
What Are the Limits of Evolutionary
Induction of Decision Trees?

Krzysztof Jurczuk(B), Daniel Reska, and Marek Kretowski

Faculty of Computer Science, Bialystok University of Technology,
Wiejska 45a, 15-351 Bialystok, Poland

{k.jurczuk,d.reska,m.kretowski}@pb.edu.pl

Abstract. For typical assessment of applying machine learning or data
mining techniques, accuracy and interpretability are usually the most
important elements. However, when the analyst is faced with real con-
temporary big data problems, scalability and efficiency become crucial
factors. Parallel and distributed processing support is often an indispens-
able component of operational solutions.

In the paper, we investigate the applicability of evolutionary induc-
tion of decision trees to large-scale data. We focus on the existing Global
Decision Tree system, which searches the tree structure and tests in one
run of an evolutionary algorithm. Evolved individuals are not encoded,
so the specialized genetic operators and their application schemes are
used. As in most evolutionary data mining systems, every fitness evalu-
ation needs processing the whole training dataset. For high-dimensional
datasets, this operation is very time consuming and to overcome this
deficiency, two acceleration solutions, based on the most promising, lat-
est approaches (NVIDIA CUDA and Apache Spark) are presented. The
fitness calculations are delegated, while the core evolution is unchanged.
In the experimental part, among others, we identify what are dataset
dimensions which can be efficiently processed in the fixed time interval.

Keywords: Evolutionary data mining · Decision trees
Parallel and distributed computing · Spark · GPU · CUDA

1 Introduction

Decision trees [13] are one of the most popular forms of knowledge, which can be
automatically discovered from the learning dataset. Typical induction algorithm
is based on the well-known top-down approach [20]. Such a greedy heuristics,
based on the classical divide and conquer schema, proved to be really fast and
accurate. On the other hand, it can be easily shown that the resulting trees,
even after post-pruning, are very often overgrown and not stable [17].

More global induction methods, especially based on the evolutionary
approaches [2], have emerged recently as interesting alternatives. In this type
of algorithms, a tree structure, all tests in non-terminal nodes and all predic-
tions in leaves are searched simultaneously. Global methods are clearly more
c© Springer Nature Switzerland AG 2018
A. Auger et al. (Eds.): PPSN 2018, LNCS 11102, pp. 461–473, 2018.
https://doi.org/10.1007/978-3-319-99259-4_37

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-99259-4_37&domain=pdf


462 K. Jurczuk et al.

computationally complex, but the generated decision trees can be significantly
simpler, without sacrificing the prediction quality. For large-scale data, however,
the potential gains from applying the evolutionary approach may be unachiev-
able, as the population-based and iterative induction can be simply too slow.
Moreover, as in many evolutionary data mining algorithms, the whole training
dataset should reside in memory, since it is extensively reexamined. As a result,
memory constraints may influence the applicability of such methods for larger
datasets.

It is clear that the possible success of evolutionary induction of decision trees
for large-scale data depends on the availability, easiness of use and costs of use of
(parallel or distributed) acceleration solutions. In this paper, we discuss a case
study of boosting one existing evolutionary data mining system: Global Decision
Tree (GDT) [6,15]. It enables induction of various variants of decision trees, but
here only univariate classification trees are considered. The investigations are
focussed on economically reasonable approaches, thus, we restrict the hardware
used to a small computing cluster or a single graphics processor unit (GPU)
accelerator. Two novel parallel and distributed processing solutions are analyzed.
The first solution applies general-purpose computation on GPUs (GPGPU) and
it is based on NVIDIA CUDA [21] framework. The second one is devoted to
computing clusters and it is based on the Apache Spark [24] engine. The limits
and constraints imposed by the studied acceleration techniques are identified.

The rest of the paper is organized as follows. First, two acceleration tech-
niques are briefly introduced and their recent applications are mentioned. Then,
the original GDT system is presented. In Sect. 3 two considered extensions are
detailed. Experimental results are described and discussed in Sect. 4. The paper
is concluded and possible future works are sketched in the last section.

1.1 GPU, CUDA

GPUs of modern graphics cards are equipped with hundreds/thousands of small,
energy-efficient computing units (GPU cores). Each GPU core, though smaller,
simpler and slower than a CPU core, is tuned to be especially efficient at the
basic mathematical operations. This simplicity allows many more GPU cores
to be crammed into a single chip. Moreover, current GPU architectures are
approaching terabytes per second memory bandwidth that, coupled with many
computational units, creates an ideal device for handling multiple tasks in par-
allel and managing workloads efficiently. Thus, not only graphics applications
but also GPGPU have gained in popularity [23].

Compute Unified Device Architecture (CUDA) [21] is a programming inter-
face and parallel platform that has revolutionized GPGPU. Although there are
some alternatives (like OpenCL), CUDA is the most widespread platform. In
CUDA, a GPU is considered as a co-processor to a CPU. It means that a part
of CPU’s tasks can be delegated to the GPU and be processed by thousands
of threads in parallel concurrently to the CPU operations. From a program-
ming perspective, CPU calls a kernel that is a function run on the GPU. Then,
many threads are created to run the function. The threads are hierarchically



What Are the Limits of Evolutionary Induction of Decision Trees? 463

grouped into thread blocks, which are in turn arranged on a grid. The CUDA
GPU memory also has a hierarchical structure [21].

GPGPU is recently widely applied in many computational intelligence meth-
ods [4,9,11]. Application of GPUs in evolutionary data mining usually focuses
on boosting the performance of the evolutionary process which is relatively slow
due to high computational complexity, especially for the large-scale data [5,12].

1.2 Apache Spark

Apache Spark [24] is an open-source distributed computing engine for large-scale
data processing and one of the most widely used tools in the ever-growing Big
Data ecosystem. Spark architecture is based on a concept of Resilient Distributed
Dataset (RDD) - an immutable distributed data structure that provides fault
tolerance and can be processed in parallel using high-level APIs.

The main advantages of Spark are its in-memory computing capabilities for
iterative algorithms and interactive data exploration. Spark processes data in
distributed shared memory model, preferably in the RAM of the cluster nodes.
Furthermore, Spark offers a much broader set of high-level functional-style data
operators that simplify the implementation of distributed applications.

One of the earliest applications of Spark to evolutionary algorithms was pro-
posed by Deng et al. [7], where the population in a differential evolution method
is treated as an RDD and only the fitness evaluation is distributed to workers.
Teijeiro et al. [22] also described a parallel differential evolution, focusing on indi-
vidual’s mutation, in both master-slave and island models. As for evolutionary
data mining approaches using Spark, fuzzy rule-based classifiers were proposed
in [8,18]. In [10] the authors tried to scale a genetic programming solution for
symbolic regression and proposed a fitness evaluation service based on Spark.

2 Global Decision Tree System

The GDT system [6,15] enables induction of several types of decision trees,
depending among others on the type of a predictive task to be solved (classifi-
cation or regression), the permitted test types in nodes (univariate or oblique)
and the prediction types in leaves (single value or model), etc. All variants of
the algorithm share the same typical evolutionary process [16] with an unstruc-
tured, fixed size population (default population size: 64 individuals) and a gen-
erational selection (ranking linear selection and elitist strategy are applied). In
this study, to facilitate understanding and to eliminate less important details,
the authors focus only on the simplest classification binary trees with tests based
on continuous-valued features and without missing data.

2.1 Representation, Initialisation and Termination

Tree-based representation is well-known in genetic programming, where first
attempts at evolving a decision tree were presented by Koza [14]. Following these



464 K. Jurczuk et al.

ideas, in the GDT system, decision trees are not specially encoded and they are
processed in their actual form. In non-terminal nodes, typical inequality tests
with two outcomes are used, but only precalculated candidate thresholds are
considered as potential splits.1

An initial individual is created by applying a simple top-down algorithm to
randomly chosen small sub-samples of the original training data (default: 10%
of the training dataset, but not more than 500 objects), which provides a high
degree of heterogeneity of the initial population and is not computationally com-
plex. Among objects located in the considered node, two objects from different
classes (so-called mixed dipole) are randomly chosen. An effective test that sep-
arates these two objects into subtrees is randomly created, taking into account
only attributes with different feature values. The recursive partitioning is fin-
ished when all training objects in a node are characterized by the same class
or the number of objects in a node is lower than the predefined value (default
value: 5) or the maximum tree depth is reached (default value: 10). Finally, the
resulting tree is post-pruned based on the fitness function.

Evolution terminates when the fitness of the best individual in the population
does not improve during the fixed number of generations (default: 1 000) or the
maximum number of generations is reached (default value: 1 000).

2.2 Genetic Operators

In the GDT system, there are two specialized genetic operators corresponding
to classical mutation applied to a single individual (default probability: 0.8), or
to crossover that recombines two individuals (default probability: 0.2).

A mutation operator begins by randomly choosing the node type (equal prob-
ability of selecting a leaf node or an internal node), but if the mutation of one
type is not possible, the other type is chosen. The ranked list of nodes of the
selected type is created, and a mechanism analogous to the ranking linear selec-
tion is applied to decide which node will be affected. In case of internal nodes,
the ranking takes into account both location (level) of the node in the tree and
the reclassification accuracy of each node, whereas for leaves only the second
factor is considered. It should be noticed that a modification of a test in a root
node affects the whole tree and can have a large impact. On the other hand,
mutating an internal node in the lower parts of the tree has only a local impact.
As a result, nodes on higher levels of the tree are mutated with lower probability
and among nodes on the same level, the reclassification quality is used to sort
them. Less accurate leaves are mutated with higher probability and homogenous
leaves (all training instances from the same class) are not mutated at all.

There are a few possible mutation variants, which can be performed on inter-
nal nodes:

– a test can be modified by shifting a threshold value;
1 A candidate threshold for the given attribute is defined as the midpoint between

such a successive pair of objects in the sequence sorted by the increasing value of
the attribute, in which the objects are characterized by different classes.



What Are the Limits of Evolutionary Induction of Decision Trees? 465

– a test can be replaced by another test existing in a tree or by a new one.
New tests can be created based on randomly chosen dipoles (like in initial
population) or locally searched according to some optimality criteria (this
can be called memetic extension);

– one subtree can be replaced by another subtree from that node;
– a node can be pruned into a leaf.

Considering a mutation of a leaf node, the range of variants is more modest:
a leaf can be just transformed into a subtree.

A crossover operator begins by randomly selecting two trees (and nodes in
each of them) that will be affected. There are a few variants of recombination:

– exchange subtrees, branches or only tests associated with nodes (if possible);
such an exchange can be purely random or can use a mixed dipole as a guide;

– transfer subtrees asymmetrically where the subtree of the first/second indi-
vidual is replaced by a new one that was duplicated from the second/first
individual. The replaced subtree starts in the node denoted as a receiver, and
the duplicated subtree starts in the node denoted as a donor. It is worth to
note that different preferences could be used for choosing donor and receiver
sites: the receiver node should have a high classification error because it is
replaced by the donor node that should have a small value of classification
error as it is duplicated.

For both genetic operators each time a choice of operator variant is random,
but only valid variants are considered. The default probability distribution of
variants is uniform.

2.3 Fitness Function

In most of the data mining system, the first and the most important objective
is to find the predictor with the highest classification quality. The main prob-
lem with such an objective is that there is no possibility to measure classifier
performance in advance. We could only estimate the quality on a given dataset
and typically one can only estimate the classifier performance on the training
dataset. However, it is well known, that due to the over-fitting problem, a classi-
fier which perfectly reclassifies the training dataset usually performs much worse
on unseen objects. The second objective, which is often indicated, is devoted to
the classifier simplicity and it can be expressed by the number of nodes. And
hopefully, putting emphasis also on a classifier simplicity could be a good way
to prevent the over-fitting.

In the GDT system, many forms of the single-objective or multi-objective
fitness function are available. As, in this paper, only univariate classification
trees are considered, the simplest weighted form of the fitness function is used:

Fitness(T ) = Accuracy(T ) − α ∗ Size(T ), (1)

where Accuracy(T ) represents the classification quality of the tree T estimated
on the training dataset, Size(T ) is the number of nodes in T and α is the user-
supplied parameter (default value: 0.001). The second part of the equation works



466 K. Jurczuk et al.

Fig. 1. Evolutionary induction accelerations: (a) general idea, (b) more details concern-
ing processesing an individual in parallel by blocks/workers (in case of CUDA/SPARK
acceleration) (step I) as well as reducing/merging results (step II).

as a penalty term and helps to mitigate the over-fitting problem. A similar solu-
tion can be identified in the well-known cost-complexity pruning from the CART
system [3]. It should be at least mentioned that the value of the α parameter can
be usually tuned up for a given dataset, especially if the perfect reclassification
cannot be expected, but the parameter tuning is far outside the paper’s scope.

3 Boosted GDT Versions

The general idea of GDT accelerations is illustrated in Fig. 1(a). The following
operations: initialization of the population as well as selection of the individuals
remain unchanged compared to original GDT system. The reason why these
initial steps are not accelerated is that the initial population is created only once
on a small fraction of the dataset. In the evolutionary loop, also other relatively
fast operations like genetic operations (without individual evaluation) are run in
a sequential manner. After successful application of crossover or mutation, there
is a need to evaluate the individuals. It is the most time-consuming operation
since all objects in the training dataset need to be passed through the tree
starting from the root node to an appropriate leaf. Thus, this operation is isolated
and accelerated by one of the two solutions: CUDA- or Spark-based.

3.1 CUDA Based Acceleration

A GPU-based solution begins by sending the whole dataset to the GPU [12]. This
CPU to GPU transfer is done only once and the data is saved in the allocated
space in the global memory. Thus, all objects of the dataset are accessible for
all threads at any time.

The CPU controls the evolutionary induction. The GPU is called to per-
form calculations when there is a need to evaluate an individual after successful
crossover and/or mutation. At first, the affected individual is sent to the GPU



What Are the Limits of Evolutionary Induction of Decision Trees? 467

(Fig. 1(b)). Then, the CPU asks the GPU to take on some of its work. Two
kernel functions are called. The first kernel is called to propagate objects from
the tree root to the leaves. Next, the second kernel function merges informa-
tion about the objects’ location in the leaves, calculates class distributions and
classification errors and finally propagates them from the leaves toward the tree
root. The obtained tree statistics (like coverage, errors) as well as dipoles are
sent back to the CPU that uses them to update the affected individual.

The first kernel function uses the data decomposition strategy (step I in
Fig. 1(b)). At first, the whole dataset is spread into smaller parts that are pro-
cessed by different GPU blocks. Next, in each block, the assigned objects are
further spread over the threads. Each GPU block makes a copy of the evaluated
individual that is loaded into the shared memory. This way the threads process
the same individual in parallel but handle different chunks of the data.

At the end of the first kernel function, in each tree leaf the number of the
objects of each class that reach that particular leaf is stored. However, these
values are spread over GPU blocks. Thus, the second kernel function is called
(step II in Fig. 1(b)). It merges information from multiple copies of the individual
allocated in each GPU block. This operation sums the counters from copies of
the individual, and the total number of objects of each class in each tree leaf
is obtained. Finally, in the second kernel function reclassification errors in each
leaf are calculated. Then, all gathered information: class distribution and errors
are propagated from the leaves towards the root node.

To improve the algorithm’s performance, the CPU does not have a direct
access to the objects that fall into particular nodes of the tree. The propagation
of the instances is performed only on the GPU (in contrast to the sequential ver-
sion). However, some variants of the mutation operator require (object) dipoles
to construct a new test in an internal node. This is why the GPU also provides
the CPU with two objects of each class in each tree node. In the first kernel,
such objects are randomly selected from the objects that reach particular leaves.
In the second kernel function, when the multiple copies of the tree are merged,
among the available objects again two objected are randomly selected. The CPU
using these two objects (of each class in each tree nodes provided by the GPU)
can quickly and easily constitute the desired dipoles.

3.2 Spark Based Acceleration

The proposed Apache Spark-based acceleration relies on the distribution of the
dataset over a Spark cluster and parallelization of its processing, while the rest
of the evolution is unaffected in principle and is realized sequentially.

The Spark-based approach uses a multi-process architecture: while the orig-
inal GDT system is a native C++ application, Spark is written in the Scala
language and its processes run on the Java Virtual Machine (JVM). The Spark
processes consist of a single Driver that dispatches the work to a multiple Work-
ers that run on the cluster worker nodes. Both the Spark Driver and GDT appli-
cations are running on the same machine and utilise named pipes mechanism
for inter-process communication. As a result, the core evolution is performed in



468 K. Jurczuk et al.

GDT process (C++), whereas the distributed object propagation and dipoles
searching procedures, re-implemented in Java, are realized by Spark (JVM).

The proposed approach is based on an implementation described in [19],
which was modified and optimized to accommodate big datasets processing.
The method starts with the loading of the training dataset, which is processed
line-by-line and transformed into an RDD of objects representing packages of
observations (1 000 obs. in a package by default). This “packing” operation is
highly beneficial from the memory usage standpoint, as it reduces the number
of objects in RDD for the given dataset, minimizing the overhead of RDD data
structures. Next, the observation RDD is split into a number of partitions that
are then cached in the cluster memory.

To prevent data skew, the dataset should be split into partitions of even
size and uniformly distributed over the nodes. In our solution, each observation
package is randomly assigned to a group with a numeric ID, where the group
number equals the number of partitions. The partitions number depends on the
data size, with the usual range of 1 to 4 partitions per single worker CPU core.

During the evolution, the GDT process sends a request with a single tree data
to the Spark Driver. During the induction, all observations are passed through
the transferred decision tree and distributions of classes and dipoles in its leaves
are obtained. The parallel processing is realized by typical pair of map-reduce
operations evoked on the grouped RDD (see Fig. 1(b)). Each dataset partition
group emits a locally processed copy of the tree (map(group) → tree) and
the local trees are then reduced into a final result (reduce(tree1, tree2) →
tree3). During the reduction, the class distributions are simply merged, while
the dipoles are reduced implicitly by selecting the dipoles from one of the trees.
Finally, the error calculations and propagation of classes and dipoles in the final
tree are performed and the results are sent back to the GDT process, where the
overall accuracy is estimated. The process ends when the last tree is processed.

4 Experiments

Experimental validation was performed on an artificially generated dataset called
chess with two 2 real-values attributes and objects arranged on a 3 × 3 chess-
board (Fig. 2). It is a dataset for which moderate sized decision trees are induced.
We used the synthetic dataset to scale it freely, unlike real-life datasets. We exam-
ined various numbers of objects, from hundreds of thousands to a few billions.
All presented results correspond to averages of 5–10 runs and were obtained
with a default set of parameters from the sequential version of the GDT system
[6]. As we are focused in this paper only on size and time performance of the
GDT system, results for the classification accuracy are not included. However,
for the tested dataset, the GDT system managed to induce trees with optimal
structures and accuracy about 99% [15].

GPU experiments were performed on a workstation equipped with Intel Xeon
E5-2620 v4 (20 MB Cache, 2.10 GHz), 256 GB RAM, and running Ubuntu 16.04.
The sequential algorithm was implemented in C++ and compiled with gcc 5.4.0.



What Are the Limits of Evolutionary Induction of Decision Trees? 469

Fig. 2. Examples of analyzed chess3x3 dataset variant and the corresponding ideal
structure classification tree.

The GPU-parallelization was implemented in CUDA-C and compiled by nvcc
CUDA 7.5/8.0 [1] (single-precision arithmetic). We tested two NVIDIA GPU
cards: (i) GeForce GTX 780 (3 GB memory, 2 304 cores) and (ii) Pascal P100
(12 GB memory, 3 584 cores). The first GPU card is the consumer line GeForce
GPU, while the second one is the professional-level GPU accelerator that cur-
rently costs about 5 000 $ (almost 10 times more than the first one).

Apache Spark (version 2.2.0) was deployed on a cluster of 18 worksta-
tions with a quad-core Intel Xeon E3-1270 3.4 GHz CPU, 16 GB RAM, running
Ubuntu 16.04 and connected by a Gigabit Ethernet network. 16 worker nodes
were used by Spark executors, one node was dedicated to Spark Master and
HDFS NameNode (Hadoop 2.7.3) and the last node was running Spark Driver
and GDT C++ processes. The experiments were performed on 4, 8 and 16 work-
ers, which corresponds, respectively, to 16, 32 and 64 CPU cores in total.

We are interested in estimating the size of the dataset which can be processed
on the given platform/hardware in fixed amount of time: 1 min, 1 h and 1 day
(Tables 1 and 2). Table 1 concerns the GPU-accelerated solution. We see that
both GPU cards provide a significant boost in training dataset processing. Pascal
P100 is able to handle 1 million of objects in 1 min. In 1 h, the size of the
processed dataset increases to nearly 100 millions of objects.

Comparing GPUs, we see that a cheaper one (GTX 780) gives about twice
worse results than Pascal P100. However, this performance difference decreases
with the increase of the dataset size. In all cases, for the maximum datasets that
can be stored in each GPU memory, the induction does not last longer than 1
day. The time of processing those maximum datasets is included in Table 3.

The scale of the performance improvement is more visible when comparing
the sequential and GPU-accelerated versions of the GDT system. For example,
as regards 1 h, results show that the GPU-supported version is able to handle the
dataset greater by two orders of magnitude (200 000 objects by the sequential
version vs 84 000 000 objects with a support of Pascal P100). Comparing results
of the GPU-based acceleration and OpenMP parallelization using eight CPU
cores, similarly, we see that the first solution wins.



470 K. Jurczuk et al.

Table 1. The maximum size of the chess3x3 dataset variant which can be completely
processed in the given period of time by GPU-accelerated GDT system. In addition,
results for a sequential CPU version as well as an OpenMP parallelization using eight
CPU cores are provided.

GPU card/period 1 min 1 h 1 day

GTX 780 530 000 57 000 000 256 000 000*

Pascal P100 966 000 84 000 000 1 033 000 000*

Sequential CPU 1 200 275 000 3 500 000

OpenMP (8 CPU cores) 45 000 970 000 14 000 000

*The processing time of the maximum datasets (that can be stored
in each GPU memory) was shorter than 1 day, see Table 3.

Table 2. The maximum size of
the chess3x3 dataset variant which
can be completely processed in the
given period of time by Spark-
accelerated GDT system.

Period
number of
workers

1 h 1 day

4 13 000 000 500 000 000

8 20 000 000 1 250 000 000

16 35 000 000 2 500 000 000

Table 3. The maximum size of the chess3x3
dataset which can be completely processed
by the given platform/hardware. Processing
time is also included.

Solution Dataset size Time

GPU GTX 780 256 000 000 5 h

Pascal P100 1 033 000 000 17 h

Spark 4 workers 900 000 000 33 h

8 workers 1 850 000 000 35.5 h

16 workers 3 900 000 000 38 h

Concerning the Spark-based acceleration, we see that Spark deployed on all
16 nodes can process a dataset of 35 millions objects in 1 h period (Table 2). It
is less than the best Pascal P100 GPU result of 84 millions, but within the same
order of magnitude. Furthermore, the 1 min execution time cannot be achieved
due to the framework and networking overhead. The algorithm usually processes
about 80 thousand trees during its execution and the overhead of Spark can be
from 6 to 8 milliseconds for every tree in smaller datasets processed in 1 h. This
gives about 9 min of total overhead for the entire algorithm. In the 24 h period,
however, the datasets are significantly bigger and the framework impact is not
as noticeable. In the end, Spark can process 2.5 billion observations in one day,
outperforming the GPUs due to their memory limitations.

We are also interested in verifying how big datasets are able to be processed in
the given platform/hardware, taking into account available memory restrictions
(see Table 3). Concerning GPU cards, the dataset size is strictly limited by their
global memory sizes. Since GTX 780 is equipped with 4 times less memory than
Pascal P100, it is able to process about 4 times smaller datasets. Pascal P100
handles over than 1 billion objects in less than 1 day. Because of very long
computation time, we did not even try to process these datasets either by the



What Are the Limits of Evolutionary Induction of Decision Trees? 471

sequential version or OpenMP-based parallelization. Each year, NVIDIA releases
new GPUs with faster and larger memory, thus, it is only a matter of short time
when GPU cards with 24, 48, etc. GB of memory appear.

Spark, given its Big Data processing capabilities, excels with bigger datasets.
The maximum dataset processed on the entire cluster has 3.9 billions objects (see
Table 2), which corresponds to 78 GB of raw text data and 96 GB in memory-
cached RDD. The results show datasets that can be processed on the cluster in
stable and efficient manner, without swapping, excessive JVM garbage collection
and with the dataset fully cached in the memory. Technically it is possible to
configure the RDD to “spill” into disk storage if it does not fit completely in
the memory, but this mode of operation results in drastic performance degra-
dation (reading from memory vs reading from disk). Objects in RDD can also
be serialized for space efficiency, but this process also comes with a performance
penalty due to necessary deserialization. We observed over ten-fold slowdown
with serialized objects, but achieved up to 3:1 compression ratio.

The main advantage of Spark is its capability to easily scale with the size of
the cluster. The results in Table 2 show that the size of the dataset can basically
double with twice the number of nodes. The same application can also run
without any modification on a cluster with potentially thousands of nodes.

5 Conclusions

In this paper, we investigate the applicability of evolutionary induction of deci-
sion trees for large-scale data. We show that boosted solutions are able to process
really large-scale data, even up to billions of objects. It is clear that the CUDA-
based acceleration is generally faster but limited by the size of the GPU memory.
On the other hand, the Spark-based solution is preferable if a dataset becomes
huge, in our case exceeds one billion of objects. Moreover, an unmodified Spark
solution can be easily scaled up just by adding more hardware to the cluster.

In this work, we focus on the dataset dimension expressed as a number of
objects. In future works, we would also like to investigate the influence of the
number of features. This could be especially interesting for genomic data where
the number of features is often large. We also plan to extend the GPU-based
solution into a framework where one can easily add more GPUs to distribute
dataset over them and push the data size limit.

Acknowledgments. This work was supported by the grant S/WI/2/18 from BUT
founded by Polish Ministry of Science and Higher Education.

References

1. NVIDIA Developer Zone - CUDA Toolkit Documentation (2018). https://docs.
nvidia.com/cuda/cuda-c-programming-guide/

2. Barros, R.C., Basgalupp, M.P., De Carvalho, A.C., Freitas, A.A.: A survey of evo-
lutionary algorithms for decision-tree induction. IEEE Trans. Syst. Man Cybern.
Part C (Appl. Rev.) 42(3), 291–312 (2012)

https://docs.nvidia.com/cuda/cuda-c-programming-guide/
https://docs.nvidia.com/cuda/cuda-c-programming-guide/


472 K. Jurczuk et al.

3. Breiman, L., Friedman, J., Stone, C.J., Olshen, R.A.: Classification and Regression
Trees. CRC Press, Boca Raton (1984)

4. Cano, A.: A survey on graphic processing unit computing for large-scale data
mining. WIREs: Data Min. Knowl. Discov. 8(1), e1232 (2018)

5. Chitty, D.: Improving the performance of GPU-based genetic programming
through exploitation of on-chip memory. Soft Comput. 20(2), 661–680 (2016)

6. Czajkowski, M., Kretowski, M.: Evolutionary induction of global model trees with
specialized operators and memetic extensions. Inf. Sci. 288, 153–173 (2014)

7. Deng, C., Tan, X., Dong, X., Tan, Y.: A parallel version of differential evolution
based on resilient distributed datasets model. In: Gong, M., Pan, L., Song, T.,
Tang, K., Zhang, X. (eds.) BIC-TA 2015. CCIS, vol. 562, pp. 84–93. Springer,
Heidelberg (2015). https://doi.org/10.1007/978-3-662-49014-3 8

8. Ferranti, A., Marcelloni, F., Segatori, A., Antonelli, M., Ducange, P.: A distributed
approach to multi-objective evolutionary generation of fuzzy rule-based classifiers
from big data. Inf. Sci. 415–416, 319–340 (2017)

9. Fonseca, A., Cabral, B.: Prototyping a GPGPU neural network for deep-learning
big data analysis. Big Data Res. 8, 50–56 (2017)

10. Funika, W., Koperek, P.: Towards a scalable distributed fitness evaluation ser-
vice. In: Wyrzykowski, R., Deelman, E., Dongarra, J., Karczewski, K., Kitowski,
J., Wiatr, K. (eds.) PPAM 2015. LNCS, vol. 9573, pp. 493–502. Springer, Cham
(2016). https://doi.org/10.1007/978-3-319-32149-3 46

11. Jinjing, L., Qingkui, C., Bocheng, L.: Classification and disease probability pre-
diction via machine learning programming based on multi-gpu cluster mapreduce
system. J. Supercomput. 73(5), 1782–1809 (2017)

12. Jurczuk, K., Czajkowski, M., Kretowski, M.: Evolutionary induction of a decision
tree for large-scale data: a GPU-based approach. Soft Comput. 21(24), 7363–7379
(2017)

13. Kotsiantis, S.B.: Decision trees: a recent overview. Artif. Intell. Rev. 39(4), 261–283
(2013)

14. Koza, J.R.: Concept formation and decision tree induction using the genetic
programming paradigm. In: Schwefel, H.-P., Männer, R. (eds.) PPSN 1990.
LNCS, vol. 496, pp. 124–128. Springer, Heidelberg (1991). https://doi.org/10.1007/
BFb0029742

15. Kretowski, M., Grzes, M.: Evolutionary induction of mixed decision trees. Int. J.
Data Warehous. Min. (IJDWM) 3(4), 68–82 (2007)

16. Michalewicz, Z.: Genetic Algorithms + Data Structures = Evolution Programs.
Springer, Heidelberg (1996). https://doi.org/10.1007/978-3-662-03315-9

17. Murthy, S.K.: Automatic construction of decision trees from data: a multi-
disciplinary survey. Data Min. Knowl. Discov. 2(4), 345–389 (1998)

18. Pulgar-Rubio, F.J., Rivera-Rivas, A.J., Pérez-Godoy, M.D., González, P., Car-
mona, C.J., del Jesus, M.J.: MEFASD-BD: multi-objective evolutionary fuzzy algo-
rithm for subgroup discovery in big data environments - a MapReduce solutioon.
Knowl.-Based Syst. 117, 70–78 (2017)

19. Reska, D., Jurczuk, K., Kretowski, M.: Evolutionary induction of classification
trees on spark. In: Rutkowski, L., Scherer, R., Korytkowski, M., Pedrycz, W.,
Tadeusiewicz, R., Zurada, J.M. (eds.) ICAISC 2018. LNCS (LNAI), vol. 10841, pp.
514–523. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-91253-0 48

20. Rokach, L., Maimon, O.: Top-down induction of decision trees classifiers-a survey.
IEEE Trans. Syst. Man Cybern. Part C (Appl. Rev.) 35(4), 476–487 (2005)

21. Storti, D., Yurtoglu, M.: CUDA for Engineers : An Introduction to High-
Performance Parallel Computing. Addison-Wesley, New York (2016)

https://doi.org/10.1007/978-3-662-49014-3_8
https://doi.org/10.1007/978-3-319-32149-3_46
https://doi.org/10.1007/BFb0029742
https://doi.org/10.1007/BFb0029742
https://doi.org/10.1007/978-3-662-03315-9
https://doi.org/10.1007/978-3-319-91253-0_48


What Are the Limits of Evolutionary Induction of Decision Trees? 473

22. Teijeiro, D., Pardo, X.C., González, P., Banga, J.R., Doallo, R.: Implementing
parallel differential evolution on spark. In: Squillero, G., Burelli, P. (eds.) EvoAp-
plications 2016. LNCS, vol. 9598, pp. 75–90. Springer, Cham (2016). https://doi.
org/10.1007/978-3-319-31153-1 6

23. Yuen, D., Wang, L., Chi, X., Johnsson, L., Ge, W., Shi, Y.: GPU Solutions to
Multi-scale Problems in Science and Engineering. Springer, Berlin (2013). https://
doi.org/10.1007/978-3-642-16405-7

24. Zaharia, M.: Apache spark: a unified engine for big data processing. Commun.
ACM 59(11), 56–65 (2016)

https://doi.org/10.1007/978-3-319-31153-1_6
https://doi.org/10.1007/978-3-319-31153-1_6
https://doi.org/10.1007/978-3-642-16405-7
https://doi.org/10.1007/978-3-642-16405-7

	What Are the Limits of Evolutionary Induction of Decision Trees?
	1 Introduction
	1.1 GPU, CUDA
	1.2 Apache Spark

	2 Global Decision Tree System
	2.1 Representation, Initialisation and Termination
	2.2 Genetic Operators
	2.3 Fitness Function

	3 Boosted GDT Versions
	3.1 CUDA Based Acceleration
	3.2 Spark Based Acceleration

	4 Experiments
	5 Conclusions
	References




