
Performance Assessment of Recursive
Probability Matching for Adaptive
Operator Selection in Differential

Evolution

Mudita Sharma1(B), Manuel López-Ibáñez2, and Dimitar Kazakov1

1 University of York, York, UK
{ms1938,dimitar.kazakov}@york.ac.uk

2 University of Manchester, Manchester, UK
manuel.lopez-ibanez@manchester.ac.uk

Abstract. Probability Matching is one of the most successful methods
for adaptive operator selection (AOS), that is, online parameter control,
in evolutionary algorithms. In this paper, we propose a variant of Prob-
ability Matching, called Recursive Probability Matching (RecPM-AOS),
that estimates reward based on progress in past generations and esti-
mates quality based on expected quality of possible selection of operators
in the past. We apply RecPM-AOS to the online selection of mutation
strategies in differential evolution (DE) on the bbob benchmark func-
tions. The new method is compared with two AOS methods, namely,
PM-AdapSS, which utilises probability matching with relative fitness
improvement, and F-AUC, which combines the concept of area under
the curve with a multi-arm bandit algorithm. Experimental results show
that the new tuned RecPM-AOS method is the most effective at iden-
tifying the best mutation strategy to be used by DE in solving most
functions in bbob among the AOS methods.

Keywords: Parameter control · Probability matching
Differential evolution · Black-box optimisation

1 Introduction

In many optimisation algorithms, there are operations, such as crossover, muta-
tion, and neighbourhood exploration, for which a discrete number of operators or
strategies exist. Choosing the right operator is often key for improving the per-
formance of the algorithm. Adaptive Operator Selection (AOS) is a framework
that dynamically selects an operator at run-time from a finite set of choices. AOS
methods are a subset of online tuning or parameter control methods [11]. Exam-
ples of AOS methods include PM-AdapSS [7] and F-AUC [5], both of which
were introduced in the context of selecting a mutation strategy in differential
evolution (DE) [13]. In particular, PM-AdapSS uses probability matching (PM)
c© Springer Nature Switzerland AG 2018
A. Auger et al. (Eds.): PPSN 2018, LNCS 11102, pp. 321–333, 2018.
https://doi.org/10.1007/978-3-319-99259-4_26

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-99259-4_26&domain=pdf

322 M. Sharma et al.

as the method for operator selector, whereas F-AUC uses a method inspired
by multi-armed bandits. PM was initially proposed in the context of classifier
systems [6] and it was later adapted as a component of AOS methods [7].

In this work, we propose a variant of PM called Recursive Probability Match-
ing (RecPM). PM probabilistically selects an operator to apply according to its
estimated quality. The quality of each operator is calculated as the weighted
sum of a reward value, which measures the impact of the most recent applica-
tion of the operator on solution fitness, and its historical quality. Instead, our
proposed RecPM estimates the quality of each operator according to a method
inspired by the Bellman equation from reinforcement learning [16], which takes
into account not only the reward values but also the selection probabilities of
other operators. By combining RecPM with a credit assignment method based
on offspring survival rate, we obtain the RecPM-AOS method.

We follow previous works [4], and apply RecPM-AOS to adaptively select a
mutation strategy in DE for continuous optimisation, and compare our results
with both PM-AdapSS and F-AUC. For completeness, we also include two state-
of-the-art algorithms: a variant of DE, JADE [17], and an evolution strategy
with covariance matrix adaptation, CMAES [10]. As a benchmark, we use the
noiseless functions from the black-box optimisation benchmark (bbob) [8]. Our
results show that RecPM-AOS is competitive with other AOS methods.

2 Background

2.1 Adaptive Operator Selection

Adaptive Operator Selection (AOS) methods dynamically select, at each iter-
ation t of an algorithm, one operator k out of a discrete set of K operators.
The selection is based on (1) a credit or reward value rk,t that rewards recent
performance improvements attributed to the application of the operator and
(2) an estimated quality of the operator qk,t that accumulates historical perfor-
mance or takes into account the performance of other operators. We identify two
components of AOS methods: the credit assignment and the operator selection.

Credit Assignment (CA) defines the performance statistics that measure
the impact of the application of an operator and assigns a reward value rk,t

according to this impact. For example, the reward of a mutation operator may
be defined in terms of the fitness of the solutions generated by its application.
CA is applied after each application of the operator, possibly taking into account
its past performance. For example, the CA of F-AUC uses a sliding window of
size W to store the rank-transformed fitness obtained by the last W selected
operators that generated an improved solution. A decay factor is applied to the
ranks so that top-ranks are rewarded more strongly. The ranks in the window are
used to compute a curve of the contribution of each operator and the area under
the curve (AUC) is taken as the reward value of the operator. More details are
given in the original paper [5]. On the other hand, PM-AdapSS only considers

Recursive Probability Matching for Adaptive Operator Selection 323

the immediate performance of the operators and calculates the reward of selected
operator k at iteration t as:

rk,t =
1

N surv

Nsurv∑

i=1

f(xbest) · |f(xparent
i) − f(x i)|

f(x i)
(1)

where N surv is the number of offspring that improved over its parent, and f(x i),
f(xparent

i), and f(xbest) are the fitness of an offspring solution generated by
selected operator k, of its parent solution and of the best solution found so
far, respectively. If there is no improvement or the operator was not selected at
iteration t, the reward is zero.

The Operator Selector (OS) estimates the quality qi,t+1 of each operator i,
based on the reward assigned to it at iteration t, and chooses one operator to use
in iteration t+1 among K operators according to its quality. For example, the OS
in F-AUC uses a multi-arm bandit (MAB) technique called Upper Confidence
Bound (UCB) [1] to calculate:

qi,t+1 = ri,t + C·
√

2 log
∑K

j=1 nj,t

ni,t
(2)

where C is a scaling factor parameter, ni,t is the number of applications of
operator i in the last W iterations that improved a solution, and ri,t is the
reward assigned to operator i at iteration t. In the above equation, ri,t intro-
duces exploitation whereas the second term introduces exploration. The operator
selector greedily chooses the operator with the highest quality value. By compar-
ison, PM-AdapSS uses probability matching (PM) to map the quality of each
operator to a probability value and applies roulette-wheel selection to proba-
bilistically choose the next operator. In particular, the quality of each operator
is calculated as:

qi,t+1 = qi,t + α · (ri,t − qi,t) ,∀i ∈ K (3)

where α is a parameter called adaptation rate. The selection probabilities for
choosing an operator in iteration t + 1 are calculated as:

pi,t+1 = pmin + (1 − K · pmin)

(
qi,t+1∑K

j=1 qj,t+1

)
(4)

where pmin is a minimum probability of selection. Initially, qi,0 = 1 and pi = 1/K,
∀i ∈ K. Thus initially all operators have the same chance of getting selected.

Table 1 summarizes the components of the various AOS methods compared
in this paper. The components of the proposed RecPM-AOS are described in
the following Sect. 3.

324 M. Sharma et al.

Table 1. Comparison of AOS methods and their components.

F-AUC PM-AdapSS RecPM-AOS

CA Area under the
curve

Average relative Offspring survival rate
(Eq. 10)

Fitness improvement
(Eq. 1)

OS Multi-armed
bandit

Probability matching
(Sect. 2.1)

Probability matching
(Sect. 2.1)

OS Selection Greedy Roulette wheel Roulette wheel

Quality UCB (Eq. 2) Weighted sum of quality
and reward (Eq. 3)

Bellman equation
(Eq. 9)

Parameters Window size(W),
scaling factor(C)

pmin, α pmin, γ

2.2 Mutation Strategies in Differential Evolution

In order to evaluate different AOS methods, we apply them to the online selection
of mutation strategies in differential evolution (DE) [13]. In DE, the mutation
strategy creates an offspring solution u as a linear combination of three or more
parent solutions x i, where i is the index of a solution in the current population.
Different strategies show a different balance between exploration and exploita-
tion in the search space and they may be applied to the current solution, a
random one or the best one. Examples of such mutation strategies [2] are:

“DE/rand/1”: ui = xr1 + F · (xr2 − xr3)
“DE/rand/2”: ui = xr1 + F · (xr2 − xr3 + xr4 − xr5)

“DE/rand-to-best/2”: ui = xr1 + F · (xbest xr1 + xr2 − xr3 + xr4 − xr5)
“DE/current-to-rand/1”: ui = xi + F (xr1 xi + xr2 xr3)

where F is a parameter, and r1, r2, r3, r4, and r5 are randomly generated indexes.
For a fair comparison, all AOS methods in this paper are integrated into the

same DE algorithm and able to select from the set of mutation strategies shown
above. The general framework of DE with AOS is shown in Algorithm1.

3 Recursive PM (RecPM)

We propose here a novel PM variant called Recursive Probability Matching
(RecPM). The main difference between PM and RecPM is that the latter esti-
mates the quality of each operator by adapting the Bellman equation from
Markov Decision Processes (MDPs) [14,16]. MDP is a framework from Reinforce-
ment Learning for making decisions in a stochastic environment. MDP assumes
that the current state is independent of the whole history given the previous state

Recursive Probability Matching for Adaptive Operator Selection 325

Algorithm 1. DE with AOS
1: Initialise parameter values of DE (F , NP , CR) and AOS method
2: Initialise and evaluate fitness of each individual x i in the population
3: t = 0 (generation number or time step)
4: while stopping condition is not satisfied do
5: for each x i, i = 1, . . . , NP do
6: if one or more operators not yet applied then
7: k = Uniform selection among operator(s) not yet applied
8: else
9: k = Select mutation strategy based on selection method (AOS)

10: Generate offspring using selected operator k
11: Evaluate offspring population
12: Perform credit assignment (AOS)
13: Estimate quality for each operator (AOS)
14: Update selection value (eg. probability) for each operator (AOS)
15: t = t + 1

(Markov property). Bellman equation [14] is widely used in MDPs to calculate
the expected return starting from a state. Although other AOS and parameter
control methods have used techniques from MDP such as Q-learning and SARSA
[11], our proposal is the first to be based on Bellman equation, to the best of
our knowledge.

In the context of AOS, a state represents the selected operator k at a time
step t and the corresponding reward is the future immediate reward assigned
to the operator r′

k,t+1, which is based on the impact of the application of the
operator on the performance of the algorithm. Since the next operator is chosen
probabilistically, we consider only transitions between states and rewards, and
not actions, thus we follow the Bellman equation for discrete decision processes
[14, p. 3094], which is used to predict the next state according to the expected
next reward given the current state. Our motivation for using the Bellman equa-
tion is to use the historical performance of operators to predict their quality in
the next iteration, which is then mapped to their probability of selection.

We use the Bellman equation to estimate the quality qk,t of an operator k
after its application in iteration t as the expected value (E[·]) of its total sum of
discounted future rewards:

qk,t = E[r
′
k,t+1 + γr

′
k,t+2 + · · · | Kt = k] = E[

∞∑

z=0

γ
z
r

′
k,t+z+1 | Kt = k] (5)

= E[r
′
k,t+1 + γ

∞∑

z=0

γ
z
r

′
k,t+z+2 | Kt = k] (using recursive property) (6)

= rk,t+1 +

K∑

j=1

Pkj

[
γE

[∞∑

z=0

γ
z
r

′
k,t+z+2 | Kt+1 = j

]]
(assuming E[r

′
k] = rk) (7)

= rk,t+1 + γ

K∑

j=1

Pkjqj,t+1 (using definition of qk,t in Eq. 5) (8)

326 M. Sharma et al.

where rk,t+1 is the accumulated reward that stores all the past achievements
(accumulated reward) for operator k and γ is the discount rate. In the context
of AOS, we do not know the probability matrix P of size K ×K, thus we decided
to calculate each entry as Pk,j = pk + pj , that is, as the sum of the selection
probabilities of operators k and j.

The rationale behind the formula above is as follows: When estimating qk,t,
operator k competes with all other operators j ∈ K, including itself, since the
selection of other operators in the past has impact on the current performance
of the selected operator. Thus, their probabilities are added and multiplied by
by the quality estimate of operator j. These values are then aggregated in the
end to get an overall estimate for operator k. The quality is an estimate not
because of the expected values, which are assumed to be completely provided
by the method, but because qj,t+1 is not known and the current estimate at t
is used instead. When considering all operators, this forms a system of linear
equations and can be re-written in the following vector form:

Qt = Rt+1 + γPQ t or Q = (1 − γP)−1R (9)

where Q and R = [ri] are the K-dimensional quality and reward vectors that
are updated at the end of each iteration t. The system of linear equations can
be solved efficiently by matrix inversion [14] when the number of operators is
small. Q is then normalised using the softmax function, which “squashes” each
real value to a K-dimensional vector in the range (0, 1) using the exponential
function. Once the quality is estimated for each operator, the probability vector
p = [pi] and probability matrix P are updated as in PM-AdapSS (Eq. 4) and
used for the selection of an operator.

RecPM utilises the steps of Probability Matching as described in Sect. 2.1
except for the definition of operator quality, which is estimated using the Bell-
man equation as shown above. However, to obtain an AOS method, we still need
to specify the credit assignment method that updates the reward values after
the application of the selected operators at time step t. We propose to calculate
the immediate reward r′

k,t+1 assigned to the selected operator as the number
N surv

t of offspring that survive to the next generation t+1 divided by the popu-
lation size NP . We define the accumulated reward rk,t assigned to an operator
as the ratio of offspring that survived plus half the last accumulated reward.
The remainder unselected operators receive half of their accumulated reward.
Thus, each operator gets a fraction of last reward value, that stores its historical
performance, and the selected one gets extra reward. The value of 0.5 as weight
assigned to rk,t was chosen by intuition.

ri,t+1 =

{
r′
k,t+1 + 0.5 · rk,t, if k is selected

0.5 · ri,t, ∀i �= k
, where r′

k,t+1 =
N surv

t

NP
(10)

The rational behind this credit assignment is that, if the operator is unlucky
and not getting selected for enough number of generations, it still receives some
reward based on its past performance and it has a chance of being selected in

Recursive Probability Matching for Adaptive Operator Selection 327

Fig. 1. Bootstrapped empirical cumulative distribution of the number of objective
function evaluations divided by dimension (FEvals/DIM) for 51 targets with target
precision in 10[−8..2] for all functions in 20-D. As reference algorithm, the best algorithm
from BBOB 2009 is shown as light thick line with diamond markers.

the future. This ensures that such operator is not discarded completely and may
be selected after a certain number of generations.

The combination of RecPM with the above credit assignment leads to a
new AOS method named RecPM-AOS in the following. When comparing PM-
AdapSS and RecPM-AOS , the former uses PM as an operator selector whereas
the latter uses RecPM . Both AOS methods use a credit assignment based on the
number of improvements from parent to offspring (N surv), however, PM-AdapSS
uses average relative fitness improvement (Eq. 1) as immediate reward without
using accumulated reward, whereas RecPM-AOS uses offspring survival rate as
immediate reward combined with a fraction of its previous accumulated reward.

RecPM-AOS is integrated within DE (Algorithm1) to make DE more effi-
cient by adaptively selecting, at run-time, a mutation strategy among the four
mutation strategies shown in Sect. 2.2. DE combined with RecPM-AOS has five
parameters: three belong to DE, namely, scaling factor (F), population size

328 M. Sharma et al.

(NP) and crossover rate (CR), while discount factor (γ) and minimum selection
probability (pmin) belong to RecPM-AOS .

4 Experimental Analysis

In the following, we compare the performance of proposed RecPM-AOS within
DE with two other algorithms, namely DE-F-AUC [5] and PM-AdapSS-DE [7],
for the online selection of mutation strategies in DE. More advanced DE variants
are available in the literature, however, we want to understand and analyse the
impact of the various AOS methods without possible interactions with other
adaptive components of those variants. Nonetheless, for the sake of completeness,
we also compare our results with two state-of-the-art algorithms JADE [17]
and CMAES [10]. JADE is a DE variant that uses a mutation strategy called
“current-to-pbest” and adapts the crossover probability CR and mutation factor
F using the values which proved to be useful in recent generations. CMAES is
an evolution strategy that samples new candidate solutions from a multivariate
Gaussian distribution and adapts its mean and covariance matrix.

We use bbob (Black-box optimisation Benchmarking) [8] test suite to test the
algorithms. bbob provides an easy to use tool-chain for benchmarking black-box
optimisation algorithms for continuous domains and to compare the performance
of numerical black-box optimisation algorithms. We evaluate all algorithms on
the 24 noiseless continuous benchmark functions [9] provided by bbob, each
with 15 different instances, totalling to 360 function instances. Each instance
of a function is a rotation and/or translation of the original function leading
to a different global optimum. These 24 functions are grouped in five classes,
namely, separable, moderate, ill-conditioned, multi-modal and weak-structure
functions. Each algorithm with AOS method is run to a maximum number of
105 ·d function evaluations (FEvals), where d is the dimension of the benchmark
function. In this paper, we focus on d = 20 for all functions. The solutions in the
initial population for each function instance are generated with different seeds.

4.1 Parameter Tuning

We tune the parameters of the DE-RecPM-AOS , DE-F-AUC and PM-AdapSS-
DE using the offline automatic configurator irace [12], which saves the hassle of
manual tuning and allows for a fully specified and reproducible procedure. The
input given to irace is the range of all parameters that need tuning (Table 2) and
a set of training function instances; it then looks for good performing parameter
configurations by executing the target algorithm on different training instances
with a budget of 104 FEvals. In our case, the training set consist of only 10% of
the function instances, randomly selected within each class, to avoid over-fitting.

In order to evaluate the impact of parameter tuning, we consider three param-
eter configurations of each algorithm. The first configuration is obtained by tun-
ing all parameters of DE and the AOS methods. The second configuration is

Recursive Probability Matching for Adaptive Operator Selection 329

Table 2. Optimal parameter configurations selected from the range shown below the
parameter name. The following prefix abbreviations are used: RecPM for DE-RecPM-
AOS, AdapSS for PM-AdapSS-DE and FAUC for DE-F-AUC. The symbol ‘-’ in the
table means that the parameter is not applicable to the AOS method.

F NP CR α pmin γ W C

[0.1, 2.0] [50, 400] [0.1, 1.0] [0.0, 1.0] [0.0, 0.25] [0.1, 1.0] [0, 200] [0.0, 1.0]

RecPM1 0.47 168 0.98 - 0.17 0.75 - -

RecPM2 0.5 200 1.0 - 0.11 0.46 - -

RecPM3 0.5 200 1.0 - 0.0 0.6 - -

AdapSS1 0.51 117 0.97 0.48 0.22 - -

AdapSS2 0.5 200 1.0 0.86 0.04 - - -

AdapSS3 0.5 200 1.0 0.6 0.0 - - -

FAUC1 0.24 96 0.55 - - - 31 0.14

FAUC2 0.5 200 1.0 - - - 5 0.35

FAUC3 0.5 200 1.0 - - - 50 0.5

obtained by tuning only the parameters of the AOS methods, while the param-
eter values of DE are taken from [4]: CR = 1.0, F = 0.5 and NP = 200. The
value CR = 1.0 means that a mutation strategy is applied to each dimension of
all parents, which maximizes the impact of the mutation strategies. Finally, the
third configuration (default) uses the settings suggested in [4] for DE-F-AUC
and PM-AdapSS-DE, which uses the DE settings described earlier and AOS set-
tings tuned with a different configurator. All parameter configurations are shown
in Table 2.

4.2 Comparison of AOS Methods with Different Parameter Settings

After tuning, each obtained configuration is evaluated on the full bbob bench-
mark set. We use plots of the Empirical Cumulative Distribution Function
(ECDF) to assess their performance (Fig. 1). The ECDF displays the proportion
of problems solved within a specified budget of function evaluations (FEvals) for
different targets ftarget = fopt+Δf , where fopt is an the optimum function value
to reach with some precision Δf ∈ [10−8, 102]. In the plots, FEvals is given on
the x-axis and y-axis represents the fraction of problems solved. A large symbol
‘×’ shows the maximum number of function evaluations given to each algorithm,
in our case, 105 ·d FEvals are given to each algorithm with AOS method. Results
reported after this symbol use bootstrapping to estimate the number of evalua-
tions to reach a specific target for a problem [3]. The results denoted with best
2009 correspond to the artificial best algorithm from the bbob-2009 workshop
constructed from the data of the algorithm with the smallest aRT (average Run
Time) for each set of problems with the same function, dimension and target.
The aRT is calculated as the ratio of the number of function evaluations for

330 M. Sharma et al.

reaching the target value over successful runs (or trials), plus the maximum
number of evaluations for unsuccessful runs, divided by the number of success-
ful trials. Data to generate ECDF graphs for DE-F-AUC3, PM-AdapSS-DE3,
CMAES and JADE is obtained directly from the coco website.1 The trials that
reached ftarget within specified budget are termed as successful trials, #succ.
Table 3 shows the aRT (average Run Time), calculated as the ratio of the num-
ber of function evaluations for reaching the target value over successful runs,
plus the maximum number of evaluations for unsuccessful trials, divided by the
number of successful trials, on four out of 24 functions only due to limited space.
The runtime for a function becomes undefined if there are no successful runs.
The complete table can be seen in the supplementary material [15].

We expected to tune DE-F-AUC and PM-AdapSS-DE algorithms with the
hope to replicate the original results for DE-F-AUC3 and PM-AdapSS-DE3
[5,7]. But we could not match the results shown in these papers. Thus, we
decided to use the data available online at the coco website and compare vari-
ants of proposed algorithm with DE-F-AUC3 and PM-AdapSS-DE3 only. The
interested reader is referred to the supplementary material [15] to find the results
of tuned DE-F-AUC and PM-AdapSS-DE algorithms. The ECDF graphs of vari-
ants of proposed algorithm with DE-F-AUC3 and PM-AdapSS3 are shown in
four plots of Fig. 1 that show the performance of algorithms averaged over all
360 functions tested. From now on we only talk about the original results and
not the replicated ones.

ECDF1 shows results obtained for three variants of DE-RecPM-AOS. As
expected, proposed algorithm with all tuned parameters outperformed its all
other variants both in terms of speed and percentage of problems solved. When
all three AOS methods use the default settings (ECDF2), it is estimated that
F-AUC and RecPM-AOS solves the same number of problems but within given
budget all algorithms solved same number of problems with varied speed. The
third graph (ECDF3) where only parameters of AOS method are tuned in pro-
posed algorithm shows that DE-F-AUC3 and PM-AdapSS-DE3 solves maxi-
mum problems with almost same speed within given budget. But when given
more FEvals, according to bootstrapping technique, DE-RecPM-AOS2 shows
the same performance as DE-F-AUC3 by solving the same number of problems
whereas PM-AdapSS-DE3 could not match the performance of other two algo-
rithms. ECDF4 compares results of DE-RecPM-AOS1, DE-F-AUC3 and PM-
AdapSS-DE3. The proposed method with all tuned parameters that is, parame-
ters of DE algorithm and of RecPM-AOS method outperformed all other algo-
rithms by solving 75% of the problems. This is clearly because of the properties
the proposed AOS method has. The tuned configurations of replicated algo-
rithms: DE-F-AUC and PM-AdapSS-DE are not better than the original results
reported, which we cannot replicate.

Summing up the above discussion, it can be said that tuning all the parame-
ters of the proposed algorithm (DE-RecPM-AOS1) outperformed all its variants,
thus tuning on training set plays an important role. It also outperformed all other

1 http://coco.gforge.inria.fr/doku.php?id=algorithms-bbob.

http://coco.gforge.inria.fr/doku.php?id=algorithms-bbob

Recursive Probability Matching for Adaptive Operator Selection 331

Table 3. Average runtime (aRT in number of function evaluations) divided by the
respective best aRT measured during BBOB-2009 in dimension 20. RecPM: DE-
RecPM-AOS, AdapSS: PM-AdapSS-DE, FAUC: DE-F-AUC. The different target Δf -
values are shown in the top row. #succ is the number of trials that reached the (final)
target fopt + 10−8. The median number of conducted function evaluations is addition-
ally given in italics, if the target in the last column was never reached. Best results are
printed in bold.

20-D
Δfopt 1e1 1e0 1e-1 1e-2 1e-3 1e-5 1e-7 #succ

f1 43 43 43 43 43 43 43 15/15
AdapSS3101 196 291 377 465 646 827 15/15
CMAES 7.5 13 20 26 33 45 58 15/15
FAUC3 93 180 265 350 431 597 763 15/15
JADE 47 94 143 191 240 340 437 15/15
RecPM1 96 187 278 369 459 636 819 15/15
RecPM2 114 219 317 410 510 707 932 15/15
RecPM3 132 263 432 932 1234 1621 2076 14/15

f2 385 386 387 388 390 391 393 15/15
AdapSS3 52 63 73 83 93 112 132 15/15
CMAES 36 43 45 47 47 48 50 15/15
FAUC3 48 58 68 77 86 105 123 15/15
JADE 28 34 39 44 50 61 71 15/15
RecPM1 47 57 66 76 85 103 121 15/15
RecPM2 72 90 108 127 147 186 223 15/15
RecPM3 66 111 180 205 278 333 360 15/15

Δfopt 1e1 1e0 1e-1 1e-2 1e-3 1e-5 1e-7 #succ
f13 652 2021 2751 3507 18749 24455 3020115/15

AdapSS328 13 12 12 2.6 2.6 2.6 15/15
CMAES 6.3 5.1 4.5 4.4 1.9 4.6 8.4 12/15
FAUC3 25 12 11 11 2.4 2.5 2.5 15/15
JADE 17 14 15 14 3.6 4.8 9.0 15/15
RecPM1 29 14 14 14 3.2 3.6 4.2 15/15
RecPM2 36 17 16 16 3.6 4.1 7.2 15/15
RecPM3 44 32 32 38 7.8 8.8 8.0 15/15

f14 75 239 304 451 932 1648 15661 15/15
AdapSS343 34 43 40 25 20 2.8 15/15
CMAES 4.2 3.0 3.7 4.3 4.2 6.2 1.2 15/15
FAUC3 33 30 38 36 23 19 2.8 15/15
JADE 18 18 23 25 20 38 62 5/15
RecPM1 40 33 42 41 26 24 4.2 15/15
RecPM2 52 44 58 53 32 27 4.3 15/15
RecPM3 47 43 54 51 35 38 5.1 15/15

AOS methods within DE solving 75% of the total problems. Thus, historical
information preserving property in the form of reward and using Bellman equa-
tion to estimate quality of operator led to efficient adaptability of operators.
On the other hand both F-AUC and RecPM-AOS makes use of past perfor-
mances of operators, we do that by defining reward of each operator capturing
a fraction of its last reward which reduces the hassle of maintaining a window of
certain size. However, F-AUC and PM-AdapSS shows similar speed in solving
a fixed number of problems and DE-RecPM-AOS1 has faster convergence speed
and increased percentage of problems solved. The full table showing aRT for
AOS methods within DE algorithm in supplementary material shows that no
one algorithm has best converging speed for all functions and DE-F-AUC3 and
DE-RecPM-AOS1 shows competitive results.

4.3 Comparison of RecPM-AOS with State-of-the-Art Algorithms

CMAES and JADE are given a budget of 5 ·104 FEvals. When comparing differ-
ent versions of DE-RecPM-AOS with CMAES and JADE, proposed algorithm
with all tuned parameters is able to solve most functions than CMAES as seen in
ECDF4 in Fig. 1 that is, almost 10% more than best version of DE-RecPM-AOS :
DE-RecPM-AOS1. However, JADE manages to solve majority of the problems
than any AOS methods within DE, shown in ECDF1. In the initial runs, CMAES
has faster convergence speed than any other algorithm.

5 Conclusion and Future Work

We proposed a variant of probability matching, recursive-PM, as a parameter
control method that gives the quality as an aggregated estimate of future perfor-

332 M. Sharma et al.

mances of operators. The proposed adaptive operator selector adaptively selects
a mutation strategy in Differential Evolution. The algorithm differs from clas-
sical PM in the way it assigns the quality to a strategy. The reward given to
an operator depends on the short term success of that operator. It is compared
with two AOS methods DE-F-AUC, PM-AdapSS-DE and two state-of-the-art
algorithms CMAES, JADE. The overall performance of Recursive-PM within
DE with tuned parameters shows that it outperforms other two AOS methods
that is, DE-F-AUC and PM-AdapSS-DE, and CMAES by solving 75% of the
problems. The proposed algorithm could not outperform JADE, but had similar
convergence rate.

irace is used to find the good offline settings for the proposed AOS method,
which illustrates the usefulness of offline procedures to successfully design new
online adaptation methods. It is used to train the parameters on 10% of the total
function instances. We plan to extend the proposed algorithm by integrating it
with different definitions of credit assignment to compete with the state of the art
algorithms. To make RecPM-AOS perform better, we plan to extend proposed
algorithm by finding and tuning more parameters involved in the method such
as the fraction of previous reward to take under consideration when designing
credit assignment technique.

References

1. Auer, P., Cesa-Bianchi, N., Fischer, P.: Finite-time analysis of the multiarmed
bandit problem. Mach. Learn. 47(2–3), 235–256 (2002)

2. Das, S., Mullick, S.S., Suganthan, P.N.: Recent advances in differential evolution-an
updated survey. Swarm Evol. Comput. 27, 1–30 (2016)

3. Efron, B., Tibshirani, R.J.: An Introduction to the Bootstrap. CRC Press, Boca
Raton (1994)

4. Fialho, Á., Schoenauer, M., Sebag, M.: Fitness-AUC bandit adaptive strategy selec-
tion vs. the probability matching one within differential evolution: an empirical
comparison on the BBOB-2010 noiseless testbed. In: Pelikan, M., et al. (eds.)
GECCO (Companion), pp. 1535–1542 (2010)

5. Fialho, Á., Schoenauer, M., Sebag, M.: Toward comparison-based adaptive oper-
ator selection. In: Pelikan, M., et al. (eds.) 2010 Proceedings of the Genetic and
Evolutionary Computation Conference (GECCO), Portland, Oregon, USA, pp.
767–774 (2010)

6. Goldberg, D.E.: Probability matching, the magnitude of reinforcement, and clas-
sifier system bidding. Mach. Learn. 5(4), 407–425 (1990)

7. Gong, W., Fialho, Á., Cai, Z.: Adaptive strategy selection in differential evolution.
In: Pelikan, M., et al. (eds.) GECCO, pp. 409–416 (2010)

8. Hansen, N., Auger, A., Mersmann, O., Tusar, T., Brockhoff, D.: COCO: a plat-
form for comparing continuous optimizers in a black-box setting. Arxiv preprint
arXiv:1603.08785 (2016)

9. Hansen, N., Finck, S., Ros, R., Auger, A.: Real-parameter black-box optimiza-
tion benchmarking 2009: noiseless functions definitions. Technical report, RR-6829,
INRIA, France (2009). (updated February 2010)

10. Hansen, N., Ostermeier, A.: Completely derandomized self-adaptation in evolution
strategies. Evol. Comput. 9(2), 159–195 (2001)

http://arxiv.org/abs/1603.08785

Recursive Probability Matching for Adaptive Operator Selection 333

11. Karafotias, G., Hoogendoorn, M., Eiben, A.E.: Parameter control in evolutionary
algorithms: trends and challenges. IEEE Trans. Evol. Comput. 19(2), 167–187
(2015)

12. López-Ibáñez, M., Dubois-Lacoste, J., Pérez Cáceres, L., Stützle, T., Birattari, M.:
The irace package: iterated racing for automatic algorithm configuration. Oper.
Res. Perspect. 3, 43–58 (2016)

13. Price, K., Storn, R.M., Lampinen, J.A.: Differential Evolution: A Practical App-
roach to Global Optimization. Springer, New York (2005). https://doi.org/10.
1007/3-540-31306-0

14. Rust, J.: Structural estimation of Markov decision processes. In: Handbook of
Econometrics, vol. 4, pp. 3081–3143. Elsevier (1994)

15. Sharma, M., López-Ibáñez, M., Kazakov, D.: Performance assessment of recur-
sive probability matching for adaptive operator selection in differential evolution:
supplementary material (2018). https://doi.org/10.5281/zenodo.1257672. https://
github.com/mudita11/AOS-comparisons

16. Sutton, R.S., Barto, A.G.: Reinforcement Learning: An Introduction. MIT Press,
Cambridge (1998)

17. Zhang, J., Sanderson, A.C.: JADE: adaptive differential evolution with optional
external archive. IEEE Trans. Evol. Comput. 13(5), 945–958 (2009)

https://doi.org/10.1007/3-540-31306-0
https://doi.org/10.1007/3-540-31306-0
https://doi.org/10.5281/zenodo.1257672
https://github.com/mudita11/AOS-comparisons
https://github.com/mudita11/AOS-comparisons

	Performance Assessment of Recursive Probability Matching for Adaptive Operator Selection in Differential Evolution
	1 Introduction
	2 Background
	2.1 Adaptive Operator Selection
	2.2 Mutation Strategies in Differential Evolution

	3 Recursive PM (RecPM)
	4 Experimental Analysis
	4.1 Parameter Tuning
	4.2 Comparison of AOS Methods with Different Parameter Settings
	4.3 Comparison of RecPM-AOS with State-of-the-Art Algorithms

	5 Conclusion and Future Work
	References

