
Sampling Heuristics for Multi-objective
Dynamic Job Shop Scheduling Using

Island Based Parallel Genetic
Programming

Deepak Karunakaran(B), Yi Mei, Gang Chen, and Mengjie Zhang

School of Engineering and Computer Science, Victoria University of Wellington,
PO Box 600, Wellington 6140, New Zealand

{deepak.karunakaran,yi.mei,aaron.chen,mengjie.zhang}@ecs.vuw.ac.nz

Abstract. Dynamic job shop scheduling is a complex problem in pro-
duction systems. Automated design of dispatching rules for these sys-
tems, particularly using the genetic programming based hyper-heuristics
(GPHH) has been a promising approach in recent years. However, GPHH
is a computationally intensive and time consuming approach. Parallel
evolutionary algorithms are one of the key approaches to tackle this draw-
back. Furthermore when scheduling is performed under uncertain manu-
facturing environments while considering multiple conflicting objectives,
evolving good rules requires large and diverse training instances. Under
limited time and computational budget training on all instances is not
possible. Therefore, we need an efficient way to decide which training
samples are more suitable for training. We propose a method to sam-
ple those problem instances which have the potential to promote the
evolution of good rules. In particular, a sampling heuristic which suc-
cessively rejects clusters of problem instances in favour of those prob-
lem instances which show potential in improving the Pareto front for
a dynamic multi-objective scheduling problem is developed. We exploit
the efficient island model-based approaches to simultaneously consider
multiple training instances for GPHH.

Keywords: Scheduling · Genetic programming · Parallel algorithms

1 Introduction

Job shop scheduling is a complex problem in manufacturing industries. In gen-
eral, researchers consider deterministic scheduling problems in which once the
information of a new job is obtained it remains constant. But in practice, due
to events like machine breakdown, variation in raw material quality, operator
availability, etc. uncertainty is ubiquitous in manufacturing environments. In
fact, with increasing uncertainty, scheduling becomes more difficult [8]. Dispatch-
ing rules have been widely used for generating schedules for different objectives
c© Springer Nature Switzerland AG 2018
A. Auger et al. (Eds.): PPSN 2018, LNCS 11102, pp. 347–359, 2018.
https://doi.org/10.1007/978-3-319-99259-4_28

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-99259-4_28&domain=pdf

348 D. Karunakaran et al.

and have shown good success for DJSS problems [12], particularly for schedul-
ing under uncertainty [9]. But designing them requires considerable exper-
tise and rigorous experimentation. Genetic programming based hyper-heuristic
(GPHH) approach has been very successful in automatically evolving dispatching
rules [12]. Due to the flexible representation and powerful search ability of GP,
existing GPHH methods can evolve very good rules for diverse shop scenarios [7]
while handling multiple objectives for DJSS problems [10].

GPHH in general demands high computational cost and time. To address
this issue, surrogate models [5] have been proposed as an alternative but they
suffer from poor accuracy among other drawbacks [10]. Another key technique
to reduce computation time is to use parallel evolutionary algorithms [14]. There
are two main categories of parallelization, parallelizing an independent run and
island models. Island models are particularly interesting because of their ability
to deal with local optima [14]. The island model uses a spatially structured net-
work of subpopulations (on different processors) to exchange promising individu-
als among each other is an effective approach. For example, [15] use a specialized
island model for multi-objective optimization. [1] is a recent work which demon-
strates the effectiveness of asynchronous parallel evolution for hyper-heuristics.

For GPHH to be effective, it is important to use a large training set containing
instances with diverse characteristics. This is more important when we consider
uncertain manufacturing environments as they present varying shop scenarios [7].
Moreover, when we consider multiple objectives the importance of using diverse
training set is compounded. For example, makespan and total tardiness are two
frequently considered conflicting objectives. Minimizing the makespan results in
high throughput where as minimizing tardiness requires jobs to be not very late.
A conflicting scenario arises when a set of jobs with long processing times but
shorter deadline compete with a set of jobs with shorter processing times and
longer deadlines. For higher throughput the shorter jobs must be completed first
as against the longer jobs which adversely affects the tardiness. For evolving
good dispatching rules it is important to present the evolutionary system with
training instances which capture scenarios highlighting all such conflicts amongst
the objectives, under different shop scenarios.

Therefore, for evolving dispatching rules for practical environments we need a
large and diverse training set. But this in turn will increase the already high com-
putational cost of GPHH. To address this problem, we need a method which can
effectively sample training instances to significantly improve the effectiveness of
GPHH without exceeding the computational budget. The parallel island model
has already been shown to be both efficient and effective for GPHH when dealing
with multiple objectives [6]. Motivated by this success, we address our issue with
the idea of associating the multiple islands with different training instances. Fur-
thermore, we utilize the inherent potential of migration policies [13] to introduce
a cooperative behavior among islands and collectively evolve better rules.

In this work, we consider multi-objective DJSS problems with a focus on
uncertainty in processing times which affects all our objectives. Our primary
goal is to develop a sampling heuristic for GPHH which selects good training

Sampling Heuristics for Dynamic Job Shop Scheduling 349

instances toward evolving a significantly better Pareto front. To this end, our
specific objectives are: (1) Develop a feature extraction method toward clustering
the training dataset into DJSS problem instances with different characteristics.
(2) Develop a sampling heuristic which iteratively rejects the clusters (successive
reject heuristic) in favor of those which have the potential to improve the Pareto
front. (3) Determine the migration policies of the island model toward improving
the efficacy of the proposed sampling heuristic.

2 Background

DJSS problems are characterized by continuous arrival of jobs from a Poisson
process [12]. nj operations constitute a job j with the constraint that they must
be processed in a predefined route say (oj,1 → oj,2 →, . . . , oj,nj

). Each operation
can be processed only on one machine in its route. Other conditions/assumptions
which are followed in this work are no preemption, no recirculation of jobs, no
machine failure and zero transit times. Total tardiness, makespan, total flow
time are some of the objectives considered for DJSS problems. In this work, we
consider two potentially conflicting objectives [12]: (1) total weighted tardiness
(TWT) and (2) makespan (Cmax).

TWT = Σwj × max(Cj − dj , 0),

where Cj = completion time, dj = due date and wj are weights.

Cmax = max(fj),

where fj is the flowtime of a job.

3 Proposed Method

3.1 Clustering of DJSS Problem Instances

We extract features from the DJSS problem instances based on the parameters:
number of operations per job, processing time, due date factor and uncertainty in
processing time. Firstly, the basic features for each job are extracted as described

Table 1. Job features

Feature Description

#operations Number of operations per job

p Estimated processing time of the job

Δp p′
p

, p′ is the actual processing time with uncertainty

Due date factor (ddf) (δduedate−δreldate)
p′ ; where δduedate is the due date

and δreldate is the release date

350 D. Karunakaran et al.

in Table 1. Once the feature values are aggregated for all the jobs in an instance;
the first, second and third quartiles of each aggregate are calculated to form a
12-dimensional feature vector characterizing each problem instance.

Consider an example of a DJSS problem instance with just 10 jobs

{j1, j2, j3, . . . j10}

For each job the features described in Table 1 are calculated and aggregated e.g.,
for processing time the aggregated feature values are:

{p1, p2, p3, . . . p10}

Then for each feature aggregate the quartiles are calculated. The feature vector
of the DJSS instance is of the form

{#opsQ1,#opsQ2,#opsQ3, pQ1, pQ2, pQ3,Δ
p
Q1,Δ

p
Q2,Δ

p
Q3, ddfQ1, ddfQ2, ddfQ3}

The objective of extraction of these features is to cluster the problem instances
into classes with different characteristics. Considering our earlier example,
assume we have one DJSS problem instance with high variability in number
of operations per job and their processing times and another instance with low
variability. It can be easily seen that our feature vectors corresponding to the
two problem instances can be used to differentiate them.

T is the training set containing n DJSS problem instances. We extract fea-
tures for all these problems and cluster them into C1 and C2 using K-means
clustering. We apply K-means clustering again on each of these clusters to yield
{C11, C12} and {C21, C22} respectively. This process can be repeated to obtain
more sub-clusters {{C111, C112}, {C121, C122}} and {{C211, C212}, {C221, C222}} and
so on.

3.2 Proposed Island Model

We use two classes of islands in our evolutionary system. The first class of islands,
represented as G in Fig. 1(a) and (b), sample training instances from the set T
throughout the evolutionary process. The second class of islands represented as
A and B in Fig. 1(b) sample problem instances from the different clusters the
choice of which varies with generations. The appropriate choice of the cluster is
controlled by the successive reject heuristic (SRH).

We first describe the evolutionary process of island G in Algorithm 1. In
every generation, a new training instance is sampled from T . Unless otherwise
mentioned, we use sample to denote a simple random sample. Due to our famil-
iarity with NSGA-II [3] and the fact that we consider only two objectives in this
work, we chose NSGA-II as our underlying evolutionary algorithm. In line 3, an
iteration of NSGA-II is performed. After each generation, the migration policy
determines (line 4) if there will be an exchange of individuals among the islands.
The output is a set of dispatching rules which can generate a Pareto front. Note

Sampling Heuristics for Dynamic Job Shop Scheduling 351

Fig. 1. (a) Standard island model, (b) Island model for successive reject heuristic

Algorithm 1. Island G

Input: T
Output: {ω1, ω2, . . . , ωp}

1 for g ← 1 : NG do
2 Sample an instance I ∈ T .

3 Run gth iteration of NSGA-II using I.
4 Receive/Send individuals using migration policies.

5 end
6 Collect the genetic programs corresponding to the Pareto front :

{ω1, ω2, . . . , ωp}.

Algorithm 2. Island Z (Z ∈ {A,B})
Input: CZ ,NSRH

Output: {ωz
1 , ωz

2 , . . . , ωz
p}

1 for g ← 1 : NG do
2 Sample an instance I ∈ CZ .

3 Run gth iteration of NSGA-II using I.
4 Receive/Send individuals using migration policies.
5 if g ∈ NSRH then
6 CZ ← SRH(P A

k , P B
k , CA, CB)

7 end
8 Collect the genetic programs corresponding to the Pareto front :

{ωz
1 , ωz

2 , . . . , ωz
p}.

that the final output of the parallel evolutionary system is the combination of
outputs from all individual islands (Table. 2).

In Algorithm 2, we describe the evolutionary process of the islands A and
B (Fig. 1(b)). Both islands are similar, except that they sample their training
instances from different clusters. Their migration policies are the same. The
cluster CZ is changed at discrete stages during the evolutionary process. The
set NSRH contains the generations at which the successive reject hypothesis
is invoked to change CZ (line 6). The rest of the procedure is the same as in
Algorithm 1.

352 D. Karunakaran et al.

Table 2. Notation

Notation Description

T Set of all DJSS problem instances for training

NG Total number of generations for evolutionary process

CZ Cluster corresponding to island Z ∈ {A, B}
P Z

k Top k individuals from island Z ∈ {A, B}
M−−→

X,Y
Migration policy from island X to Y

P2k Combined list of top k individuals from islands A and B

TOPk List of top k individuals across island A and B

TOP Zk #individuals which are present both in P Z
k and TOPk, Z ∈ {A, B}

NSRH Set of generations at which SRH is invoked

Successive Reject Heuristic. The successive reject heuristic (SRH) is
described in Algorithm 3. When the SRH is invoked by islands A and B at gener-
ation g ∈ NSRH , the top-k individuals from each island, PA

k and PB
k respectively,

are sent to the island G on which the SRH algorithm is run. The two sets of
individuals are then combined to get P2k (line 3). A new set of DJSS problem
instances,I is sampled from T with the purpose of assigning new fitness values
to each individual in P2k (lines 4–11).

After the fitness assignment, we use the NSGA-II fitness strategies to sort the
individuals. NSGA-II first ranks the individuals based on dominance relation and
then the individuals with same rank are ordered based on crowding distance [3].
We use the same approach to sort the individuals in P2k (line 12). After sorting,
the best k individuals are extracted from P2k into the list TOPk (line 13). Then
we count the number of individuals corresponding to each island in the list TOPk

(lines 14–15). The cluster corresponding to the island with the lower number of
individuals in TOPk is rejected (line 17 or 20). The CZ of the winning island is
further clustered into two sub-clusters (lines 18 or 21). The new clusters which
are the output of SRH algorithm are then randomly assigned to the islands. Till
the next invocation of SRH, the evolution in the islands is continued using DJSS
problem instances sampled from the new clusters.

Migration Policies. Migration policies play a major role in the performance
of the island models [13]. A migration policy states the number of individuals
to be sent to the destination island, frequency of migration and the generation
from which the migration starts. For the standard island model shown in Fig. 1(a)
designing a policy is straightforward. Due to symmetry, a single policy for all the
islands will suffice [6]. Since we consider two classes of islands which are working
together for a common goal, different migration policies must be designed for
different classes islands.

Formally, a policy M−−−→
I1,I2

from island I1 to I2 is defined by a triplet <start
generation, frequency, #individuals to send>. We consider the migration policy

Sampling Heuristics for Dynamic Job Shop Scheduling 353

Algorithm 3. Successive Reject Heuristic
Input: P A

k , P B
k , CA, CB

Output: {Cnew
A },{Cnew

B } to respective islands.
1 T ← set of all DJSS training instances.
2 I ←sample from T
3 P2K ← {P A

k , P B
k }

4 foreach p ∈ P2k do

5 tot.fit. ← −→
0

6 foreach I ∈ I do
7 obj.values ← Simulation for (p, I).
8 tot.fit. ← tot.fit. + obj.values

9 end
10 fit(p) ← tot.fit.

11 end
12 Sort P2k using NSGA-II fitness startegies.
13 TOPk ← Extract top-k individuals from P2k.

14 TOP A
k ← |P A

k ∩ TOPk|
15 TOP B

k ← |P B
k ∩ TOPk|

16 if TOP A
k ≥ TOP B

k then
17 Reject CB .
18 {Cnew

A },{Cnew
B } ← K-means cluster(CA)

19 else
20 Reject CA.
21 {Cnew

A },{Cnew
B } ← K-means cluster(CB)

22 end

M−−−→
I1,I2

to be different from M−−−→
I2,I1

. The selection of individuals for migration is
based on elitism, i.e., a proportion of fittest individual(s) are chosen from the
population for migration.

For island G, it is more productive to receive individuals from A and B
frequently as it will improve its diversity. This is because the evolved rules in A
and B are exposed to training instances which are different from G. On the other
hand a high frequency of migration between A and B will homogenize the islands,
making SRH less effective. Moreover, the frequency of migration in M−→

AG
is much

higher than M−→
GA

(similar for island B) for the same reasons. The same analysis
holds for determining the number of individuals to be migrated between the two.
Furthermore, the migration policy M−−→

AB
is restricted to exchanging individuals

only and immediately after invocation of SRH.

4 Experiment Design

4.1 Simulation Model

We use a DES system (Jasima) [4] to generate DJSS problem instances. The job
arrival follows a Poisson process with λ = 0.85 [7]. This assumption has been

354 D. Karunakaran et al.

used in large number of works [2,10,11]. For every run of the simulation, the
first 500 jobs are considered as warm-up and the objective values are calculated
for the next 2000 jobs.

The uncertainty in processing times is simulated using the model considered
in [7]. Basically for an operation oj,i the relationship between the processing
time with uncertainty p′

j,i and processing time without uncertainty pj,i is:

p′
j,i = (1 + θj,i)pj,i, θj,i ≥ 0.

θ follows exponential distribution [7]. In Table 3, the parameter β corresponds
to the scale parameter of the exponential distribution.

In order to create problem instances with varying characteristics, DJSS prob-
lem instances are generated with many combinations of the simulation param-
eters shown in Table 3. The combination of these four pairs of parameters can
simulate 16 types of jobs. For composing a training DJSS problem instance, 3
job types are considered at a time. On counting the unique combinations of 3
job types we find a total of 816 possible configurations (combinations without
repetitions). Since we extract features from problem instances in order to per-
form clustering we create 20 DJSS problems for each configuration to build the
training set T . Our preliminary study showed that a larger training set would
show no advantage but require more computational effort.

For testing, we create a new set (say Y) of DJSS problems using the 816
possible configurations mentioned above. We sample 30 DJSS problem instances
from Y to obtain our first test set. Due to large number of problem configurations
it is not possible to test on each of them separately. Therefore, we create four
more test sets by clustering Y and sampling 30 problem instances from each.
These test sets are denoted by 3-Y, 3-I, 3-II, 3-III and 3-IV, where 3 stands for
number of job types.

We also want to observe the generalization ability of our methods over more
complex configurations. Therefore, DJSS instances comprising of 4 job types are
created. On counting, the total number of unique configurations in this case are
as high as 3876 (combinations with repetitions). Performing the same procedure
described above generates the following test sets: 4-Y, 4-I, 4-II, 4-III and 4-IV.

Table 3. DJSS simulation parameters

Simulation paramter Values

Processing time range [0, 49], [20, 69]

Uncertainty scale parameter (β) {0.2, 0.4}
Due date tightness {1.5, 2.5}
operations per job {8, 10}

Sampling Heuristics for Dynamic Job Shop Scheduling 355

Table 4. Migration poli-
cies

Island-pairs Policies
−−→
GG <20, 20, 30>
−→
AB <50, 50, 60>
−→
BA <50, 50, 60>
−→
AG <20, 20, 30>
−−→
BG <20, 20, 30>
−−→
GB <50, 25, 10>
−→
GA <50, 25, 10>

Table 5. Terminal sets for GP.

Terminal set Meaning

PT Processing time of operation

RO Remaining operations for job

RJ Ready time of job

RT Remaining processing time of job

RM Ready time of machine

DD Due date

W Job weight

ERC Ephemeral random constant

4.2 Genetic Programming System

The terminal set for genetic programming is listed in Table 5. For all our islands
we use a population size of 800 each. We also compare performance of our method
with the standard NSGA-II for which the population size is set at 2500. With
a tree depth of 6, the crossover and mutation are 0.85 and 0.1 respectively [10].
Each evolutionary algorithm is run for 150 generations.

4.3 Island Model

We use the SRH algorithm at generations 49 and 99, i.e., NSRH = {49, 99}. The
SRH algorithm also requires the simulator to assign fitness to individuals. Fur-
thermore, for GPHH to utilize the problem instances from a cluster, considerable
number of generations are required. So frequently invoking SRH will not yield
the desired outcome but only incur additional computational cost. Therefore the
size of NSRH is small and generations selected are far apart.

The migration policies are presented in Table 4. While deciding the frequency
parameter of the migration policies involving islands A and B, NSRH has been
taken into account. The exchange of individuals starts after a delay as the evolved
rules in the early generations are not good. For the TOPk individuals the value
k = 30 was chosen, after experimental evaluation.

5 Results and Discussion

In this Section, we present the results from our experiments. We compare the
performance our method with standard NSGA-II algorithm and standard island
model approach. The hypervolume ratio (HV), inverted generational distance
(IGD) and spread (SPREAD) indicators are considered for comparison as they
are frequently used in the literature [12] to compare the generated Pareto fronts.
In order to approximate the true Pareto front as required by performance indi-
cators the individuals from all the methods across all runs are combined. For

356 D. Karunakaran et al.

each method the solutions are compared over 30 problem instances from a test
set. 30 independent runs produce 30 sets of dispatching rules for each method.
The Wilcoxon-rank-sum test is used to compare the performance. We consider
a significance level of 0.05.

The results are summarized in Tables 6, 7 and 8. Each cell in the tables con-
sists of a triplet which represents [win − draw − lose]. For example, in Table 6
the comparison between standard island model and NSGA-II approach is sum-
marized. For the training set 3-Y, if we consider hypervolume indicator, then
island model has significantly outperformed NSGA-II in 18 problem instances
and there is no significant difference observed for 12 problem instances.

Table 6. Island-Model versus NSGA-II

3-Y 3-I 3-II 3-III 3-IV 4-Y 4-I 4-II 4-III 4-IV

HV [18-12-0] [11-19-0] [18-12-0] [19-11-0] [17-13-0] [14-16-0] [15-15-0] [18-12-0] [16-13-0] [12-18-0]

IGD [24-6-0] [21-9-0] [25-5-0] [29-1-0] [27-3-0] [24-6-0] [21-9-0] [22-8-0] [22-8-0] [19-11-0]

SPREAD [3-22-5] [0-18-12] [4-23-0] [5-25-0] [2-28-0] [3-21-6] [6-22-2] [4-23-3] [5-20-5] [2-24-2]

In Table 6, we compare NSGA-II with standard island model. As expected,
the performance of island model is much better, which is line with the observa-
tions made in [6]. For HV and IGD performance indicators, the performance is
very good, but for SPREAD indicator there is no clear winner. This significant
difference in performance is consistent across all the test sets including 4-job
type configurations.

Table 7. SRH-Island model versus NSGA-II

3-Y 3-I 3-II 3-III 3-IV 4-Y 4-I 4-II 4-III 4-IV

HV [23-7-0] [17-3-0] [23-7-0] [25-5-0] [24-6-0] [20-10-0] [24-6-0] [22-8-0] [24-6-0] [21-9-0]

IGD [30-0-0] [30-0-0] [27-3-0] [29-1-0] [30-0-0] [30-0-0] [27-3-0] [30-0-0] [28-2-0] [29-1-0]

SPREAD [1-23-6] [0-25-5] [1-27-2] [3-26-1] [0-28-2] [4-21-5] [1-27-2] [1-27-2] [2-22-6] [0-25-5]

In Table 7, we compare the performance of NSGA-II and SRH-based island
model (SRH). Across all the test sets the proposed method has done well. Par-
ticularly for HV indicator, the SRH method has significantly done better in
more than 20 problem instances for almost every test set. Similar performance
is observed for IGD as well. Though once gain, with respect to SPREAD, there
is no verifiable difference. This is because the obtained Pareto fronts are sparse
for all the algorithms.

Finally we compare, the SRH approach with the standard island model.
Once again the SRH approach performs significantly better on an average of 10
problem instances from each test set. This confirms that SRH approach was able
to associate useful training instances through the successive rejection of clusters
of training instances.

Sampling Heuristics for Dynamic Job Shop Scheduling 357

Table 8. SRH-Island model versus island model

3-Y 3-I 3-II 3-III 3-IV 4-Y 4-I 4-II 4-III 4-IV

HV [10-20-0] [5-24-1] [6-22-2] [9-21-0] [14-16-0] [10-20-0] [10-20-0] [8-21-1] [9-21-0] [11-19-0]

IGD [18-12-0] [20-10-0] [19-11-0] [19-11-0] [20-10-0] [15-15-0] [14-15-1] [13-17-0] [15-15-0] [18-20-0]

SPREAD [5-18-7] [10-20-0] [3-24-3] [1-25-4] [0-23-7] [5-20-5] [1-22-7] [2-20-8] [4-17-9] [3-24-3]

5.1 Analysis

A frequently observed path taken by the successive reject heuristic is represented
below.

T → {C1, C2} → {C21, C22} → {C211, C212}

In retrospect, we analyze the clusters which showed potential to guide the
GPHH toward evolving better rules. In order to further validate the ability
of SRH, we took the clusters represented by C21 and C22 as training sets. We
performed 30 independent runs of NSGA-II algorithm on each. We observed that
the cluster rejected by SRH (C22) performed significantly poor on both HV and
IGD indicators. Figure 2 shows a box plot for HV indicator on a test problem
instance from the set 3-Y.

Fig. 2. Comparing C21(selected) and C22 (rejected) using HV.

Furthermore, we also analyzed the problem configurations associated with
cluster C21. One of the reasons for analyzing C21 and not C2 is its smaller size
and also the fact that out of 30 independent runs, this path was chosen by SRH
for 20 of the runs. We observed that the DJSS instances whose job types were
pertaining to equal proportion of high and low level of uncertainty were in high
numbers. Also, DJSS instances comprising jobs with low and high number of
operations per job were found in large numbers. In other words, SRH is biased
towards instances with high variability in their jobs. A high variability in the
training instances has more potential to present the GPHH with difficult and
conflicting scenarios, as explained in a previous example.

358 D. Karunakaran et al.

6 Conclusions

Most of the research works in evolutionary scheduling focus on improving only
the different aspects of algorithms. But it is also important to develop methods
to select appropriate training instances for the evolutionary algorithms to pro-
duce desired outcome. We have successfully taken a step toward this direction
by demonstrating that a simple sampling heuristic using basic features extracted
from the problem instances could improve the effectiveness of the evolutionary
process. By exploiting the potential of island model approach we obtained sig-
nificantly better results while maintaining computational efficiency. We demon-
strated the efficacy of our approach using just two objectives and in future, we
would extend our work to tackle many-objective scheduling problems.

References

1. Bertels, A.R., Tauritz, D.R.: Why asynchronous parallel evolution is the future of
hyper-heuristics: A CDCL SAT solver case study. In: Proceedings of the 2016 on
Genetic and Evolutionary Computation Conference Companion, pp. 1359–1365.
ACM (2016)

2. Branke, J., Nguyen, S., Pickardt, C., Zhang, M.: Automated design of production
scheduling heuristics: a review. IEEE Trans. Evol. Comput. 20, 110–124 (2016)

3. Deb, K., Pratap, A., Agarwal, S., Meyarivan, T.: A fast and elitist multiobjective
genetic algorithm: NSGA-II. IEEE Trans. Evol. Comput. 6(2), 182–197 (2002)

4. Hildebrandt, T.: Jasima - an efficient java simulator for manufacturing and logis-
tics. Last Accessed 16 (2012)

5. Hildebrandt, T., Branke, J.: On using surrogates with genetic programming. Evol.
Comput. 23(3), 343–367 (2015)

6. Karunakaran, D., Chen, G., Zhang, M.: Parallel multi-objective job shop scheduling
using genetic programming. In: Ray, T., Sarker, R., Li, X. (eds.) ACALCI 2016.
LNCS (LNAI), vol. 9592, pp. 234–245. Springer, Cham (2016). https://doi.org/10.
1007/978-3-319-28270-1 20

7. Karunakaran, D., Mei, Y., Chen, G., Zhang, M.: Toward evolving dispatching rules
for dynamic job shop scheduling under uncertainty. In: Proceedings of the Genetic
and Evolutionary Computation Conference, pp. 282–289. ACM (2017)

8. Kouvelis, P., Yu, G.: Robust Discrete Optimization and its Applications, vol. 14.
Springer, Heidelberg (2013). https://doi.org/10.1007/978-1-4757-2620-6

9. Lawrence, S.R., Sewell, E.C.: Heuristic, optimal, static, and dynamic schedules
when processing times are uncertain. J. Oper. Manag. 15(1), 71–82 (1997)

10. Nguyen, S., Mei, Y., Zhang, M.: Genetic programming for production scheduling:
a survey with a unified framework. Complex Intell. Syst. 3(1), 41–66 (2017)

11. Nguyen, S., Zhang, M., Johnston, M., Tan, K.C.: Dynamic multi-objective job shop
scheduling: a genetic programming approach. In: Uyar, A., Ozcan, E., Urquhart, N.
(eds.) Automated Scheduling and Planning. SCI, vol. 505, pp. 251–282. Springer,
Heidelberg (2013). https://doi.org/10.1007/978-3-642-39304-4 10

12. Nguyen, S., Zhang, M., Johnston, M., Tan, K.C.: Automatic design of scheduling
policies for dynamic multi-objective job shop scheduling via cooperative coevolu-
tion genetic programming. IEEE Trans. Evol. Comput. 18(2), 193–208 (2014)

https://doi.org/10.1007/978-3-319-28270-1_20
https://doi.org/10.1007/978-3-319-28270-1_20
https://doi.org/10.1007/978-1-4757-2620-6
https://doi.org/10.1007/978-3-642-39304-4_10

Sampling Heuristics for Dynamic Job Shop Scheduling 359

13. Nowak, K., Izzo, D., Hennes, D.: Injection, saturation and feedback in meta-
heuristic interactions. In: Proceedings of the 2015 Annual Conference on Genetic
and Evolutionary Computation, pp. 1167–1174. ACM (2015)

14. Sudholt, D.: Parallel evolutionary algorithms. In: Kacprzyk, J., Pedrycz, W. (eds.)
Springer Handbook of Computational Intelligence, pp. 929–959. Springer, Heidel-
berg (2015). https://doi.org/10.1007/978-3-662-43505-2 46

15. Xiao, N., Armstrong, M.P.: A specialized island model and its application in mul-
tiobjective optimization. In: Cantú-Paz, E. (ed.) GECCO 2003. LNCS, vol. 2724,
pp. 1530–1540. Springer, Heidelberg (2003). https://doi.org/10.1007/3-540-45110-
2 24

https://doi.org/10.1007/978-3-662-43505-2_46
https://doi.org/10.1007/3-540-45110-2_24
https://doi.org/10.1007/3-540-45110-2_24

	Sampling Heuristics for Multi-objective Dynamic Job Shop Scheduling Using Island Based Parallel Genetic Programming
	1 Introduction
	2 Background
	3 Proposed Method
	3.1 Clustering of DJSS Problem Instances
	3.2 Proposed Island Model

	4 Experiment Design
	4.1 Simulation Model
	4.2 Genetic Programming System
	4.3 Island Model

	5 Results and Discussion
	5.1 Analysis

	6 Conclusions
	References

