the PSO population during the search is presented in [21].

As far as we are aware, there has only been one recent paper where surrogate
regression models have been directly used to characterize problem instances [2].
The authors’ main focus is on reducing the sample size required for feature-
based algorithm selection. Therefore, a GP model is built from a small sample
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as a surrogate, with further sampling carried out on the surrogate. In contrast,
we calculate the difference between models fitted to these samples rather than
computing features based on the surrogate model.

Finally, the Jeffrey’s divergence has previously been used to compare prob-
lems in the context of length-scale feature analysis [12]. Length scale distribu-
tions were obtained using kernel density estimation and the divergence values
calculated numerically over the sample. As shown above, the GP model-based
framework requires no density estimation and the divergence values are calcu-
lated in closed-form.

4 Experimental Methodology

In this section we validate our framework on several test problems. We have gen-
erated 4 sets of 11 problem instances by gradually transforming a standard test
problem into a different problem in a controlled way. The transformations deter-
mine a possible intuitive ordering of the problems, which we then try and recover
in the black-box scenario, using the GP model-based framework. Existing prob-
lem sets such as the BBOB functions [5] do not have such an ordering, making it
less straightforward to evaluate our results. The problem transformations are:

– Sphere to Rastrigin: the amplitude of the periodic term in the Rastrigin
function is increased in 10 equal steps.

– Rastrigin to Flat: piece-wise linear combination, flat region grows from the
center and expands equally in each intermediate problem.

– Sphere to Ellipse: increase in condition number across problem dimensions.
– Linear to Sphere: piece-wise linear combination, linear slope function is

replaced by sphere function starting from the center.

Figure 1 illustrates the transformations in 1-D. We used 2-D and 5-D versions
of the problems, with S = [−5, 5]n. The sample size used was N = 1000 for
the 2-D problems and N = 2500 for the 5-D problems. To visualize the results,
dimensionality reduction techniques based on the similarity matrices can be
utilized. We applied the t-Stochastic Neighbor Embedding (t-SNE) algorithm [8]
as well as heatmaps and dendrograms to visualize the problem comparisons. t-
SNE is a state of the art dimensionality reduction technique in machine learning.
The algorithm is based on similar principles to our framework in that it calculates
the KL divergence between a distribution of distances in a high dimensional data
space and a lower dimensional mapping.

5 Results and Discussion

To measure the goodness of fit of the GP model, we have used the normalized
mean square error (NMSE) for the test set. The NMSE calculates the deviation
between the GP model predicted (f∗(xi)) and actual fitness values at sample
points. It is defined as:
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Fig. 1. Problem transformations used to generate the test problem sets. Shown are
1-D versions of problems 1,4,8 and 11 in each set.

NMSE =
1
N

∑
i

(f∗(xi) − f(xi))2

f∗() · f()
(8)

where f() is the sample mean of the function values. The NMSE values for the
models of all the problems in each transformation in 2D are shown in Table 1.
The NMSE values for 5D problem models are shown in Table 2.

Table 1. The estimated NMSE values in 2D.

Prob ID Sphere2Ellipse Rastrigin2Flat Sphere2Rastrigin Linear2Sphere

1 8.59E-06 0.001599 9.44E-06 3.66E-06

2 1.20E-08 0.0067396 0.00019719 3.72E-06

3 3.91E-09 0.014997 0.0002686 0.001875

4 9.51E-10 0.01169 0.00026819 0.0034078

5 5.38E-10 0.031776 0.00052105 0.0076807

6 7.59E-10 0.077764 0.00028147 0.014644

7 3.50E-10 0.085257 0.00071756 0.07977

8 3.17E-10 0.31847 0.00066255 0.092218

9 2.21E-10 4.1164 0.00019552 0.015076

10 2.36E-10 2.7546 0.00029032 0.11195

11 2.89E-10 0.002448 0.00036012 8.79E-06
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Table 2. The estimated NMSE values in 5D.

Prob ID Sphere2Ellipse Rastrigin2Flat Sphere2Rastrigin Linear2Sphere

1 1.20E-06 0.030001 1.63E-06 2.97E-06

2 1.15E-08 0.030058 0.0013048 2.45E-06

3 4.76E-09 0.032689 0.004254 3.53E-06

4 3.05E-09 0.038068 0.0080946 0.0014831

5 9.84E-10 0.057157 0.011884 0.0264

6 8.69E-10 0.11271 0.01589 0.1312

7 4.85E-10 0.40765 0.019802 0.23115

8 2.03E-10 2.5472 0.023586 0.22068

9 1.56E-10 7.4724 0.027164 0.014305

10 3.71E-11 0.79306 0.030465 1.47E-06

11 1.70E-10 0.0024149 0.033622 1.54E-06

The t-SNE plots for the Sphere to Ellipse transformations in 2D and 5D
are shown in Fig. 2. The results show that the order of the problems in the
transformation is very strongly recovered from our framework (i.e. problem i
tends to be closest to i − 1 and/or i + 1). The model error values for all the
problems in this set are very small, indicating that the GP is an accurate model of
these landscapes. The dimensionality reduction attempts to preserve the pairwise
distances between the problem instances, so the orientation of the points in the
plot is not meaningful.
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Fig. 2. t-SNE visualisations of the Sphere to Ellipse problem set. Left: 2D, Right: 5D

Figure 3 shows the t-SNE plot for the Rastrigin to Flat problem set in 2D
and 5D. The visualisation shows that the problem order from the transforma-
tion is strongly recovered. This problem transformation is rather complex as it
combines multiple local minima and a perfectly flat surface. The error values for
the models (Tables 1 and 2) show relatively high values for problems 8,9 and 10,
suggesting that the model lacks some accuracy at modelling the function. This
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Fig. 3. t-SNE visualisations of the Rastrigin to Flat problem set. Left: 2D, Right: 5D

may partly explain the distribution of problems in Fig. 3 (e.g. problems 9 and
10 in the 2D set are well separated from 8 and 11). No model can be expected
to provide a highly accurate model of arbitrary fitness landscapes based on a
modest sample of data. A strength of our approach is that rather than simply
accepting calculated feature values, the error of the model gives us a measure
of how reliable our results are. For the Sphere to Rastrigin transformations,
Fig. 4(a) shows excellent recovery of the problem ordering in 2D. The Sphere
function (problem 1) appears somewhat separate, perhaps because it is the only
unimodal problem in the set. In Fig. 4(b) the trend is not as visually obvious
across the entire problem set, however most problem instances have, as their
nearest neighbours, the neighbouring problems in the transformation (e.g. 8 is
closest to 9 and 10, 7 is closest to 6 and 5). The model error values for this prob-
lem transformation, (Tables 1 and 2), are all relatively low indicating a good fit
to the data. Error values increase a little from 2D to 5D, with these sample sizes.
Note that a model can still be capturing some important landscape properties
and have a large error value.

-600 -400 -200 0 200 400
-1500

-1000

-500

0

500

1000

1500
Sphere to Rastrigin 2D

  1

  2
  3

  4
  5

  6

  7

  8

  9
  10

  11

-3000 -2000 -1000 0 1000 2000
-1000

-500

0

500

1000

1500

2000
Sphere to Rastrigin 5D

  1

  2

  3

  4

  5

  6

  7

  8
  9

  10
  11

Fig. 4. t-SNE visualisations of the Sphere to Rastrigin set. Left: 2D, Right: 5D.

The Linear to Sphere transformation is done in a piece-wise way which may
contribute to high NMSE values in the middle functions of the transformation.
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Function 1 is the Linear function and Function 11 is the Sphere function and
both have a very good model fit. Both of these functions are smoothly structured
functions and we can see in the Fig. 5 that both are rather close to each other.
The remaining problems also form a cluster which show their similarity.
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Fig. 5. t-SNE visualisations of the Linear to Sphere problem set. Left: 2D, Right: 5D

A more direct way of examining the results is to look at a pairwise distance
matrix. Figure 6 shows two examples for the 5D Sphere to Ellipse and 5D Linear
to Sphere problem sets visualized as heat maps. The pattern across the Sphere
to Ellipse transformation reflects almost perfectly the definition of the trans-
formation: nearby problems are close to the diagonal and have a low distance
value, which smoothly increases as we move away from the diagonal. For the
Linear to Sphere transformation we can see that the model distances between
problems 1–3 and 5–7 are greater than expected, as are the distances between
5–8 and 10–11. This agrees with the t-SNE plot for this problem set (Fig. 5,
right). Finally, dendrograms offer another popular way of displaying distance
data. Figure 7 shows examples for the 2D Linear to Sphere and 5D Sphere to
Rastrigin problem sets. For some problems (Figs. 5, left and 4, right), the relative
magnitude of the distances between problems is more accurately represented in
dendrograms as compared to the t-SNE plots for these problem sets.
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Fig. 6. Heat maps for two of the problem sets. Left: 5D Sphere to Ellipse, Right: 5D
Linear to Sphere. Greyscale shows the log of the distance values for better contrast.
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Fig. 7. Dendrograms for two of the problem sets. The relative distances between prob-
lems is given by the y-axis. (Left) 2D Linear to Sphere transformation, (Right) 5D
Sphere to Rastrigin transformation.

6 Conclusion

Exploratory landscape analysis and algorithm selection frameworks have moti-
vated the research in understanding problems. Here, we have proposed a model
based framework for understanding problems using Gaussian Processes. Being a
regression model, we have a measure of goodness of fit which provides a source
of verification of model. To get the distance between models of problems, GP
provide a closed form expression for measuring KL divergence which avoids any
numerical approximations. We tested the methodology on a set of problem trans-
formations with pre-defined similarity ranking. The framework is tested on its
ability to identify the distance between problems in each transformation. GPs
are known to provide a surrogate model of the function using a small set of sam-
ples. In future we will extend our methodology on problems with smaller sample
sizes. The experiments in this paper are limited to 2D and 5D problems, but
higher dimensional problems also need to be explored. The experimental results
presented here indicate that measures based on these models can detect small
differences between problems and recover much of an specified problem ordering.
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