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Abstract. Learning can be classified into two categories: asocial learn-
ing, e.g. trial-and-error; and social learning, e.g. imitation learning. The-
ory using mathematical models suggest that social learning should be
combined with asocial learning in a strategic way (called learning rule
or learning strategy), and that that combination should be scrutinised
under different environmental dynamics, to see how advantageous the
learning rule is. More interestingly, learning has been shown to be ben-
eficial to the evolutionary process through the Baldwin Effect. This
paper investigates the adaptive advantage of social learning when com-
bined with asocial learning under a number of environmental variations.
We propose a Dynamic Landscape as well as an algorithm combining
both asocial and social learning in order to test our hypotheses. Exper-
imental results show that if each individual in the population is either
asocial or social, but not both, the average fitness of the population
decreases when the proportion of social learners increases as the envi-
ronment changes. Moreover, a population consisting entirely of asocial
learners outperforms the previous type of population. If every individ-
ual agent in the population can perform both asocial and social learning
depending on a strategic rule, the evolving population outperforms the
two previous populations with respect to average fitness.
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1 Introduction

Evolution and learning are two different ways in which the behavior, and other
traits, of organisms can change in order to adapt to environmental variations.
Evolution is change at the genetic level of a population, while learning, on the
other hand, is change at the phenotypic level of an individual. The idea that
the two forms of adaptation interact and complement each other was once pro-
posed by Baldwin [1], called the Baldwin Effect. Hinton and Nowlan (henceforth
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H&N) presented a computer model to investigate the Baldwin Effect in simula-
tion [2], showing that learning, more specifically asocial learning, facilitates the
evolutionary process and enhances the fitness of the population in a Needle-in-a-
haystack landscape. Their initial success motivated several further studies, such
as [3,4], to show how learning can enhance the evolutionary search.

Generally, learning can be classified into two forms. Asocial (or individual)
learning (IL) – learning by oneself through direct interaction with the environ-
ment, e.g. trial-and-error, and social learning (SL) – learning from others, e.g.
imitation – are two alternative ways for an individual agent to acquire infor-
mation from the environment at the phenotypic level. SL has been observed in
organisms as diverse as primates, birds, fruit flies, and especially humans [5].
Although the use of SL is widespread, understanding when and how individuals
learn from others is a significant challenge. SL is generally less time-consuming,
but relies on information produced by others. So when the environment changes,
the information from others is likely to be outdated and SL becomes maladap-
tive (not adaptive). On the other hand, IL through trial-and-error is costly, but
capable of producing new information when the environment happens to change.

This opens a curious question when an organism should rely on SL rather
than IL, and under which environmental condition social learning would evolve,
or be adaptive. Several theoretical models have shown that individual agents
capable of learning in a strategic way outperform those that are able to learn
individually or socially, but not both [6–8].

The main aim of this paper is to investigate, through computer simulation,
whether organisms should rely on SL or IL, and what the plausible strategy for
an organism could be when the environment changes. We combine evolution and
both forms of learning to see how they behave under a dynamic landscape we
call Dynamic Needle-in-a-hay-stack. This paper is built upon the success of the
previous work in [9]. In the remainder of this paper, we briefly present research
on learning and evolution. Social learning and related concepts are briefly intro-
duced. We in turn describe the experiments we use in this paper. Results are
analysed and discussed, then the conclusion and some future directions are pro-
posed.

2 Background

2.1 Social Learning

SL has been studied in various disciplines, including Cognitive Biology, Evo-
lutionary Psychology, Behavioral Ecology, Cognitive Science and Robotics. In
general, SL covers several mechanisms through which individual organisms learn
from others, such as stimulus enhancement, observational conditioning, imita-
tion, and emulation (please refer to [5,10] for the definition of these mechanisms).
In this study we focus on one of these mechanisms, namely imitation learning. In
this instance of learning, the observer directly copies the behavior of the observed
animal in order to complete a novel task.
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SL, at first glance, seems to be adaptive at a low cost when individual agents
can acquire information from others without incurring the cost of trial-and-
error learning. Thus, it is plausible to think that SL will result in more effective
learning outcomes. Contrary to this belief, it has been found that agents should
not learn socially all the time [6,11]. It is argued that individual learners produce
new information about the environment, though at a cost. Social learners avoid
this cost by copying the existing behaviors of others, but do not generate new
information. Therefore, it is highly likely that social learners will copy outdated
information when the environment changes, reducing the average fitness of the
population.

Several theoretical models have been proposed to investigate how to use SL
effectively [6–8]. It is said that social learning should be combined with individual
learning in a strategic way in order to have an adaptive advantage. Social learning
strategies consist of rules specifying the way an individual relies on social learning
by answering three questions as follows:

i. When an individual should learn;
ii. From whom they should learn; and
iii. What information should be learned.

The question of when to copy covers the decision as to when to seek social
information. Whom to copy may depend on factors such as the social structure
of the population and the ability of the individual to recognise whether other
individuals are obtaining higher payoffs. Possibilities include the copying of the
most successful individual, copying of kin, or adherence to a social norm by
copying the majority. What to copy considers which behavior or more specifically
what part of that behavior to copy.

In addition to the Who question, the transmission from demonstrators to
observers are classified into three types [12]. The first is vertical transmission –
transmission from parents to their children. The second is oblique transmission
in which cultural traits will be passed to an individual from another individual
from the previous generation but differs from its parent. The last is horizontal
transmission in which an observer learns from a demonstrator in its current
generation. In the scope of this paper, we only use oblique transmission in our
experiments.

2.2 Learning and Evolution in Computer Simulation

H&N presented a classic paper in 1986 [2] to demonstrate an instance of the Bald-
win Effect in computer. We discuss this model in detail for clarity. In H&N’s
model, suppose the task is to find the all-ones target string 111...1 (20 bits).
There is only one correct solution – an individual with configuration exactly
matched with the target string – which has the fitness of 20. All other configura-
tions are wrong and have the same fitness of 1. This forms a Needle-in-a-haystack
landscape whereby an evolutionary search alone cannot find the solution [2].

H&N presented an idea that encodes an individual’s genotype whereby one
part is fixed by genetic-like information, and the other part is plastic which
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allows for learning during the lifetime of the individual. Each individual agent
has a genotype—a string of twenty characters. Each position in a genotype, or
locus, can have three alternative values: ‘0’, ‘1’, and ‘?’. Each locus is randomly
initialized with 25% chance of being assigned a ‘0’, 25% chance of being ‘1’, and
50% chance a ‘?’.

In addition to the above two types of agent (correct or incorrect), there
exists another type of agent – called potential individual – which will be allowed
for life-time learning. The genotype-phenotype mapping is one-to-one and at
birth, each individual has its phenotype string identical to its genotype string.
An individual is potential only if in its initial genotype, every locus excluding
locus with plastic value ‘?’ is matched with corresponding locus in the target
string. In case of H&N’s problem, a potential individual could have its initial
genotype comprising of only ‘1’ and ‘?’. The allele ‘?’ allows for lifetime learning
(or plasticity), over 1000 rounds. On each round, an individual agent is allowed
to do individual learning by changing its allele ‘?’ to either ‘0’ or ‘1’ as the
expressed value. After learning, the fitness of that potential individual agent xi

is calculated as:

f(xi) = 1 +
19(1000 − n)

1000
(1)

in which n is the number of trials required to find the correct combination of
alleles - the all-one string. It can be inferred from the fitness function that the
more trials an agent needs, the lower the fitness it will get. By allowing life-
time learning, H&N showed that learning can create a gradient which facilitates
evolution to search for the solution.

Since the success of H&N’s model, there have been a number of studies
showing that learning can enhance an evolutionary process, especially when the
environment is changing [3,4]. Recently, Le et al. [9] presented a model build-
ing on H&N’s simulation, in which they combine evolution, asocial and social
learning. It was shown that social learning alone fails to search on Needle-in-a-
haystack, but social learning when coupled with individual learning outperforms
individual learning alone with respect to average fitness of the population.

In this paper, we build on the success of the previous simulation in [9],
in which we propose a dynamic version of H&N’s Needle-in-a-haystack to see
how individual learning or social learning behaves under different environmental
dynamics. Experimental designs are discussed in the following section.

3 Experimental Design

3.1 Dynamic Needle-in-a-haystack Landscape

We create a dynamic version of H&N’s landscape called Dynamic Needle-in-
a-haystack, in which we use two parameters to control the dynamics of the
landscape, namely frequency and magnitude of change. The first parameter tells
us after many generations the target (needle) will move to another point in the
landscape, while the latter helps determine the likelihood of change for each
element of the target. Assume that at a generation g the target is all-one (20
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bits of one), frequency = 10 and magnitude = 0.1 (10%). This informs us that
after 10 generations or at generation g + 10 the target t = 111...1 (20 bits of 1)
is likely to be changed. The magnitude of 0.1 tells us that there are, on average,
20 × 10% = 2 bits in the target that are likely to be modified. For each bit in
the target sequence, a random number is generated and then compared with the
magnitude: if the random value is less than 0.1, the current bit is mutated to
its subtraction from 1 (1 becomes 0, and vice versa). Suppose the new target at
generation g + 10 is t1 = 001...1 (two first bits are changed). There is only one
right sequence of bits that exactly matches the new target t1 and has the fitness
of 20. Otherwise, all other configurations are incorrect and get the same fitness
of 1. This landscape, again, constitutes a Needle-in-a-haystack, but the needle
is moving after a number of generations. That is why we call this landscape
Dynamic Needle-in-a-haystack.

We also call the period when the environment is unchanged the interval of
stability. Therefore, the interval of stability has the same value as the dynamic
frequency.

3.2 Experiment Setup

In this section, we present the experimental setups used in our paper. It is often
said that evolutionary search finds it hard to search in ‘Needle-in-a-haystack’
landscape. Furthermore, it was claimed that an evolutionary search alone failed
in this type of landscape [2]. Le et al. [9] went further to show that an evolu-
tionary search combined with social learning alone also failed to find a solution
in a Needle-in-a-haystack. We conduct three experiments with the parameter
settings, as shown in Table 1.

Table 1. Parameter setting

Parameter Value

Original target 111...1 (20 bits of 1 s)

Genome length 20

Replacement Generational

Generations 50

Population size 1000

Selection Fitness-Proportionate selection

Reproduction Sexual reproduction

Mutation rate 0.01

Fitness function Eq. 1

Maximal learning trials 1000

Frequency 5, 10, 20

Magnitude 0.05, 0.075, 0.1
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We run our experiments through 9 different combinations of frequency and
magnitude. For frequencies 5, 10, 20 there will be 10, 5, and 2 times of change in
the environment, respectively. In case frequency = 5 or 10, generation 50 will see
a change in the environment. It can be understood that the lower the frequency
value, the faster the target will change; the bigger the value of magnitude, the
bigger the change of the target. The environment becomes more dynamic or
harder to cope with by faster changing and bigger magnitude of change, and
vice versa.

Please note that, unlike the so-called memetic algorithm and Lamarckian
Evolution, learning in our experiments only happens at the phenotypic level,
what an individual learns does not change its genotype. The recombination oper-
ators work on the genotypic level, so children may inherit question marks from
their parents.

Setup I: A Population of Individual Learners

The first experimental setup is an evolving population of individual learners only
(as in H&N model), in which an evolutionary search is combined with IL (denoted
EVO+IL). IL performs a local search process by which each ‘?’ allele will guess
its value to be ‘0’ or ‘1’ in each learning trial. The evolutionary algorithm in our
experiment is a genetic algorithm with crossover and mutation (with mutation
rate of 0.01).

Setup II: A Population of Single-Role Learners

In the second experiment setup, we simulate a population of single-role individ-
uals – individuals that are either social learners or individual learners, but not
both (denoted EVO+IL&SL). The reason for this experimental design is that
we are curious to know how social learning or individual learning would evolve
under various environmental dynamics and how they contribute to the average
fitness of the population. Unlike EVO+IL, we have two types of individuals in
the population now. We add one more bit, or gene, called learning mode, which
is either 0 or 1, onto the genome of each individual. If that value is 0, the indi-
vidual is likely to learn individually; conversely, if that value is 1, the individual
is likely to learn socially. A noteworthy point here is that in our landscape, only
potential individuals are able to perform lifetime learning. That means, social
and asocial learners are potential individuals with learning mode equal to 1 and
0, respectively. Learning mode is initialised with 50% at 0 and 50% at 1. It
should be noted that through recombination, the learning mode of a child is set
to be the learning mode of the better individual between its parent. Mutation
does not touch the learning mode of the child.

In order to implement social learning, first we propose the imitation proce-
dure, with pseudo-code described in Algorithm1 below. This presents the process
by which an individual observer imitates the phenotype of its demonstrator. The
imitative process starts by extracting the positions of question marks in the phe-
notype of the observer. For each question mark position, the observer will decide
whether to copy exactly the trait or a mutated version of that trait from the
demonstrator.



Adaptive Advantage of Learning Strategies 393

Algorithm 1. IMITATION
1: function Imitation(observer, demon, fidelity = 1)
2: questions = [] comment: question mark position array

3: for position i ∈ observer.pheno do
4: if i =? then
5: questions.add(i)
6: end if
7: end for
8: for i ∈ questions do
9: observer.pheno(i) = demon.pheno(i)
10: end for
11: end function

At each generation, an asocial agent learns by itself like in EVO+IL model,
whereas a social learner imitates its demonstrator. Every individual agent has
the same demonstrator that is the best individual in terms of fitness from the
previous generation. Because we adopt oblique transmission, there is no SL at
the initial generation.

Experiment III: A Population of Strategic Individuals

The third setup we evolve a population of strategic individuals – individuals that
can perform both SL and IL based on a learning rule (denoted EVO+Strategy).
Unlike EVO+IL&SL, the population now has just one type of individual - strate-
gic individuals. We specify the learning strategy for every individual agent as
follows: At each generation, an agent first looks at its demonstrator (chosen the
same as in EVO+IL&SL), and determines whether to learn from that demon-
strator or not. If the demonstrator is still adaptive in the current generation,
the agent imitates the demonstrator based on Algorithm 1; otherwise, the agent
learns individually. The demonstrator is said to be adaptive in the current envi-
ronment if its phenotype exactly matches with the target in the current environ-
ment. This means every agent determines whether it expresses as an individual
learner or as a social learner based on a given rule. After lifetime learning pro-
cess for each agent, the population goes through selection and reproduction as
in EVO+IL.

4 Results, Analyses, and Explanations

First, we look at the average fitness of the population as a measurement of how
well each simulation performs. All plots are grouped together, sharing the same
labels for x-axis and y-xis as well as the annotation. The results are presented
and discussed in a comparative manner below.

A similar trend can be recognised in Fig. 1 that there is a drop in every
population with all settings at the generation when the environment begins to
change. This is understandable because when the environment changes, a number
of adaptive behaviors from previous generations are no longer fit in the current
generation, reducing the average fitness of the population. By looking at the
behavior of each corresponding line through each row or each column of Fig. 1,
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we can see another shared behavior that the more dynamic, or difficult, the
environment is, the lower the average fitness of the population.

How does each type of population comparatively cope with these environ-
mental dynamics? It is shown that EVO+IL outperforms EVO+IL&SL in all
environmental circumstances. More than that EVO+IL&SL shows its inability
to track the dynamics of the environment as the average fitness goes down to or
much closer to the lowest value of 1 in most cases, except the easiest landscape
(when the environment changes most slowly and the magnitude of change is
smallest) though it just reaches around 2.5 at the end.

Fig. 1. Average fitness over generations. The red, blue, and green dotted-lines for
EVO+IL, EVO+IL&SL, and EVO+Strategy, respectively. (Color figure online)

Remember that EVO+IL&SL evolves a population comprising of both asocial
and social learners, so why does it behave very badly and even worse than the
population with individual learners alone? We have briefly talked of the fact that
SL, though less costly, is ‘information parasitism’ that is unable to produce new
information. When the environment changes, social learners are likely to copy
outdated information in case their demonstrators are no longer adaptive in the
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current generation. In our experiments, the best individual at generation g is
set to be the demonstrator for all social learners in generation g + 1. Assume
that the environment changes at generation g + 1, the demonstrator becomes
maladaptive. All social learners at generation g + 1 copy maladaptive behavior,
thus becoming maladaptive and get the same lowest fitness of 1 and reducing
the average fitness of the population.

However, the population in EVO+IL&SL is composed of both asocial and
social learners at the initial generation. It is said that individual learners through
trial-and-error are able to track the dynamics in the environment. So why are
individual learners unable to help the population to cope with environmental
dynamics? We hypothesise that in EVO+IL&SL the proportion of asocial learner
decreases to a very small amount so that there are not enough asocial learners
to track the environmental changes.

We know that the imitative process gives social learners an advantage in
terms of time and learning trial required to find the correct solution. While aso-
cial learners have to trial-and-error through a number of trials, social learners
just need to copy all bits from the correct demonstrator’s phenotype to its pheno-
type. Based on our fitness function (Eq. 1), the more the learning trials needed,
the lower the fitness value. Consequently, lower cost gives social learners advan-
tages over asocial learners when the environmental is stable. This argument can
be verified by looking at Fig. 1 as at some initial generations, the average fitness
of EVO+IL&SL is higher than that of EVO+IL during the interval of stability.
Therefore, natural selection will favor social learners during these earlier gener-
ations, individual learners become less dominant and are likely to disappear.

We calculate the frequency of asocial and social learners over generations
to verify this hypothesis. Figure 2 shows that in EVO+IL&SL the frequency
of asocial learner is very low in all cases and tends to go down to zero sooner
when the environment becomes harder. This fits with our above hypothesis. In
addition to the above analyses, remember that in EVO+IL&SL each individual
is initially encoded as either an asocial or a social learner. When social learners
are more likely to be favoured by natural selection, more social learner ‘genes’,
or learning mode 1, occur in the reproductive pool, so that offspring produced
through sexual recombination are more likely to have the learning mode as social
learners. The asocial learner gene becomes less prevalent over time, and in most
cases we see it becomes distinct. That is why as the environment changes, the
population has less asocial learners to track the environment, hence the average
fitness reduces down to the lowest value of 1 in almost all cases.

Conversely, EVO+IL still maintains a higher number of asocial learners than
that of EVO+IL&SL to track environmental variations. That is why EVO+IL
has a higher average fitness than that of EVO+IL&SL in all cases.

One important point to be extracted here is that SL can give a population
advantages when the environment is in a stable interval, whereas IL is much
more powerful at the point when the environment changes. That is why we
have designed the learning rule in EVO+Strategy to make use of the advantages
of both IL and SL. It is easily seen in Fig. 1 that EVO+Strategy outperforms
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other settings in all cases with respect to average fitness. Moreover, during the
interval of stability, EVO+Strategy can reach higher point of average fitness
than EVO+IL, especially in the hardest case (frequency = 5, magnitude = 0.1).

Fig. 2. Frequency of social and asocial learners over generations. Green and blue, red
and black lines show the frequency of asocial and social learners in EVO+IL&SL and
EVO+Strategy, correspondingly. The purple lines represents the frequency of asocial
learners in EVO+IL. (Color figure online)

One plausible explanation for the superiority of EVO+Strategy is that the
learning rule used in EVO+Strategy can exploit the advantage of both IL and
SL. Remember that every individual agent in EVO+Strategy can perform as
either a social learner or an asocial learner. At each generation, each strate-
gic agent checks if its demonstrator is adaptive or not: if adaptive, it imitates
the demonstrator; otherwise the agent learns asocially. By this learning rule,
EVO+Strategy removes the case that agents will learn maladaptive behaviors
like what has been observed in EVO+IL&SL by allowing more asocial learning
in case the environment changes. Moreover, when the environment is in a stable
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interval, the system now allows for more SL to be expressed to make use of the
advantage of SL over IL, hence the average fitness is remarkably increased.

We also calculate the frequency of social and asocial learners in
EVO+Strategy. It can be observed in Fig. 2 that the frequency of asocial learner
is closer to or becomes zero when the environment is stable. However, at the point
when the environment changes, the frequency of asocial learners increases. The
frequency of social learners, in contrast, goes down at the point when the envi-
ronment changes, reducing the ‘information parasitism’ issue and the problem of
copying outdated information. Furthermore, when there are some asocial learn-
ers to help the population to track the environmental dynamics, the population
is shown to maintains a high proportion of social learners and this percentage
goes higher in every stable interval. Therefore, the average fitness of the popu-
lation increases during every interval of stability. This observation fits with the
description of the system as well as the behavior and analyses we have given
above on the average fitness.

It can also be observed that during the interval of stability, the frequency of
asocial learners in EVO+IL is lower than that of social learners in EVO+Strategy
in all cases. This gives EVO+Strategy an advantage over EVO+IL to maintain
a higher average fitness because social learners can copy correct behaviors at a
lower cost compared to asocial learners during an interval of stability.

5 Conclusion and Future Work

We have set out to understand the role social learning may have on the evolu-
tionary process in various environmental dynamics. For the specific landscape
and the parameter setting used in this paper, experimental results have empir-
ically shown that social learning is more advantageous when the environment
is stable, whereas when the environment happens to change asocial learning is
required to track the environment. A learning rule combining both social and
asocial learning has been designed and the population with a learning strategy
has shown to have a much better adaptive advantage, measured by the average
fitness. Several plausible explanations have been presented in this paper for these
observations.

In the scope of this paper, we have mainly discussed the adaptive advantage
of social learning, asocial learning, and learning strategies in dynamic environ-
ments. The evolution of social learning can also been extracted from our results
and analyses on the frequency of learners. It is suggested to investigate the
question as to how social learning evolves more deeply in future work. It is also
recommended that we use different forms of social transmission, such as vertical
transmission and horizontal transmission.

The learning strategy used in this paper is designed by the system designer.
In future work, we would like to let the individuals themselves evolve their own
learning strategies. One proposal is to create genes controlling a learning strategy
for each individual agent as was done with EVO+IL&SL. Instead of encoding
just one bit for learning mode, we can encode two bits to specify the learning
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rule, whether to be expressed as social or asocial learning. By doing this, we are
able to observe the dynamics of rule changing when the environment changes
over time. The motivation for this is that we want to let evolution to optimise
the learning strategy for each individual agent, as evolution has done for living
organisms, including humans [6].

The paper has empirically verified that social learning should be used in a
savvy way to enhance the behavior of a population, complementing to some
theoretical findings in the trans-disciplinary research on social learning. Future
work will investigate the method and verify the findings in this paper on different
types of problems and landscapes, such as NK-landscape [13] or Artificial Life
and Robotics domains [3,4].
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