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1 Sorbonne Université, CNRS, Laboratoire d’Informatique de Paris 6, LIP6,
75005 Paris, France

carola.doerr@lip6.fr
2 Optimisation and Logistics, University of Adelaide, Adelaide, SA 5005, Australia

Abstract. The parameter setting problem constitutes one of the major
challenges in evolutionary computation, and is subject to considerable
research efforts. Since the optimal parameter values can change dur-
ing the optimization process, efficient parameter control techniques that
automatically identify and track reasonable parameter values are sought.

A potential drawback of dynamic parameter selection is that state-
of-the-art control mechanisms introduces themselves new sets of hyper-
parameters, which need to be tuned for the problem at hand. The gen-
eral hope is that the performance of an algorithm is much less sensitive
with respect to these hyper-parameters than with respect to its origi-
nal parameters. This belief is backed up by a number of empirical and
theoretical results. What is less understood in discrete black-box opti-
mization, however, is the influence of the initial parameter value. We con-
tribute with this work an empirical sensitivity analysis for three selected
algorithms with self-adjusting parameter choices: the (1 + 1) EAα, the 2-
rate (1+λ) EA2r,r/2, and the (1+(λ, λ)) GA. In all three cases we observe
fast convergence of the parameters towards their optimal choices. The
performance loss of a sub-optimal initialization is shown to be almost
negligible for the former two algorithms. For the (1+ (λ, λ)) GA, in con-
trast, the choice of λ is more critical; our results suggest to initialize it
by a small value.
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1 Introduction

Every evolutionary algorithm (EA) and, more generally, every discrete black-
box optimization heuristic, comes with a set of (explicit or implicit) parameters
that needs to be set in order to run it. Among the most influential parameters
are the population sizes, the mutation rates, the crossover probabilities, and the
selective pressure. The choice of any of these parameters can have a significant
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impact on the performance of the EA under consideration. It is therefore not
surprising that the parameter selection question has evolved into an important
research stream within the evolutionary computation community, cf. [17] for
detailed discussions.

The last forty years of research on the parameter setting problem have con-
tributed to a significant gain in performance, and have been a major building
block for the success of evolutionary computation methods. According to Eiben,
Hinterding, and Michalewicz [12] the parameter setting literature can be classi-
fied into two main research streams:

– Parameter tuning addresses the question how to efficiently identify good
parameter values through an initial set of experiments. After their identifica-
tion, these parameter values are not further adjusted during the optimization
process, but remain fixed instead. Among the most-widely applied tools for
parameter tuning are irace [18], SPOT [3], SMAC [14], ParamILS [15], and
GGA [2].

– Parameter control, in contrast, studies ways to adjust (“control”) the param-
eter values during the run of the optimization, to benefit from an adapta-
tion to the different stages of the optimization process. Using such non-static
parameter values, the EAs can, for example, evolve from a rather exploratory,
globally acting heuristic to a more and more locally exploiting one. Among
the best-known parameter control techniques are the step size and covariance
matrix adaptation in the CMA-ES [13] and variants of the 1/5-th success
rule [5,19,20].

The focus of our work is on parameter control for discrete black-box optimiza-
tion, a topic that has been somewhat neglected in the evolutionary computation
community, as confirmed by a quote of [16, Sect. 8], which says that “controlling
EA parameters on-the-fly is still a rather esoteric option”. A potential reason for
this situation may be the common critique that parameter control mechanisms
add yet another level of complexity to the algorithms.

The influence of the parameter control mechanisms are indeed difficult to
grasp analytically, so that only few theoretical works addressing the parameter
control question exist [7]. A related critique of parameter control is the fact that
on-the-fly parameter selection techniques come with their own hyper-parameters,
which need to be set to determine the exact update rules. From a high-level per-
spective one may feel that not much can be gained by replacing a parameter by
one or more hyper-parameters, but the general hope is that the influence of these
hyper-parameters is much less important than that of the original parameter val-
ues. Several studies confirm this hope for some specific settings, empirically as
well as in rigorous mathematical terms, cf. the surveys [1,7,12,16] and references
therein.

Our Contribution

Complementing our recent work on the sensitivity of parameter control mech-
anisms with respect to the hyper-parameters that determine the update
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strength [11], we consider in this study their sensitivity with respect to ini-
tialization. More precisely, we analyze for three different EAs with self-adjusting
parameter selection the influence of the initial parameter value on the perfor-
mance: the (1 + 1) EAα proposed in [11], the 2-rate (1 + λ) EA2r,r/2 from [10],
and the (1 + (λ, λ)) GA proposed in [8] and analyzed in [6]. In the first two
algorithms the mutation rate is controlled by a success-based update rule. In
the (1+(λ, λ)) GA the adaptation of λ influences the offspring population sizes,
the mutation rate, and the crossover bias, cf. Sect. 3. For all three algorithms
we test the influence of extreme initialization, i.e., p = 1/n vs. p = 1/2 for the
(1+1) EAα and the (1+λ) EA2r,r/2, and λ = 1 vs. λ = n for the (1+(λ, λ)) GA.

Our selection of algorithms is clearly theory-biased, i.e., we favor those algo-
rithms for which mathematical analyses of their running time behavior are avail-
able. This allows us to chose update mechanisms which are known to be (close
to) optimal, so that our sensitivity analysis of the initial parameter values is not
biased by a non-sensible choice of hyper-parameters.

Our testbed comprises of the well-known OneMax and LeadingOnes
benchmark functions, again with the motivation to not bias the result by a non-
suitable control mechanism, and to allow for a comparison with known optimal
dynamic parameter values. The OneMax problem is the problem of maximizing
a function of the type Omz : {0, 1}n → [0..n], x �→ |{i ∈ [n] | xi = zi}|, where
the target string z ∈ {0, 1}n is of course unknown to the algorithm. OneMax
is a separable function, and thus easily solved in expected time Θ(n log n) by a
large range of standard EAs. LeadingOnes, in contrast, is non-separable, and
requires a quadratic number of function evaluations, on average, by standard
EAs. The LeadingOnes problem is the problem of optimizing functions of the
type Loz,σ : {0, 1}n → N, x �→ max{i ∈ [0..n] | ∀j ∈ [i] : xσ(j) = zσ(j)}, where
z is a length-n bit string and σ : [n] → [n] a permutation of the index set
[n]. We acknowledge that these simplified benchmark problems may not be very
representative for real-world optimization challenges. In accordance with [21]
we nevertheless believe that they can test several important features of reason-
able parameter control mechanisms, and give first indications into which update
schemes to favor under which conditions.

Our results indicate quite stable performances for the (1 + 1) EAα and the
(1+λ) EA2r,r/2. Even when initialized with extreme mutation rates, the dynamic
choice very quickly converges to optimal mutation rates and the incurred per-
formance loss of a sub-optimal initialization is small. The situation is different
for the (1 + (λ, λ)) GA. The number of function evaluations per iteration grows
linearly with the value of λ (more precisely, up to 2λ offspring are evaluated per
iteration), a cost that the additional drift towards the optimum cannot com-
pensate for. This situation of a too large λ value does not last very long, as we
observe again fast convergence of the parameter towards its optimal (dynamic)
setting. It nevertheless causes significant and non-negligible performance losses:
for the 1000-dimensional OneMax problem, for example, the worst initialization
λ = n yields a performance that is around 69% worse compared to that of the
optimal initial parameter choice λ = 1.
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2 Sensitivity Analysis for the (1+1) EAα

In [11] we have presented a (1 + 1) EA variant with success-based multiplica-
tive mutation rate updates, the (1 + 1) EAα. This algorithm starts the opti-
mization process with a random initial solution and an initial mutation rate
p = p0 ∈ (0, 1/2]. In every iteration one new solution candidate is created
from the current-best solution through a conditional standard bit mutation with
mutation rate p. The condition requires that at least one bit is changed, to avoid
useless function evaluations. In practice, this conditional mutation operator can
be implemented by first sampling a number � from the conditional binomial
distribution Bin>0(n, p) and then choosing uniformly at random and without
replacement the � positions in which the bits are flipped. If the so-created off-
spring is at least as good as its predecessor, it replaces the latter. In this case
the mutation rate is increased to min{Ap, 1/2}, where A > 1 is a constant that
remains fixed during the execution of the algorithm. If, on the other hand, the
offspring is strictly worse than its parent, it is discarded and the mutation rate
decreased to max{bp, 1/n2}, where 0 < b < 1 is another constant.

Altogether, the (1+1) EAα has three hyper-parameters: the update strengths
A and b as well as the initial mutation rate p0. It was demonstrated in [11] that
the (1 + 1) EAα(A, b,1/n) performs very well on the classic benchmark func-
tions OneMax and LeadingOnes for a broad choice of values for A and b.
For example, in 78% of all tested combinations of A ∈ (1, 2.5] and b ∈ [0.4, 1)
the (1 + 1) EAα(A, b, 1/n) achieved a better average running time than Ran-
domized Local Search (RLS) on the 250-dimensional LeadingOnes function.
About 90% of these configurations outperform the (1+1) EA>0 (which is the
(1 + 1) EAα(1, 1, 1/n)) on the 1000-dimensional OneMax function. In this
section we analyze how sensitive this performance is with respect to the choice
of the initial mutation rate p0.

2.1 Optimal Mutation Rates for OneMax and LeadingOnes

Before we present our empirical findings, we summarize in this section what is
known about the optimal mutation rates for OneMax and LeadingOnes.

OneMax. In [9] it was shown that the RLS variant flipping in every step the
number of bits that maximizes the expected progress cannot be significantly
worse than the best unary unbiased algorithm, which is the one minimizing in
every step the expected remaining running time. Denoting by kopt,OM(n,Om(x))

the choice that maximizes the expected Om-progress E

[
max{Om(mut�(x)) −

Om(x), 0}
]

:=
∑�

i=��/2�
(n−Om(x)

i )(Om(x)
�−i )(2i−�)

(n
�)

of flipping � bits in bit string x, the

following is known. kopt,OM(n,Om(x)) decreases monotonically with increasing
function value Om(x); it is n/2 for Om(x) = n/2 and equal to 1 for all x with
Om(x) ≥ 2n/3.
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The expected OneMax value of a random initial solution x is n/2 for One-
Max, and with high probability Om(x) lies in the interval [n/2 ± √

n]. The
exact average optimal mutation strength is

∑n
i=1 P[Om(x) = i]kopt,OM(n, i). We

do not have any closed form for the drift maximizing value kopt,OM(n, i), but
we can evaluate this expression numerically. For n = 1000 the sum evaluates to
500.0252, which is very close to n/2.

LeadingOnes. For LeadingOnes the situation is much better understood.
The optimal mutation rate of the classic (non-resampling) (1 + 1) EA is
1/(Lo(x) + 1) [4] and the optimal number of bits to flip is kopt,LO(n,Lo(x)) :=
�n/(Lo(x)+1)	 [11, Lemma 1]. The average optimal number of bits to flip is thus∑n

i=0 kopt,LO(n, i)P[Lo(xu.a.r.) = i] =
∑n

i=0 �n/(i + 1)	2−(i+1). For n = 100
(250, 1000) this value is around 69 (173, 693).

2.2 Evaluating the Relative Average Improvement

In light of the discussion in Sect. 2.1, one might wonder if significant gains are
possible for the (1 + 1) EAα when the mutation rate is initialized as p0 = 1/2
instead of p0 = 1/n. As a first step towards analyzing the sensitivity of the
(1 + 1) EAα with respect to this initialization, we compute for each of the 120
configurations with A ∈ {1.1, 1.2, . . . , 2.5} and b ∈ {0.6, 0.65, . . . , 0.95} the aver-
age optimization time of 101 independent runs of the (1 + 1) EAα(A, b, 1/2).
We compare this average value to that of the same configuration (A, b) for
p0 = 1/n, and we compute the relative gain of the p0 = 1/2 initializa-
tion. That is, denoting by T (A, b, p0) the average optimization time of the
(1+1) EAα(A, b) with initialization p0, we calculate for each configuration (A, b)
the value (T (A, b, 1/n)−T (A, b, 1/2))/T (A, b, 1/n). This data is displayed in the
heatmaps of Fig. 1 for the 1000- and 1500-dimensional OneMax problem and
the 100- and 250-dimensional LeadingOnes problem, respectively.

We observe that the data is rather unstructured, and that a good relative
gain in one dimension does typically not apply to the other. The relative gains
range from a negative −10% (−8%) to a positive 8% (7%) improvement for
OneMax of dimension n = 1000 (n = 1500), and from −7% (−4%) to 5%
(4%) for the 100-(250-)dimensional LeadingOnes problem. Note that here the
relatively low number of repetitions has to be taken into account. The average
gain of the p0 = 1/2 initialization over the p0 = 1 initialization in all 120 (A, b)
configurations is about 0.17% (0.21%) for the OneMax problem of dimension
n = 1000 (n = 1500) and is about −0.13% (−0.05%) for LeadingOnes in
dimension n = 100 (n = 250). These small values indicate that the influence of
the initial parameter value is not very important. It may be surprising that the
average gain is negative for the LeadingOnes problem, but we suspect that
this is an effect of the problem size, which may vanish in larger dimension.
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(a) Om n = 1000 (b) Om n = 1500 (c) Lo n = 100 (d) Lo n = 250

Fig. 1. Relative difference (T (A, b, 1/n)−T (A, b, 1/2))/T (A, b, 1/n) of the average run-
ning time for 120 configurations of the (1 + 1) EAα with 1 < A ≤ 2.5 and 0.6 ≤ b < 1

Table 1. Average running times of the (1 + 1) EAα(A, b, p0) on OneMax for 1001
independent repetitions and results of the one-sided Wilcoxon rank-sum tests for the
null hypothesis that T (A, b, 1/2) < T (A, b, 1/n).

n A b T (A, b, 1/n) T (A, b, 1/2) (T1/n − T1/2)/T1/n p(1/2 < 1/n)

500 1.11 0.66 3,045 3,019 0.9% 0.096

500 1.2 0.85 3,063 2,994 2.3% 0.028

500 1.3 0.75 3,039 2,998 1.3% 0.092

500 2 0.5 3,035 2,980 1.8% 0.005

1000 1.11 0.66 6,780 6,788 −0.1% 0.231

1000 1.2 0.85 6,787 6,645 2.1% 0.009

1000 1.3 0.75 6,802 6,595 3.0% 0.001

1000 2 0.5 6,752 6,682 1.0% 0.086

2000 1.11 0.66 14,962 14,895 0.4% 0.112

2000 1.2 0.85 14,834 14,854 −0.1% 0.478

2000 1.3 0.75 14,839 14,768 0.5% 0.369

2000 2 0.5 15,297 15,133 1.1% 0.238

2.3 Testing for Statistical Significance

While the results displayed in the heatmaps do not suggest that we should
expect important performance gains from a better initialization, this data does
not answer the question whether the (dis-)advantages are statistically signifi-
cant. We therefore investigate a few selected configurations in more detail, and
use the Wilcoxon rank-sum tests to test for significance. Precisely, we run each
of the four selected configurations (A = 1.2, b = 0.85), (1.3, 0.75), (2.0, 0.5),
and (1.11, 0.66) investigated in [11] 1001 independent times on the OneMax
problem of dimension n ∈ {500, 1000, 2000} and on the LeadingOnes problem
of dimensions n ∈ {100, 250, 500}. For each (function, dimension, configura-
tion) triple we test whether there is a significant difference between the opti-
mization times of the (1 + 1) EAα(A, b, 1/2) and the (1 + 1) EAα(A, b, 1/n).
The results are summarized in Tables 1 and 2. The reported p-values are for
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Table 2. Average running times of the (1+1) EAα(A, b, p0) on LeadingOnes for 1001
independent repetitions and results of the one-sided Wilcoxon rank-sum tests for the
null hypothesis that T (A, b, 1/2) < T (A, b, 1/n).

n A b T (A, b, 1/n) T (A, b, 1/2) (T1/n − T1/2)/T1/n p(1/2 < 1/n)

100 1.11 0.66 4,493 4,508 −0.3% 0.602

100 1.2 0.85 4,125 4,105 0.5% 0.183

100 1.3 0.75 4,141 4,144 −0.1% 0.574

100 2 0.5 4,182 4,245 −1.5% 0.954

250 1.11 0.66 28,348 28,130 0.8% 0.081

250 1.2 0.85 25,386 25,513 −0.5% 0.708

250 1.3 0.75 25,720 25,954 −0.9% 0.884

250 2 0.5 26,142 26,302 −0.6% 0.796

500 1.11 0.66 112,583 113,135 −0.5% 0.882

500 1.2 0.85 102,018 101,605 0.4% 0.082

500 1.3 0.75 102,862 102,903 0.0% 0.528

500 2 0.5 105,329 105,129 0.2% 0.375

the test “T (A, b, 1/2) < T (A, b, 1/n)?”; i.e., small p-values indicate a strong
support for the null hypothesis that the running time distribution of the
(1 + 1) EAα(A, b, 1/2) is dominated by that of the (1 + 1) EAα(A, b, 1/n).
Put differently, a small p-value is a strong evidence for the hypothesis that the
(1 + 1) EAα(A, b, 1/2) is faster than the (1 + 1) EAα(A, b, 1/n). We recall that
the result of the Wilcoxon rank-sum test for the other one-sided null hypothesis
(i.e., the hypothesis that T (A, b, 1/2) > T (A, b, 1/n)) is 1 − p. We highlight in
Tables 1 and 2 p-values that are smaller than 5% or larger than 95%.

We observe that for OneMax the p-values for the one-sided Wilcoxon rank-
sum test are smaller than 0.5 for all tested configurations and problem dimen-
sions, indicating that, if at all, there is a bias supporting the claim that the
(1 + 1) EAα(A, b, 1/2) is faster than the (1 + 1) EAα(A, b, 1/n). For three of the
four configurations the p-values are much larger for problem dimension n = 2000
than for the smaller dimensions. For the configuration (A = 1.11, b = 0.66),
which corresponds to the 1/5-th success rule, the p-value is largest for n = 1000.
We do not have an explanation for this, but did not investigate further as the
value does not indicate a statistically significant difference.

For LeadingOnes, the situation is different. Some p-values are rather large,
and one value even larger then 95%, which suggests that in this setting the
initialization with p0 = 1/n may be more suitable than the initialization p0 =
1/2. We recall, however, from Sect. 2.1 that the average optimal initial value is
rather around 69/100. Note also that the absolute and relative differences in the
running times are all very small.
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(a) OneMax n = 1000 (b) LeadingOnes n = 250

Fig. 2. Average number of bit flips of the (1 + 1) EAα(A = 2, b = 0.5, p0) in iterations
starting with a parent individual of fitness f(x)

2.4 Visualizing the Mutation Rate Adaptation

Finally, we visualize the evolution of the mutation rate. To this end, we have
tracked for 100 independent runs the number of bits that have been flipped
in each iteration, along with the function value of the corresponding parent.
From this data we compute the average number of bit flips per function value.
These averages are plotted against the optimal mutation strengths kopt,f (n, f(x))
described in Sect. 2.1. Figure 2 summarizes this data. Note that we zoom in both
plots into the interesting initial part of the optimization process.

We observe that the curves for p0 = 1/2 have a better fit with kopt than those
for p0 = 1/n. We also see that for the 1000-dimensional OneMax problem it is
around Om(x) = 560 that the two curves converge. They are indistinguishable
thereafter since the underlying adaptation rule is the same. For LeadingOnes
the two curves do not differ by more than one for all Lo(x)-values greater than
11.

3 Sensitivity of the Self-adjusting (1 + (λ, λ)) GA

We also test the relevance of the initial parameter value for the self-adjusting
(1+(λ, λ)) GA [6,8]. It stores in the memory a current-best solution, creates from
it λ offspring by mutation, and another λ offspring by a biased recombination of
the best of the mutated offspring with its parent. The best recombined offspring
replaces the parent individual if its function value is at least as good.

Using the recommended parametrization p = λ/n and c = 1/λ for the
mutation rate and the crossover bias, respectively, the only parameter of the
(1+(λ, λ)) GA becomes the population size λ. In [8] the following multiplicative
update rule was suggested to control λ: If an iteration was successful, i.e., if
at the end of the iteration we have identified a strictly better search point, we
decrease λ to λ/F . We increase λ to λF 1/4 otherwise. According to experiments
reported in [8] the influence of the update strength F is not very pronounced. In
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Table 3. Results for the self-adjusting (1 + (λ, λ)) GA with different initialization.
Nearly all differences are statistically significant.

n λ0 T KW test p(1 < ln n) p(1 < n) p(ln n < n)

500 1 3, 293 0 0.178 0 0

500 ln n 3, 309

500 n 5, 562

1000 1 6, 715 0 0.004 0 0

1000 ln n 6, 678

1000 n 11, 366

2000 1 13, 716 2.29E−155 0.556 2.49E−105 9.11E−106

2000 ln n 13, 736

2000 n 18, 357

line with common implementations of the 1/5-th success rule and the recommen-
dations given in [6,8], we set F equal to 3/2. The self-adjusting (1 + (λ, λ)) GA
achieves a linear expected running time on OneMax; this is asymptotically
optimal among all possible parameter settings, and strictly better than what
any static parameter choice can achieve [6].

We note that as in the (1+1) EAα, and unlike the experiments reported in [8],
we enforce that at least one bit is flipped in the mutation phase, by sampling
the mutation strength from Bin>0(n, λ/n) instead of Bin(n, λ/n). In addition,
we evaluate a recombined offspring only if it is different from both of its parents.
This can be tested efficiently and avoids useless function evaluations.

To test the influence of the initialization of λ, we perform 1001 runs of the
algorithm on OneMax instances of dimension n ∈ {500, 1000, 2000} with three
different initialization rules: λ0 = 1, λ0 = lnn, and λ0 = n.

As already mentioned and explained in Sect. 1 the average optimization times
vary drastically. To test for statistical significance, we first employ the Kruskal-
Wallis test, which is an extension of the Wilcoxon rank-sum test for more than
two data sets.1 The outcomes of the Kruskal-Wallis test of zero (or effectively
zero) provide strong evidence that the outcomes are not identically distributed.
This is confirmed by the pairwise Wilcoxon rank-sum tests, whose values are
also reported in Table 3.

To visualize the adaptation of λ, we plot in Fig. 3 its evolution in depen-
dence of the Om(x)-value against the asymptotically optimal choice of λopt =

√n/(n − Om(x))� [8] for the n = 1000-dimensional OneMax instance. The
reported values are averages of 100 independent runs. In the middle range
650 < Om(x) < 850 the average parameter values are all very close to the opti-
mal ones. We therefore plot only the averages for the beginning of the optimiza-
tion process, n/2 = 500 < Om(x) ≤ 650, and its end, 850 ≤ Om(x) ≤ n = 1000,

1 We remark that a one-way ANOVA is not applicable as the Shapiro-Wilk normality
test returns that the data is not normally distributed.
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Fig. 3. Average value of λ per Om(x)-value for the self-adjusting (1 + (λ, λ)) GA
with update strength F = 3/2 and different initial parameter values λ0 on the 1000-
dimensional OneMax problem. Note that the left figure uses a log scale.

respectively. We observe that the curves for λ0 = 1 and λ0 = lnn are indistin-
guishable for Om(x) > 525, while all three curves become indistinguishable for
values Om(x) > 624. We also see that λ = 1 seems to suffice for this initial part,
whereas the asymptotically optimal bound from above suggests to use λ = 2.
In line with the empirical observations made in [6,8] we also see that all curves
track the increase of the optimal λ-value towards the end of the optimization
process very well.

4 Sensitivity of the (1 + λ) EAr/2,2r

In [10] a theoretical analysis of the (1 + λ) EAr/2,2r has been presented for the
OneMax problem. The (1 + λ) EAr/2,2r stores a parameter r and creates in
every iteration half of the offspring by standard bit mutation with mutation rate
r/(2n), while the other offspring are created with mutation rate 2r/n. At the
end of the iteration the value of r is updated as follows. With probability 1/2 it
is replaced randomly by either r/2 or 2r and with the remaining 1/2 probability
it is set to the value that the winning individual of the last iteration has been
created with. Finally, the value r is capped to remain in the interval [1, n/4]. As
in previous sections, we implement this algorithm with the conditional standard
bit mutation that enforces to flip at least one bit.

For the (1 + λ) EAr/2,2r we test two different initializations: r0 = 1 and
r0 = n/4. Because of an efficient implementation, which samples waiting times
instead of actually running the problem on the OneMax function, we can test
the influence of these initial values for the (1+λ) EAr/2,2r on OneMax instances
of much larger dimensions n = 5000 and n = 50 000. We perform tests for
different values of λ: λ = 100, λ = 500, and λ = 1000. The results are summarized
in Table 4. Note here that in contrast to all results presented above we report
the average number of generations until an optimal solution has been evaluated
for the first time, not the number of function evaluations. To obtain the latter,
the G(r)-values need to be multiplied by λ.



370 C. Doerr and M. Wagner

Table 4. Results for the average of 1001 runs of the (1 + λ) EAr/2,2r on OneMax

n λ G(r = 1) G(r = n/4) (Gn/4 − G1)/G1 p(1 > n/4)

5000 100 2,234 2,217 −0.74% 0.1144

5000 500 1,056 1,037 −1.73% 1.97E−22

5000 1000 852 834 −2.04% 3.16E−10

50000 100 63,627 62,666 −1.51% 0.6737

50000 500 65,139 65,722 0.90% 0.6833

50000 1000 62,814 61,567 −1.99% 0.2120

(a) λ = 100 (b) λ = 500

Fig. 4. Average value of r per Om(x)-value for the (1 + λ) EAr/2,2r on the 5000-
dimensional OneMax problem

The Wilcoxon rank-sum single-sided test for G(A, b, r = 1) < G(A, b, r =
n/4) shows a small but significant difference between the two distributions when
n = 5000 for the two larger values of λ. For n = 50 000, however, the difference
is not significant.

We plot again the evolution of the r-values in Fig. 4 and observe that the
curves are quite similar for the two settings.

5 Conclusions and Future Work

We have analyzed the influence of the initialization of success-based multiplica-
tive update schemes on the performance of three different evolutionary algo-
rithms. For all tested settings, we could observe that the parameter values con-
verge very quickly, even if initialized in their extreme points. The different ini-
tialization could nevertheless lead to statistically significant performance gaps.
In the case of the (1+1) EAα and the (1+λ) EAr/2,2r the relative performance
losses of non-optimal initial parameter values are, however, rather small. In the
case of the (1 + (λ, λ)) GA, however, the performance loss could be as large as
69%, suggesting that more care needs to be taken when controlling population
sizes.
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Extending our results to more complex combinatorial optimization problems
could be a reasonable next step towards the long-term goal of developing a
better understanding of which parameter control schemes to use under which
conditions.
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