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Abstract. In this paper we introduce DEBN, a novel evolutionary algo-
rithm for learning the structure of a Bayesian Network. DEBN is an
instantiation of the Algebraic Differential Evolution which is designed
and applied to a particular (product) group whose elements encode all
the Bayesian Networks of a given set of random variables. DEBN has
been experimentally investigated on a set of standard benchmarks and
its effectiveness is compared with BFO-B, a recent and effective bacte-
rial foraging algorithm for Bayesian Network learning. The experimental
results show that DEBN largely outperforms BFO-B, thus validating our
algebraic approach as a viable solution for learning Bayesian Networks.
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1 Introduction and Related Work

A Bayesian Network (BN) [14] is used to represent in a compact and effective
way a probability distribution of a set of discrete random variables X1, . . . , Xn. A
BN is composed by two different parts. The qualitative component is a directed
acyclic graph (DAG) G in which the nodes are the variables Xi and the edges
denote influences among variables. Given a variable Xi, pa(Xi) is the set of par-
ents of Xi and it contains all the variables Xj connected with an incoming edge
to Xi. For each variable Xi, the quantitative component contains a conditional
probability distribution of Xi with respect to pa(Xi), i.e., the conditional prob-
ability p(Xi = xi|pa(Xi) = cj) for each value xi of Xi and for each combination
cj of values for the variables in pa(Xi).

The problem of learning BNs from empirical data has been extensively stud-
ied during last years [14]. In particular, the problem of learning the structure
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(qualitative part) of the network is well investigated, being the problem of learn-
ing the quantitative part much simpler, once the structure is given.

There are three main methodologies to learn the structure of a Bayesian
Network. The first approach is to find conditional independence relations through
statistical tests and to use them to infer the structure (for instance the presence
of arcs), as done in [24]. Another possibility is the constraint-based approach,
for instance dynamic programming [14]. Finally, a third approach is to perform
a search process into a suitable space in order to find the optimal structure
according to a given score metric.

Many score functions have been proposed for this purpose, e.g., K2, BDe,
AIC, BIC and MDL scores [14]. In particular, we focus on the K2 and BDe
scores that, given a BN with DAG structure G and a dataset D, are respectively
defined as follows:

K2(G;D) =
n∏

i=1

qi∏

j=1

(
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·
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where, for each variable Xi, ri is the cardinality of the domain of Xi, qi is
the number of possible value combinations of pa(Xi), and Nijk is the number
of records in D in which Xi takes the k–th value and pa(Xi) take the j–th
combination of values. Besides, the BDe parameters N ′

ijk, for every triple i, j, k,
are usually set to N ′

qiri
, where N ′ is a constant called equivalent sample size which,

in this paper, as in several other works [14], we set to N ′ = 1. Furthermore, for
the sake of computation, the logarithm of the score functions is usually employed.

There have been many attempts to solve the BN learning problem as a com-
binatorial problem and one of the most studied approach is through evolutionary
techniques. Starting from Larrañaga paper [18], which used genetic algorithms,
the most used approach is Ant Colony Optimization, since it uses an incremen-
tal way of building solutions, making the enforcement of acyclicity constraint
easy to manage [10]. Another approach is to employ evolutionary algorithms to
produce good orderings among variables, which are then used as input to other
DAG construction algorithms, like K2 [11,13,26]. Other evolutionary approaches
are based on discrete variants of Particle Swarm Optimization [15,27]. An alter-
native search space is the Partial DAG space [7], which represent in a compact
way an equivalence class of DAGs.

A hybrid approach which combines conditional independence learning with
searching for an optimal structure is [25].

One of the best evolutionary approach to this problem is BFO-B [12,28],
an application of Bacterial Foraging Optimization technique. BFO-B has been
compared to other swarm intelligence and other techniques showing that BFO-B
outperforms all its evolutionary and non-evolutionary competitors.

In this paper we present an Algebraic Differential Evolution algorithm [21,22]
to solve this problem. Differential Evolution (DE) [19] is widely adopted in opti-
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mization problems due to its capacity of self-adapting the search to the fitness
landscape at hand. Although DE has been originally proposed for continuous
problems, in a previous series of papers [1,2,4,5,20,21], we have introduced an
algebraic framework that allows to apply DE to combinatorial problems in which
the search space is a finitely generated group.

In particular, in this paper we propose a novel representation for DAGs which
allows to see the search space of all DAGs of a fixed vertex sets as a product
group. In this way, it is possible to apply Algebraic DE to the BN learning
problem in terms of finding the DAG with the maximum score.

Our algorithm, called DEBN, has been tested on some standard benchmarks
and compared with BFO-B which, to the best of our knowledge, is the state-of-
the-art evolutionary technique for BN learning. The experimental results show
that DEBN largely outperforms BFO-B.

2 Differential Evolution

Differential Evolution (DE) [19] is a simple and powerful evolutionary algorithm
for optimizing non-linear and even non-differentiable real functions f : Rn → R.
Hence, DE evolves a population of N real-valued vectors x1, . . . , xN ∈ R

n by
iteratively applying the three genetic operators: differential mutation, crossover,
and selection.

The differential mutation generates a mutant yi for each target population
individual xi. Though several mutation schemes have been proposed [19], the
original one is denoted by rand/1 and it is computed as

yi = xr1 + F · (xr2 − xr3) (1)

where r1, r2, r3 are three random integers in {1, . . . , N} mutually different among
them and with respect to i, while F > 0 is the scale factor parameter of DE.

For each pair formed by the target individual xi and the mutant yi, the
crossover generates a trial solution zi by recombining xi and yi. The most com-
mon variant is the binomial crossover [19] which generates zi according to

z
(j)
i =

{
y
(j)
i if r1,j ≤ CR or r2 = j

x
(j)
i otherwise

(2)

where: CR is the crossover probability (another parameter of DE), r1,j ∈ [0, 1]
is a random number generated for each dimension j, and r2 ∈ {1, . . . , n} is
randomly generated in order to guarantee that at least one component is inher-
ited from the mutant yi. Note also, that other crossover schemes are available
[8,9,19].

Finally, the most used selection operator compares each target individual xi

with the corresponding trials zi and selects the better between them to enter in
the population of the next generation.
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3 Algebraic Framework

Here we provide a concise description of the algebraic framework for evolutionary
computation previously proposed in [3,21]. In particular, our attention has been
mainly focused on ADE, an algebraic version of Differential Evolution, which
obtained state-of-the-art performances on the permutation flow-shop scheduling
problem [21,22]. Note anyway that the framework is rather general and can be
adapted to other evolutionary algorithms [1] and other search spaces.

In principle, our algebraic methodology can be applied to all the combinato-
rial problems whose search space X forms a finitely generated group with respect
to an internal composition � and a set of generators H ⊆ X [16].

Recall that a group (X, �) is finitely generated if there exists a finite subset
H ⊆ X, called generating set, such that any x ∈ X can be decomposed as
x = h1 �h2 � · · ·�hl for some h1, h2, . . . , hl ∈ H. We also denote by |x| the length
of a minimal decomposition of x in terms of H.

The Cayley graph of a finitely generated group is the labeled digraph whose
vertexes are the solutions in X and there exists an arc from x to y labeled by
h ∈ H if and only if y = x � h. Moreover, for all x ∈ X, every (shortest) path
from the neutral element e to x corresponds to a (minimal) decomposition of x,
i.e., if the arc labels in the path are (h1, h2, . . . , hl), then x = h1 � h2 � · · · � hl.

The Cayley graph has an important geometric interpretation. Indeed, any
solution x ∈ X can be seen both as a point, i.e., a vertex in the graph, but also
as a vector because its decomposition is a sequence of generators, i.e., arcs of
a path in the Cayley graph. This dichotomous interpretation allows to define
the operations ⊕,�,� on X in such a way that they simulate the analogous
operations of the Euclidean space.

3.1 Vector-Like Operations

The addition x⊕y is defined as the application of the vector y ∈ X, decomposed
as (h1, h2, . . . , hl), to the point x ∈ X. It can be proved [21] that

x ⊕ y = x � y. (3)

Given x, y ∈ X considered as points, their difference y � x is the vector
(h1, h2, . . . , hl) which are the labels of a path from x to y. In [21] we proved that

y � x = x−1 � y. (4)

Given a ∈ [0, 1] and x ∈ X, the result of the scalar multiplication of x by the
scalar a, denoted by a � x, is defined as

a � x = h1 � h2 � · · · � hk (5)

where (h1, h2, . . . , hl) is a minimal decomposition of x and k = 	a · |x|
. The
operation �, contrarily to ⊕ and �, depends on the particular minimal decom-
position chosen for x. In general there can be multiple minimal decompositions,
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thus � is not uniquely defined. However, since we are designing an evolutionary
algorithm, we consider a random minimal decomposition of x when computing
a � x.

In the following we describe the groups of the permutations and bit-strings,
which will be used later in the paper.

3.2 Permutation Group

The set Sn of the permutations of {1, 2, . . . , n} forms a group, called symmetric
group, with respect to the permutation composition ◦. Given π, ρ ∈ Sn, their
composition π ◦ ρ is defined as the permutation (π ◦ ρ)(j) = π(ρ(j)) for all the
indexes j = 1, . . . , n. Sn is not Abelian (for n ≥ 3) and its neutral element is the
identity permutation ι such that ι(j) = j for all j = 1, . . . , n.

Among the many generating sets of Sn, the simplest one is the set of simple
transpositions

ST = {σi ∈ Sn : 1 ≤ i < n},

where σi corresponds to an adjacent swap between positions i and i+1. Formally:
σi(i) = i + 1, σi(i + 1) = i, and σi(j) = j for j ∈ {1, . . . , n} \ {i, i + 1}.

A random decomposition algorithm for this generating set is the RandBS
procedure, introduced in [21], which produces a random minimal decomposition
of a given permutation by requiring O(n2) computational time. It is worth to
notice that the length of a minimal decomposition of π ∈ Sn is the number of
inversions of π.

We will denote by ⊕p,�p,�p, respectively, the operations ⊕,�,� defined
for Sn.

3.3 Bit-String Group

The set B
m of all the m-length bit-strings forms an Abelian group with respect

to the bitwise XOR operator �. Its neutral element is the all-zeros string 0. Since
x � x = 0 for all x ∈ B

m, the inverse of any x ∈ B
m is itself.

The most obvious generating set for B
m is the set

U = {ui ∈ B
m : ui(i) = 1 and ui(j) = 0 for j = i},

where ui(k) indicates the k-th bit of the string ui.
A random decomposition algorithm for a bit-string b can be easily found by

selecting all the indices i ∈ {1, . . . , m} with b(i) = 1 and disposing them into a
sequence with a random order. Note that the length of a minimal decomposition
of b is just its Hamming weight.

We will denote by ⊕b,�b,�b, respectively, the operations ⊕,�,� defined for
B
m. It is important to notice that ⊕b and �b coincide and both are commutative.
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4 Dual Representation of Bayesian Networks

In this section we introduce the representation of BN structures, i.e., DAGs, and
their associated finitely generated group.

A DAG G of n vertices can be represented by a pair (π, b), where π ∈ Sn

and b ∈ B
m with m =

(
n
2

)
.

The bits of b represent the skeleton of G. Let C = {(j, k) : 1 ≤ j < k ≤ n}
be the ordered set of vertex pairs, if the i–th pair of C is (j, k), then there exists
in G an arc from Xj to Xk, or vice versa, if and only if bi = 1.

The permutation π determines the direction of the arcs: if bi = 1, then the arc
goes from Xj to Xk if j appears before k in π, i.e., π−1(j) < π−1(k), otherwise
the arc goes in the opposite direction. Said in other words, π is a topological
order of the variables X1, . . . , Xn.

One of the most important properties of this representation is that any pair
(π, b) represents a DAG. This fact is an apparent advantage of this represen-
tation with respect to other forms (for instance the adjacency matrix) where
constraint must be used to select which combinations correspond to directed
acyclic graph. However, since a DAG can have more than one topological order,
our representation is, in general, a many-to-one representation, i.e., there can be
multiple pairs (π, b) that represent the same DAG.

The set of all the pairs (π, b), such that π ∈ Sn and b ∈ B
m, is the Cartesian

product B = Sn×B
m. Importantly, B can be endowed with the binary operation

∗ defined as
(π, b) ∗ (π′, b′) = (π ◦ π′, b � b′) (6)

where ◦ and � are the group operations for Sn and B
m, respectively. Therefore B

is a group with respect to ∗, namely the product group of Sn and B
m. Its neutral

element is (ι, 0), while the inverse of (π, b) is (π−1, b).
Addition and subtraction on B can now be defined as in Eqs. (3) and (4), by

using the operation ∗ and its related inverse operator.
In order to define the multiplication of a pair (π, b) by a scalar a ∈ [0, 1],

we have to choose a generating set for B. We describe two ways of defining a
generating set for B starting from the generating sets for Sn and for B

m.
The additive generating set A is defined as

A = ST ′ ∪ U ′

where ST ′ = {(σi, 0) : i = 1, . . . , n − 1} and U ′ = {(ι, uj) : j = 1, . . . , m}. Its
cardinality is |A| = n − 1 + m. Note that the generators of ST ′ only influence
the permutation part (since the second component of the element of ST ′ is 0).
Conversely, the generators of U ′ have effect only on the binary part. Using A as
generating set, it is easy to prove that |(π, b)| = |π| + |b|.

A randomized decomposition algorithm for A which produces a random mini-
mal decomposition of (π, b) ∈ B is the following. Given a random minimal decom-
position (σh1 , . . . , σhL

) of π and a random minimal decomposition (uk1 , . . . , ukM
)

of b, then
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– create an empty sequence r of size L + M ,
– choose L random different indices 1 ≤ j1 < · · · < jL ≤ L + M of r,
– assign rjv ← (σhv

, 0) for v = 1, . . . , L,
– fill the M unassigned positions of r with the pairs (ι, ukv

) for v = 1, . . . ,M .

The multiplicative generating set P is defined as

P = (ST × U) ∪ A

whose cardinality is n(m + 1). A minimal decomposition of a pair (π, b) ∈ B in
terms of P is much shorter than a minimal decomposition in terms of A, because
each generator belonging to ST × U affects both the permutation and binary
part.

A minimal decomposition of (π, b) ∈ B can be obtained by pairing the mini-
mal decompositions of π and b. In the general case, a certain number of copies of
the neutral element have to be added to the shorter of the two minimal decom-
positions in order to match the length of the longest one. The generators of A
(also present in P ) are useful for this purpose. Using P as generating set, it can
be easily proved that |(π, b)| = max{|π|, |b|}.

A randomized minimal decomposition for (π, b) ∈ B in terms of P is com-
puted as follows. Given a random minimal decomposition (σh1 , . . . , σhL

) of π
and a random minimal decomposition (uk1 , . . . , ukM

) of b, if L < M , then

– create an empty sequence r of size M ,
– choose L random different indices 1 ≤ j1 < · · · < jL < M in r,
– assign rjv ← (σhv

, ukjv
) for v = 1, . . . , L,

– fill the M−L unassigned positions of r with the pairs (ι, ukv
) for v = 1, . . . ,M .

The method works in a similar way when L ≥ M .

5 The Algorithm DEBN

In this section we describe DEBN, the algorithm based on the Algebraic Differ-
ential Evolution for learning Bayesian Networks. It has the same structure of a
classical DE algorithm: its pseudo-code is depicted in Algorithm 1.

Any population individual xi is represented by means of the dual repre-
sentation introduced in Sect. 4, i.e., xi = (πi, bi), where πi ∈ Sn, bi ∈ B

m, and
m =

(
n
2

)
. The individuals are evaluated by means of a BN score function selected

by the user. In this work, K2 and BDe have been considered (see Sect. 1).
Each individual xi = (πi, bi) is randomly initialized by selecting a permuta-

tion πi uniformly at random on Sn, while each bit of bi is set to 1 with probability
2

n−1 , thus that the average number of edges in the BN represented by xi is n.
The discrete differential mutation uses the algebraic operations ⊕, �, � of

B. Moreover, in order to mitigate the diversity loss phenomenon, typical in com-
binatorial spaces, the rand/1 scheme of classical DE has been extended by intro-
ducing a random term as follows:

yi = (xr1 ⊕ t) ⊕ F � (xr2 � xr3), (7)
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Algorithm 1. DEBN Pseudo-Code
1: function DEBN
2: Initialize and Evaluate the Population
3: while termination criterion is not met do
4: for i ← 1 to N do
5: yi ← DifferentialMutation(xi, F, pm)
6: zi ← Crossover(xi, yi, CR)
7: Evaluate(zi)

8: for i ← 1 to N do
9: xi ← selection(xi, zi)

10: return the best BN structure found

where, as in Eq. (1), xr1 , xr2 , and xr3 are three random population individual
different to each other and with respect to xi, while F ∈ [0, 1] is the scale factor
parameter.

Furthermore, t ∈ B is randomly generated by means of the pre-mutation
probability pm ∈ (0, 1) such that |t| = k with probability pmk. Operatively, t is
initialized to the neutral element (ι, 0), then, during a loop, a random number
r ∈ [0, 1] is generated and, if r < pm, a suitable randomly selected generator
(from A or P ) is applied to t. As soon as r ≥ pm, the loop is stopped and t is
returned.

Two crossover operators are separately applied to the permutation and binary
parts of xi = (πi, bi) and yi = (π′

i, b
′
i), thus obtaining the trial individual zi =

(π′′
i , b′′

i ). We have implemented different crossover schemes for the permutation
and binary parts. After preliminary tests we decide to use this combination of
crossover:

π′′ = CY C(πi, π
′
i)

b′′
i = BIN(bi, b′

i, CR)

where CYC is the (parameterless) cycle crossover described in [17], and BIN is
the usual binomial crossover of DE, as defined in Eq. (2).

The generation is then concluded by applying the 1-to-1 selection scheme of
classical DE.

DEBN has also been equipped with a self-adaptive procedure, inspired by
the well known jDE method [6], that allows to self-regulate the three param-
eters pm, F , and CR. Each population individual maintains its own parame-
ter values. Then, independently for each parameter, when mutant and trial are
generated, with probability 0.9, they inherit the value of the target population
individual, otherwise they randomly sample a new value in the allowed range for
the parameter at hand, i.e., [0.1, 1] for F , [0, 1] for CR, and [0.1, 0.3] for pm.

Finally, two implementations of DEBN can be devised, namely DEBN+,
where the operation � is defined with respect to the generating set A, and
DEBN×, which is based on P .
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6 Experimental Results

In this section we describe the experimental results obtained with the implemen-
tation of DEBN algorithm. Experiments have been conducted using 8 popular
BN benchmarks. For each one, we have generated two datasets of different sizes
by using the sampling procedure of the bnlearn R package [23].

The benchmark names are provided in Table 1, where we also report the
dataset sizes, together with the number of nodes and edges of the true networks
from which the datasets are generated. The aim of the experimentation is thus to
try to the recover the original networks by maximizing the K2 and BDe scores,
computed by only looking at the datasets.

Table 1. Datasets

Network Size1 Size2 #vars #edges

Alarm 4000 8000 37 46

Asia 1000 5000 8 8

Barley 5000 10000 48 84

Child 2000 5000 20 25

Hailfinder 5000 10000 56 66

Insurance 3000 6000 27 52

Water 4000 8000 32 66

Win95pts 5000 10000 76 112

Three algorithms have been compared: DEBN+, DEBN×, and the recent
state-of-the-art evolutionary algorithm BFO-B, which has been implemented by
faithfully following the description given in [28]. As indicated by its authors, the
BFO-B parameters have been set to Ns = 4, Nre = 4, Ned = 3, S = 80, Nc = 30,
and Ped = 0.1.

Our DEBN+ and DEBN× only require to set the population size N . After
some preliminary tests (here not reported for the lack of space), we decided to
use N = 50 for both the variants.

In order to choose a fair termination criterion for DEBN, we have observed
that BFO-B performed around 100 000 fitness evaluations in average, so we used
this number of evaluations also for DEBN.

All the three algorithms have been run 20 times per dataset using both
the considered score metrics. Tables 2 and 3 provide the average and best scores
obtained by all the algorithm and considering, respectively, BDe and K2 as score
functions. For each dataset, the best average and maximum scores are indicated
in, respectively, bold and italic.

Tables 2 and 3 clearly show that our proposals largely outperform BFO-
B on almost all the comparisons. The only exceptions are on water 4000 and
water 8000 where BFO-B obtains a better average K2 score. However, in the
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Table 2. Results with BDe score

Dataset BFO-B DEBN+ DEBN×
Avg Max Avg Max Avg Max

alarm 4000 −43794.98 −43437.00 −42570.45 −42502.57 −42610.05 −42519.19

alarm 8000 −87576.63 −86859.20 −85234.69 −85086.80 −85209.07 −85087.68

asia 1000 −2310.45 −2310.37 −2310.37 −2310.37 −2310.37 −2310.37

asia 5000 −11394.74 −11394.50 −11394.49 −11394.49 −11394.49 −11394.49

barley 5000 −268201.94 −264423.00 −266737.42 −262211.07 −267429.76 −263562.99

barley 10000 −532904.94 −527937.00 −524224.13 −512050.47 −523856.84 −517022.55

child 2000 −25041.73 −25040.10 −25040.90 −25040.08 −25040.08 −25040.08

child 5000 −61385.42 −61382.90 −61382.93 −61382.93 −61382.93 −61382.93

hailfinder 5000 −251569.15 −250809.00 −249938.90 −249555.91 −249935.54 −249635.38

hailfinder 10000 −503277.10 −499926.00 −497099.00 −496475.76 −496891.03 −496451.81

insurance 3000 −40884.81 −40718.00 −40472.34 −40347.91 −40454.16 −40389.54

insurance 6000 −80903.57 −80495.30 −80146.05 −79966.23 −80109.22 −79960.52

water 4000 −52234.43 −52154.70 −52068.78 −51993.13 −52071.86 −52001.85

water 8000 −103631.50 −103443.00 −103320.64 −103155.90 −103352.41 −103168.28

win95pts 5000 −60481.39 −58908.90 −51460.67 −49924.90 −51348.43 −49440.49

win95pts 10000 −121667.70 −118890.00 −105275.83 −99497.04 −104804.92 −100368.35

Table 3. Results with K2 score

Dataset BFO-B DEBN+ DEBN×
Avg Max Avg Max Avg Max

alarm 4000 −43802.95 −43429.90 −42760.22 −42694.80 −42790.03 −42695.92

alarm 8000 −87576.81 −86298.90 −85451.64 −85301.86 −85573.49 −85318.76

asia 1000 −2289.97 −2289.94 −2289.94 −2289.94 −2289.94 −2289.94

asia 5000 −11373.64 −11373.50 −11373.47 −11373.47 −11373.47 −11373.47

barley 5000 −282797.80 −280376.00 −278009.54 −274887.52 −279218.10 −275726.47

barley 10000 −558264.08 −551764.00 −538313.54 −531544.39 −536969.49 −531683.39

child 2000 −25022.86 −25019.60 −25019.56 −25019.56 −25020.45 −25019.56

child 5000 −61366.06 −61363.50 −61363.76 −61363.55 −61363.76 −61363.55

hailfinder 5000 −252976.70 −251587.00 −250506.92 −250204.53 −250543.04 −250266.94

hailfinder 10000 −506897.80 −504137.00 −497874.99 −497546.61 −497917.03 −497194.28

insurance 3000 −41273.06 −41150.30 −40905.16 −40857.28 −40921.03 −40823.76

insurance 6000 −81655.57 −81088.70 −80868.01 −80642.36 −80905.42 −80707.54

water 4000 −52451.31 −52429.50 −52487.60 −52433.88 −52490.21 −52449.57

water 8000 −103793.35 −103760.00 −103854.43 −103771.33 −103842.66 −103755.88

win95pts 5000 −54866.60 −52726.90 −50442.92 −48932.97 −50852.83 −48509.02

win95pts 10000 −112196.95 −110883.00 −103897.32 −97930.23 −104792.63 −101290.97
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larger BNs hailfinder and win95pts, the score differences are remarkably large
in favor of the DEBN algorithms.

Regarding the comparison between the two DEBNs and considering the BDe
metric, DEBN× obtained better average scores, while DEBN+ shows better peak
performances.

On the other end, considering the K2 metric, DEBN+ is slightly preferable
with respect to DEBN× both in terms of average and peak performances.

7 Conclusions and Future Work

In this paper we have described DEBN, an Algebraic Differential Evolution algo-
rithm [21] for learning the structure of a Bayesian Network (BN). DEBN is based
on a novel BNs representation based on the algebraic concept of product group,
where a DAG is represented by a permutation and a bit-string. Both permuta-
tions and bit-strings are finitely generated groups, hence it is possible to apply
the principles of Algebraic Differential Evolution.

Two variants of DEBN have been proposed and experimentally compared
with BFO-B, one of the best evolutionary algorithms for BN learning. The exper-
imental results clearly show that DEBN largely outperforms BFO-B.

As future lines of research, we will investigate: the use of other generating
sets for the permutation part (see [3]), and the application of the DEBN scheme
to other problems whose solutions are DAGs.
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