
Optimal Neuron Selection and
Generalization: NK Ensemble Neural

Networks

Darrell Whitley1(B), Renato Tinós2, and Francisco Chicano3

1 Colorado State University, Fort Collins, CO 80523, USA
whitley@colostate.eu

2 University of São Paulo, Ribeirão Preto, SP, Brazil
3 University of Málaga, Málaga, Spain

Abstract. This paper explores how learning can be achieved by turning
on and off neurons in a special hidden layer of a neural network. By posing
the neuron selection problem as a pseudo-Boolean optimization problem
with bounded tree width, an exact global optimum can be obtained to
the neuron selection problem in O(N) time. To illustrate the effectiveness
of neuron selection, the method is applied to optimizing a modified Echo
State Network for two learning problems: (1) Mackey-Glass time series
prediction and (2) a reinforcement learning problem using a recurrent
neural network. Empirical tests indicate that neuron selection results in
rapid learning and, more importantly, improved generalization.

1 Introduction to Optimal Neural Selection

Programmed cell death, also known as neuronal apoptosis, is known to be an
important part of normal brain development and mechanisms behind neuronal
apoptosis have been extensively studied [12,15]. Along with synaptic pruning
[3], neuronal apoptosis helps to shape the size and configuration of different
neural processing centers in the brain. This is also thought to represent a very
basic form of learning. Thus, it is natural to ask what are the benefits of neuron
selection and how might neuron selection be utilized in artificial neural networks.

The proposed method converts a form of the neuron selection problem into
a k-bounded pseudo Boolean optimization problem, with the goal of identify-
ing useful combinations of neurons. A k-bounded pseudo-Boolean optimization
problem [2] can be expressed in the following form:

f(x) =
M∑

i=1

fi(x) (1)

where x ∈ {0, 1}N is a bit vector, each subfunction fi can output any real value,
and fi(x) is evaluated using a subset of k bits drawn from the bit vector x.
Each subfunction fi identifies which bits are the correct inputs to fi. MAX-
kSAT is a classic example of a k-bounded Boolean optimization problem, where
c© Springer Nature Switzerland AG 2018
A. Auger et al. (Eds.): PPSN 2018, LNCS 11102, pp. 449–460, 2018.
https://doi.org/10.1007/978-3-319-99259-4_36

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-99259-4_36&domain=pdf

450 D. Whitley et al.

each subfunction fi corresponds to a clause that evaluates to 0 or 1. Spin glass
systems and NK Landscapes are also well known k-bounded pseudo Boolean
optimization problems.

In this paper, we will restrict our attention to neural networks with a single
output neuron that learn a single continuous real valued output; however, the
learning method can generalize to multiple outputs. The bit vector x ∈ {0, 1}N

will be used to indicate if a neuron should be turned on or turned off.
In order to create M subfunctions, the single output neuron is converted

into an ensemble of M output neurons, all of which attempt to learn the same
task. Furthermore, only a subset of other neurons in the neural network (k to
be precise) will be allowed to connect to a particular output neurons. Thus,
optimizing Eq. 1 results in the selection of a subset of neurons from vector x
that contribute in a positive fashion to an ensemble of M outputs attempting
to learn the same task. The neuron selection method proposed here only acts on
the set of neurons that are directly connected to an output neuron.

Each subfunction fi might minimize the mean squared error under supervis-
ing learning, or it might maximize a performance metric in the case of reinforce-
ment learning. Because the problem is posed as a k-bounded pseudo-Boolean
optimization problem, each of the output neurons (corresponding to a subfunc-
tion fi) receives input from only k other neurons. If k neurons were randomly
selected to connect to an output fi, it would probably be necessary to use a
heuristic method to optimize the neuron selection problem. However, there are
advantages to choosing a localized and structured pattern when connecting neu-
rons to outputs. In the current paper, neurons are connected to outputs in such a
way that the neuron selection problem can be solved in O(N) time using dynamic
programming. The resulting solution is globally optimal relative to the starting
architecture, and the input vector x. Obviously, different initial architectures
would nevertheless yield different results.

We apply this new learning method to two problems. The first problem is
the Mackey-Glass time series prediction problem [10]. The second problem is the
reinforcement learning problem of balancing two poles on a cart while providing
only cart position and the two pole angles as input [20]; this configuration makes
it necessary to learn to compute velocity information and makes this classic
control problem much more difficult. For both learning problems, we utilize a
recurrent neural network in the form of an Echo State Network.

Echo State Networks are one form of reservoir computing [13,14]. Reservoir
computing networks use a reservoir of sparsely and recurrently connected artifi-
cal neurons that have randomly generated weighted connections. Both the input
neurons and output neurons are outside of the reservoir. The weights inside of the
reservoir of neurons are not adjusted by learning. To determine which neurons
are useful, learning is typically used to adjust the weights that connect artifi-
cial neurons in the reservoir to the outputs. In our experiments, we use neuron
selection to determine which neurons connected to the reservoir are useful.

For the Mackey-Glass problem, neuron selection improves generalization
using similar computation time when compared to the standard Echo State

NK Echo State Networks 451

Network. For the two pole balancing problem with no velocity inputs, neuron
selection learns more rapidly and produces dramatically better generalization
than any other method that has been reported in the literature. It achieves
these results with no policy iteration and no back propagation. Neuron selection
is the only form of learning that is utilized.

Although we use an Echo State Network as the foundation for our experi-
ments, in principle the same technique might be applied to multi-layered per-
ceptrons or deep learning networks. It therefore provides a new means of auto-
matically configuring a neural network architecture to fit a particular problem.

2 Optimization by Dynamic Programming

We will very briefly outline how and when dynamic programming can used to
optimize k-bounded pseudo-Boolean functions. We construct a Variable Interac-
tion Graph, G, to model the interaction between variables in a k-bound pseudo-
Boolean optimization problem. If two variables xq and xj appear together in
subfunction fi then there is an edge between xq and xj in G. We next define the
concepts of tree width and tree decomposition of a graph [6].

Definition 1. [6] A tree decomposition of any graph G(V,E) is a pair D =
(S, T) where S = {Xi, i ∈ I} is a collection of I subsets of the vertices of G and
T is a tree with one node for each subset in the collection S, such that:

1.
⋃

i∈I Xi = V ,
2. for all the edges (u,w) ∈ E there exists a subset Xi ∈ S such that both u and

w are in Xi,
3. for each vertex v, the set of nodes that contain v, {i|v ∈ Xi}, form a subtree

of T .

The tree width, denoted by w, of the decomposition D = (S, T) is given by
w = maxi∈I (|Xi| − 1).

Dynamic programming can be used to find the global optimum of any pseudo-
Boolean optimization problem (i.e., Eq. 1) in time O(2wN), where w is the tree
width of graph G(V,E) [4] and N is the number of variables. In effect, a tree
decomposition D provides an ordering of the variables and of the subfunctions
so that only w variables are active at a time. A variable is active if it appears
in a subfunction that is currently being probed by dynamic programming. Once
a variable is active, it stays active until a global solution is found for all of the
subfunctions that utilize that variable. In general, for NP-Hard problems (such as
MAXSAT) the runtime cost of dynamic programming is exponential. However,
problems where the tree width is bounded by a constant can be solved in linear
time. Thus, there is an advantage in creating a neuron selection architecture
that limits the size of the tree width of the variable interaction graph. In the
next section we show that if the neuron connections are sufficiently localized and
regular, the tree width is automatically limited in size.

452 D. Whitley et al.

Multi

Network

Layer

or

Reservoir

Multi

Network

Layer

or

Reservoir

Multi

Network

Layer

or

Reservoir
In 1

In 2 In 2 In 2

In 3 In 3 In 3

In 1In 1

Out 1

Out 1.1

Out 1.2

Out 1.3

Out 1.4

Out 1
Weighted

3) The Network After Neuron Selection2) The Same Network with Duplicate Outputs1) A Basic Network with 1 Output

Fig. 1. On the left is a basic network with one output. In the middle figure, the one
output neuron is replaced by an ensemble of output neurons, all with the same target
output and learning objective. Each output neuron in the ensemble is connected to
exactly k = 3 neurons in the probe filter layer (k � N). Normally, there are N neurons
in both the probe filter layer and an ensemble of N outputs. Here, to aid visualization,
there are 6 neurons in the probe filter layer and only 4 outputs in the ensemble (x1

is not adjacent to x6), and k = 3. Each output Out 1.i is different in performance
because it connects to different neurons in the probe filter layer. The neurons of the
probe filter layer are turned on or off by optimizing binary vector x so as to maximize
performance summed across all outputs. In the figure on the right, the black neurons
have been turned off, optimizing x and modifying the architecture. The ensemble of
outputs are again collected into a single output weighted by the relative performance
of each output in the ensemble.

3 Converting a Neural Network into an NK Landscape

One type of pseudo-Boolean optimization problem that automatically controls
for tree width is the Adjacent NK Landscape [11,19]. N refers to the number
of Boolean variables in vector x, M = N is the number of subfunctions, and
k = K + 1 is the number of variables that appear in each subfunction fi. In
an Adjacent NK Landscape, Boolean variable xi appears in subfunction fi as
well as the variables xi+1, xi+2, . . . xi+K . If the Adjacent NK Landscape allows
variables to wrap around such that x1 and xN are adjacent, then the tree width
is 2K. If variables do not wrap and x1 and xN are not adjacent in the Adjacent
NK Landscape, then the tree width is K [21].

We will use Fig. 1 to explain how the neuron selection problem can be
expressed as a k-bounded pseudo-Boolean optimization problem with bounded
tree width. On the left in Fig. 1, we start with a basic neural network with a sin-
gle output neuron. In this example, there are 3 inputs and 1 output. We assume
there is a hidden layer of neurons that feed into the output, or if a reservoir is
used, we create a hidden layer of N neurons that feed into the output. We will
refer to this layer as the probe filter layer. This layer probes the other neurons
in the network that feed into this final hidden layer. The probe filter layer must
directly connect to the output layer.

We will refer to our architecture as an NK Ensemble Network. The NK
Ensemble Network has an ensemble of N outputs, and each output receives inputs
from k neurons in the probe filter layer. All weights in the NK Ensemble Net-
work remain fixed during neuron selection. Only the bit vector x ∈ {0, 1}N is

NK Echo State Networks 453

optimized. If xi = 1, the ith neuron of the probe filter is turned on, i.e., its
activation is used as input for neurons in the output layer connected to it; if
xi = 0, the ith neuron is turned off.

We denote the evaluation of the ith output neuron as fi(x). The subfunction
fi automatically accesses the correct k bits when passed an input of length N .
It is also convenient to assume that fi can take an input of length k or length
N = |x|. For example, assume k = 3 and that fi(x) = fi(011); this means
that k = 3 probe filter neurons feed into output neuron i, but the 1st neuron
(numbering bits left to right) is currently turned off in x. All of the inputs to
fi must be evaluated once (and only once). Thus, for k = 3 we must evaluate
fi(000), fi(001), . . . fi(111). This is done by turning off the correct neurons in
the probe filter layer, then doing an evaluation that processes the training data
just once, or (e.g., for reinforcement learning) a simulation is used to evaluate
the network performance. This means that each subfunction requires 2k presen-
tations of the training data, or 2k performance based evaluations. This needs to
be done for all N subfunctions.

At most 2kN presentations of the training data are needed to convert the neu-
ron selection problem into an Adjacent NK Landscape. For recurrent networks
where the output at time t impacts the input at time t + 1, the total number of
online evaluations will be exactly 2kN ; this represents the worst case runtime
cost, which is still O(N) for fixed k. For other classes of learning problems this
cost might be reduced because subfunction fi might be evaluated simultaneously
and in parallel with other subfunctions (e.g., fi and fi+k do not interact) using
the same presentation of the training data.

Because k is a small constant, each function fi can be expressed as a lookup
table with 2k entries. Dynamic programming can then be done offline because the
neuron selection objective function is now fully captured by the lookup tables.
In practice, we have found that the runtime cost of dynamic programming is less
than 1% of the entire computation for small k (e.g., k ≤ 6) and usually takes
about the same amount of time as a single feed-forward pass over the training
data.

The algorithm for neuron selection follows the 3 illustrations in Fig. 1.

(1) Step 1. Start with a basic network. The weights in the network might be opti-
mized with a weight training algorithm (e.g., back propagation), or weights
might be generated randomly. The network must include a probe filter layer,
and only neurons in the probe filter layer connect to the output.

(2) Step 2. Assume there are N neurons in the probe filter layer: create an
ensemble of N outputs. Let xi reference the ith neuron in the probe filter.
Output neuron “Out 1.i” receives inputs from neurons xi to xi+K . The
performance of output neuron Out1.i is condensed into a single number, Pi,
where fi(x) = Pi. This makes is possible to storage each function fi as a
look-up table of size 2k.

(3) Step 3. Optimize the function: f(x) = 1
N

∑N
i=1 fi(x) using dynamic pro-

gramming. Use the optimal solution x∗ to select neurons in the probe filter

454 D. Whitley et al.

layer. In this formulation we average over the subfunctions but this has no
impact on the form of the optimization problem.

Let z be an input to the neural network. Let Sout.i(z) denote the state of
ensemble output neuron (e.g. Out 1.i in Fig. 1) after input z is propagated
through the network; let Outensemble(z) denote the weighted output obtained
by combining the ensemble:

Outensemble(z) =
1
N

N∑

i=1

αiSout.i(z) where αi =
fi(x∗)

∑N
i=1 fi(x∗)

(2)

The weighting vector α is calculated after optimizing the vector x. Thus αi

depends on the performance associated with fi(x∗) and output neurons with
better results have higher weights.

4 Experimental Results

All of the experiments in this paper use “Echo State Networks” as a foundation.
One motivation for using Echo State Networks is that the neurons in the reservoir
have randomly generated weights. Schiller and Steil [17] show that when gradient
methods are used to train recurrent neural networks, most of the weight changes
occur in the weights that connect to outputs, even if the methods are being used
to change all of the weights in the network. We explore the idea that neural
networks can be trained using little or no weight optimization.

The term “NK Ensemble Network” will be used to denote networks that have
been enhanced by neuron selection.

4.1 Problem One: Mackey-Glass Time Series Prediction

The Mackey-Glass time series problem is a supervised learning problem and a
classic benchmark for chaotic time series prediction. The original Echo State
Network was successfully applied to this problem [10]. The vector of weights
wout in a given output neuron can be trained by solving a system of linear
equations:

yd = Hwout (3)

where H is a matrix composed by the inputs of the output layer for each training
example and yd is the vector of desired values for the output neuron. Equation 3
can be solved [14] by:

wout = (HTH)−1HTyd (4)

In order to avoid numerical instability, a regularization term can be added to
the term inside the parentheses in Eq. 4.

The Echo State Network for this problem has only one input and only one
output. These respectively correspond to the points of the time series at instants
t and t + 1 (the Mackey-Glass time series with delay 17 was used). There are

NK Echo State Networks 455

Fig. 2. The leftmost figure illustrates the performance of the standard echo state net-
work for the Mackey-Glass problem. The rightmost figure illustrates the performance
of the NK ensemble network. In both figures, the desired output is denoted by the
solid blue line, and the actual output is denoted by the dashed red line. The NK echo
state network error is 4 times lower than the standard echo state network. (Color figure
Online)

two hidden layers between the reservoir and the output. The weights associated
with the two hidden layers were obtained using the same weight optimization
reported by Jaeger [10]. The inputs of the neurons of the hidden layer 2 receive
inputs from 90% of the neurons in hidden layer 1. A bias neuron is used. A
linear activation function is used in the neurons of the hidden layer 2 (in order
to apply Eq. 4 to train the output weights) and output layer. The neurons of
the reservoir use the hyperbolic tangent activation function.

The NK Ensemble Network uses exactly the same standard configuration
except an ensemble of N output neurons is used. The second hidden layer func-
tions as the probe filter layer. The weights between the probe filter layer and
the ensemble of outputs are generated randomly, then rescaled so that the sum
of the weights is equal to 1.

The output neurons of the NK Ensemble Network for inputs z are given by:

Sout.i(z) =
N∑

q=1

ws
q,iSq(z)xq (5)

where Sq(z) is the output of neuron q of the probe filter layer for input z, xq

indicates if the neuron q is turned on (1) or off (0), and the scaled weight ws
q,i

is given by:
ws

q,i =
wq,i∑N

j=1 wj,ix(j)
(6)

where wq,i are randomly generated in the interval between 0.0 and 1.0.
The weights of the output neurons are then adapted using Eq. 4 (for each out-

put neuron and each combination given by vector x). Finally, look-up tables are
generated for each subfunction fi. Next, the bit vector x ∈ {0, 1}N is optimized
using dynamic programming.

456 D. Whitley et al.

The initial 1000 time steps of the series are used to stabilize the reservoir
before the training phase for each learning algorithm. The standard Echo State
Network is trained for 2000 time steps of the Mackey-Glass series and tested for
additional 300 points. During the test phase, the input of the network at time t
is given by the output of the network at time t − 1.

Learning for the NK Ensemble Network is broken into three phases. In Phase
1, the weights are adapted for 1800 time steps in exactly the same way in which
they were for the standard Echo State Network. In Phase 2, the subfunctions fi

are generated. Each subfunction is evaluated for 2k configurations, and each con-
figuration is evaluated for 200 time steps. This can be thought of as a validation
phase where the optimization of the probe filter layer corresponds to a type of
model selection. The input of the network at time t is given by the output of the
network at time t−1. In the validation phase, the terms fi are computed by the
mean squared error for the NK Ensemble Network during 200 time steps. The
vector x is then optimized by the dynamic programming procedure; the cost of
the dynamic programming is minimal and less than 1% of the total runtime. In
Phase 3, the NK Ensemble Network is tested for generalization.

Both the standard Echo State Network and the NK Ensemble Network were
allocated 2000 time steps of the data for learning and 1000 time steps for test-
ing. (The 2000 steps for the NK Ensemble network includes the time needs for
dynamic programming.) Both networks used exactly the same reservoir. Both
networks were trained and tested using a sample size of 30. During testing,
generalization was measured by the function:

g =
1

1 − emse

where emse is the mean squared error. g = 1.0 represents perfect generalization.
Both networks yield reasonably good prediction during the first 300 steps of

testing. However, an examination of Fig. 2 shows that the standard Echo State
Network yields poorer performance after time step 300 during the testing phase:
the predictions become increasingly worse with time. The NK Ensemble Network
continues to make good predictions across all of the testing phase. Overall, the
error of the standard Echo State Network is 4 times larger than the error of
the NK Ensemble Network. Thus, the NK Ensemble Network is able to improve
generalization with little or no additional training cost.

4.2 Problem Two: Double Pole Balancing Without Velocity Inputs

The NK Ensemble Network is next tested on the double pole balancing problem
without velocity information [20]. No back propagation was used. No policy
iteration was used. The only form of learning was neuron selection. All of the
weights in the network were generated randomly.

The reservoir utilizes 60 neurons, with recurrent connections between neu-
rons. Each neuron in the reservoir has recurrent connections to 10% of the neu-
rons in the reservoir. All weights and bias of the NK Ensemble Network are

NK Echo State Networks 457

fixed, being randomly generated between [−0.6, 0.6]. After the initialization, the
recurrent weights in each reservoir are scaled with a spectral radius equal to
0.95. All neurons use the hyperbolic tangent function as the activation function.

When no velocity information is provided, this problem is difficult; it has also
been widely studied [5,7–9,18]. The 3 inputs to the artificial neural network at
step t are the scaled cart position and the angles of the two poles:

u(t) = [pc(t)/pmax
c , θ1(t)/θmax

1 , θ2(t)/θmax
2]T

where pc(t) is the cart position, θi(t) is the angle of the i-th pole, and pmax
c and

θmax
i are the maximum allowed values used to scale the inputs between −1 and

+1. All neurons use the hyperbolic tangent function with outputs between -1
and +1 as the sigmoidal squashing function.

The following objective function has been used by a number of researchers
[5,8,9,18].

f = t/tmax + 9fstable

fstable =

{
0, if t < 100

0.75∑t
i=t−100(|xc(i)|+|ẋc(i)|+|θ1(i)|+|θ̇1(i)|) , otherwise,

where t is the number of time steps that the system is successfully controlled
(up to a limit of tmax = 1000 steps).

The output in the problem posed in this paper is continuous, allowing for
greater control. The force (in Newtons) applied to the cart at iteration t when
evaluating the i-th output neuron is given by:

action(t) = 10Sout.i(u(t)) (7)

The state of the neuron selection vector x is included in the calculation of Si

(Eq. 5). The track length is given by pc ∈ [−2.4, 2.4] meters; beyond this range
the cart crashes into the ends of the track. The system must keep both poles
within θi ∈ [−36, 36] degrees of vertical. The function f1 indicates how long
the cart and pole system has avoided a failed state (where a pole falls, or the
cart crashes). An overall evaluation greater than 1.0 generally means that the
system avoided failure for tmax time. However, because tmax = 1000 is small,
a bang-bang control strategy might be learned so that even if the controller
avoids failure for tmax time steps, the system will become increasingly unstable
and eventually fail when the system is run for more than tmax time steps. The
second function fstable indicates the stability of the system during the last 100
time steps if t ≥ 100. A higher value of fstable means that the system is staying
close to the ideal state: close to the center of the track, with small pole angles
close to vertical (zero), and with low velocities.

During learning, the system always starts from the state pc(0) = θ2(0) =
ṗc(0) = θ̇1(0) = θ̇2(0) = 0 and θ1(0) = 4.5◦. The mass of cart is 1 kg, the mass
of pole 1 is 0.1 kg, the mass of pole 2 is 0.01 kg: length of pole 1 equal to 1 m,

458 D. Whitley et al.

length of pole 1 equal to 0.1 m, coefficient of friction of the cart on the track
is 0.0005, the coefficient of friction of the poles equal to 0.000002 [5]. The 4th
order Runge-Kutta method with integration step equal to 0.01 was used.

4.3 Comparative Results

Learning was successful 100% of the time across all experiments. To test gen-
eralization, the final network was evaluated 625 times, each time with different
initial settings for cart position, cart velocity, pole 1 angle, and pole 1 velocity.
The angle and velocity for pole 2 are set to zero. The combination of five dif-
ferent initial settings for each variable is considered: 5, 25, 50, 75, and 95% of a
reduced range of the variables. With 5 settings and 4 variables, 54 = 625. The
evaluation of the generalization test counts the number of positions from which
the system is successfully controlled for 1000 steps. This test of generalization
has been widely used for the last 20 years [5,7–9].

In Table 1, we report results for the NK Ensemble Network for several differ-
ent configurations, as well as previously published results. There appears to be
no new significant results since 2008.

Gomez, Schmidhumber and Miikkulainen [8] have shown that a wide range of
standard reinforcement learning methods do not work well on the problem of bal-
ancing two poles on a cart given no velocity information. They used Q-learning
with a Multi-Layer Perceptron that mapped state-action pairs to Q-values. They
also compared to methods such as Sarsa(λ) with Case Based Function Approxi-
mators as well as Sarsa(λ) with a Cerebellar Model Articulation Controller [16].
They concluded these methods were less effective and less efficient compared
to neuroevolution based methods such as NEAT [18], ESP [7] and CoSyNE [8].
In this paper and the above studies, a continuous output is learned. The most
recent reinforcement work on pole balancing [1] looked at a discrete “bang-bang”
controller and provided velocity information as inputs; this work also did not test
for generalization.

The NK Ensemble Networks included networks with N = 20 and N = 100,
and K = 2, 3, 4, 5. Using just 320 evaluations, the NK Ensemble Networks with
N = 20 and K = 3 yields an average generalization of 304 successes from
the 625 possible start states. This level of generalization is similar to the best
results previously reported in the literature as reported in Table 1. Increasing N
and K improved generalization at the cost of additional evaluations. The best
generalization was achieved by setting N = 100 and K = 4 and then selecting
only the “Top 20” best output neurons (based on αi from Eq. 2) to be included
in the ensemble. This was done at no additional runtime cost. This configuration
used 3200 evaluations, but the NK Ensemble Network was able to successfully
balance the double pole from 490 of the 625 start states on average with a
relatively low standard deviation. These generalization results greatly improve
on results previously reported in the literature. A runtime analysis shows that
99% of the runtime was spent on feedforward evaluations of the neural network;
less than 1% of the time was spent on the dynamic programming optimization.

NK Echo State Networks 459

Table 1. Evaluation results for the NK ensemble network with different values of N
and K. The results are also compared to other results in the literature.

Algorithm Evaluations Generalization

CE 1996, reference [9] 840,000 300
ESP 1999, reference [7] 169,000 289
ESP 2008, reference [8] 26,342 Not Given

NEAT 2002, reference [18] 33,184 286
NEAT 2008, reference [8] 6,929 Not Given

CoSyNE 2008, reference [8] 3,416 Not Given
NK Ensemble Network, N=20, K=2 160 229 ±160 s.d.
NK Ensemble Network, N=20, K=3 320 304 ±154 s.d.
NK Ensemble Network, N=20, K=4 640 321 ±151 s.d.
NK Ensemble Network, N=20, K=5 1,280 377 ±126 s.d.
NK Ensemble Network, N=100, K=2 800 323 ±115 s.d.
NK Ensemble Network, N=100, K=3 1,600 396 ±108 s.d.
NK Ensemble Network, N=100, K=4 3,200 437 ±83 s.d.

NK Ensemble Network, “Top 20” N=100, K=2 800 450 ±79 s.d.
NK Ensemble Network, “Top 20” N=100, K=3 1,600 478 ±56 s.d.
NK Ensemble Network, “Top 20” N=100, K=4 3,200 490 48 s.d.

5 Conclusions

This paper explores the idea that learning can be achieved by turning on and
turning off neurons in an artificial neural system. By posing the neuron selection
problem as a pseudo-Boolean optimization problem with bounded tree width,
an exact global optimum can be obtained to the neuron selection problem in
O(N) time. In this paper neuron selection is empirically evaluated when used in
combination with the Echo State Network. However, the method could be used
with other multi-layer networks. It should also be noted that the NK Ensem-
ble Network does not require significant tuning to achieve the “right network
configuration” in order to learn.

On the Mackey-Glass time series prediction problem the NK Ensemble Net-
work improved generalization and reduced variance across runs compared to the
standard Echo State Network.

The NK Ensemble Network is able to learn the control task of balancing
two poles on a fixed track with no velocity information. Learning was 100%
successful. No back propagation was used. No policy iteration was used. All of
the weights in the network were generated randomly. The only form of learning
was neuron selection. Learning was much faster compared to other algorithms.
But more important, generalization dramatically improved as N and K were
increased, and variance in the generalization results decreased.

References

1. Anderson, C., Elliott, D.: Faster reinforcement learning after pretraining deep net-
works to predict state dynamics. In: International Joint Conference on Neural
Networks (2015)

460 D. Whitley et al.

2. Boros, E., Hammer, P.: Pseudo-boolean programming revisited. Discrete Appl.
Math. 123(1), 155–225 (2002)

3. Chechik, G., Meilijson, I., Ruppin, E.: Neuronal regulation: a mechanism for synap-
tic pruning during brain maturation. Neural Comput. 11(8), 2061–2080 (1999)

4. Crama, Y., Hansen, P., Jaumard, B.: The basic algorithm for pseudo-boolean pro-
gramming revisited. Discrete Appl. Math. 29(2–3), 171–185 (1990)

5. Dürr, P., Mattiussi, C., Floreano, D.: Neuroevolution with analog genetic encoding.
In: Runarsson, T.P., Beyer, H.-G., Burke, E., Merelo-Guervós, J.J., Whitley, L.D.,
Yao, X. (eds.) PPSN 2006. LNCS, vol. 4193, pp. 671–680. Springer, Heidelberg
(2006). https://doi.org/10.1007/11844297 68

6. Gao, Y., Culberson, J.: On the treewidth of NK landscapes. In: Cantú-Paz, E.,
et al. (eds.) GECCO 2003. LNCS, vol. 2723, pp. 948–954. Springer, Heidelberg
(2003). https://doi.org/10.1007/3-540-45105-6 106

7. Gomez, F., Miikkulainen, R.: Solving non-Markovian control tasks with neuroevo-
lution. In: IJCAI. Morgan Kaufmann (1999)

8. Gomez, F., Schmidhuber, J., Miikkulainen, R.: Accelerated neural evolution
through cooperatively coevolved synapses. J. Mach. Learn. Res. 9, 937–965 (2008)

9. Gruau, F., Whitley, D., Pyeatt, L.: A comparison between cellular encoding and
direct encoding. In: Genetic Programming Conference. Morgan Kaufmann (1996)

10. Jaeger, H., Haas, H.: Harnessing nonlinearity: predicting chaotic systems and sav-
ing energy in wireless communication. Science 304(5667), 78–80 (2004)

11. Kauffman, S.A.: The Origins of Order: Self-organization and Selection in Evolution.
Oxford University Press, Oxford (1993)

12. Kristiansen, M., Ham, J.: Programmed cell death during neuronal development: the
sympathetic neuron model. Cell Death Differ. (Nature Publishing Group) 21(7),
1025–1035 (2014)

13. Lukoševičius, M.: A practical guide to applying echo state networks. In: Montavon,
G., Orr, G.B., Müller, K.-R. (eds.) Neural Networks: Tricks of the Trade. LNCS,
vol. 7700, pp. 659–686. Springer, Heidelberg (2012). https://doi.org/10.1007/978-
3-642-35289-8 36

14. Lukoševičius, M., Jaeger, H.: Reservoir computing approaches to recurrent neural
network training. Comput. Sci. Rev. 3(3), 127–149 (2009)

15. Roth, K.A., D’Sa, C.: Apoptosis and brain development. Ment. Retard. Dev. Dis-
abil. Res. Rev. 7, 261–266 (2001)

16. Santamaria, J., Sutton, R., Ram, A.: Experiments with reinforcement learning in
problems with continuous state and actions spaces. Adapt. Behav. 6(2), 163–217
(1998)

17. Schiller, U.D., Steil, J.J.: Analyzing the weight dynamics of recurrent learning
algorithms. Neurocomputing 63, 5–23 (2005)

18. Stanley, K., Miikkulainen, R.: Efficient reinforcement learning through evolving
neural network topologies. In: Genetic and Evolutionary Computation Conference
(GECCO), pp. 569–577, Morgan Kaufmann (2002)

19. Tomassini, M., Verel, S., Ochoa, G.: Complex-network analysis of combinatorial
spaces: the NK landscape case. Phys. Rev. E 78, 066114 (2008)

20. Wieland, A.P.: Evolving neural network controllers for unstable systems. In: Pro-
ceedings of the 1991 International Joint Conference on Neural Networks (IJCNN),
vol. 2, pp. 667–673. IEEE (1991)

21. Wright, A.H., Thompson, R.K., Zhang, J.: The computational complexity of N-K
fitness functions. IEEE Trans. Evolut. Comput. 4(4), 373–379 (2000)

https://doi.org/10.1007/11844297_68
https://doi.org/10.1007/3-540-45105-6_106
https://doi.org/10.1007/978-3-642-35289-8_36
https://doi.org/10.1007/978-3-642-35289-8_36

	Optimal Neuron Selection and Generalization: NK Ensemble Neural Networks
	1 Introduction to Optimal Neural Selection
	2 Optimization by Dynamic Programming
	3 Converting a Neural Network into an NK Landscape
	4 Experimental Results
	4.1 Problem One: Mackey-Glass Time Series Prediction
	4.2 Problem Two: Double Pole Balancing Without Velocity Inputs
	4.3 Comparative Results

	5 Conclusions
	References

