
Helper and Equivalent Objective Different Evolution for
Constrained Optimisation

Tao Xu
Aberystwyth University

Aberystwyth, UK
tax2@aber.ac.uk

Jun He
Nottingham Trent University

Nottingham, UK
jun.he@ntu.ac.uk

Changjing Shang
Aberystwyth University

Aberystwyth, UK
cns@aber.ac.uk

ABSTRACT
A novel multiobjective evolutionary algorithm is proposed for con-
strained optimisation in this paper. It transforms a constrained
optimisation problem into a two objective optimisation problem.
One objective is equivalent to solving the original constrained prob-
lem, and the other is the degree of constraint violation which only
plays a helper role. This multiobjective problem is decomposed into
several single objective optimisation problems using a dynamical
weighted sum approach. Each single objective eventually tends
to an equivalent objective. A decomposition-based multiobjective
optimisation differential evolution algorithm is designed for solving
these single objective problems simultaneously.

KEYWORDS
constrained optimisation, multi-objective optimisation, evolution-
ary algorithms, objective decomposition
ACM Reference format:
Tao Xu, Jun He, and Changjing Shang. 2019. Helper and Equivalent Ob-
jective Different Evolution for Constrained Optimisation. In Proceedings of
the Genetic and Evolutionary Computation Conference 2019, Prague, Czech
Republic, July 13–17, 2019 (GECCO ’19), 2 pages.
https://doi.org/10.1145/3319619.3326752

A constrained optimisation problem (COP) can be formulated in a
mathematical form:

min f (®x), ®x = (x1, · · · ,xn) ∈ Ω,

subject to
{

f Ii (®x) ≤ 0, i = 1, · · · ,q,
f Ej (®x) = 0, j = 1, · · · , r ,

(1)

where Ω is a bounded domain in Rn . f Ii (®x) ≤ 0 is the ith inequality
constraint while f Ej (®x) = 0 the jth equality constraint. A solution
satisfying all constraints is called a feasible solution. Let Ω∗ denote
the set of optimal feasible solution(s) and ΩF ,ΩI the sets of feasible
and infeasible solutions respectively.

A multi-objective method works by transforming a COP into
a multi-objective optimisation problem (MOP) without inequality
and equality constraints. The most popular implementation utilises
a bi-objective model [4, 11]:

min ®f (®x) = (f (®x),v(®x)), ®x ∈ Ω, (2)

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
GECCO ’19, July 13–17, 2019, Prague, Czech Republic
© 2019 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-6748-6/19/07.
https://doi.org/10.1145/3319619.3326752

where f (®x) is the original objective function and v(®x) the sum of
constraint violation degrees [9].

Objectives used in the multiobjective optimisation method for
COPs can be classified into two types: helper and equivalent objec-
tives. Given a COP and a subset P such that Ω∗ ∩ P , ∅, a scalar
function д(®x) defined on P is called an equivalent objective function
if and only if the optimal solution set to minд(®x) equals to Ω∗ ∩ P .
Otherwise it is called a helper objective function. The MOP (2) is
composed of two helper objectives [9].

This paper considers a novel multi-objective method which is
to transform a COP into a MOP with one equivalent objective and
one helper objective [9].

min ®f (®x) = (e(®x),v(®x)), ®x ∈ Ω, (3)

where e(®x) is an equivalent function and v(®x) the degree of con-
straint violation, a helper objective function.

A new equivalent function e(®x) is constructed as follows [9]:
given a population P , let x∗(P) be the best solution in P :

®x∗ =

{
argmin{v(®x); ®x ∈ P}, if P ∩ ΩF = ∅,

argmin{ f (®x); ®x ∈ P ∩ ΩF }, if P ∩ ΩF , ∅,
(4)

and ẽ(®x) := | f (®x) − f (®x∗)| denote the fitness difference. For any
x ∈ P , define

e(®x) = w1ẽ(®x) +w2v(®x), (5)
wherew1 > 0,w2 > 0 are weights.

This new equivalent objective aims to reduce the effect of a
heavily imposed preference of feasible solutions by the feasible
rule [1]. In terms of e , an infeasible solution ®x could be better than
a feasible solution ®y if they satisfy the condition

w1ẽ(®x) +w2v(®x) < ẽ(®y).

The MOP (3) is decomposed into a group of single objective
problems (SOPs) by assigning λ tuples of weights (w1i ,w2i ,w3i),
i = 1, · · · , λ.

min fi (®x) = w1i ẽ(®x) +w2iv(®x) +w3i f (®x), (6)
In the weighted sum, the value of each function is normalised to
[0, 1] by min-max normalisation within population P .

A decomposition-based multiobjective optimisation differential
evolution, called HECO-DE, is designed for solving the above λ
SOPs. HECO-DE adopts mutation and crossover operators similar
to those in LSHADE44 [2]. But HECO-DE falls in the framework of
multiobjective optimisation while LSHADE44 in single objective
optimisation. Two mutation operators and two crossover opera-
tors [6, 7] are used in HECO-DE, which are Current-to-pbest/1
mutation [10] and the most popular rand/1 mutation, binomial
crossover and exponential crossover [3]. A DE strategy = one muta-
tion+ one crossover. The total number of DE strategies inHECO-DE

9

https://doi.org/10.1145/3319619.3326752
https://doi.org/10.1145/3319619.3326752

GECCO ’19, July 13–17, 2019, Prague, Czech Republic Tao Xu, Jun He, and Changjing Shang

is four and they are labelled by 1, · · · , 4. Strategy k is selected with
a probability qk . Strategy k is called success if it generates a bet-
ter child. Historical memories SFk and SCRk preserve the value of
mutation factors Fk and crossover rates CRk for a successful strat-
egy k . Fk and CRk are adapted in each generation based on their
correspondent historical memories. The procedure of HECO-DE is
shown in Algorithm 1.

Algorithm 1 The HECO-DE algorithm
Require: objective function f (®x) and constraint violation v(®x);
1: Initialisation: λ ← 9, Ninit ← 12n, Nmin ← λ, circle memo-

ries, probabilities qk ← 1/4where k = 1, 2, 3, 4, archiveA← ∅;
2: t ← 0 and Nt ← Ninit ;
3: Randomly generate an initial population Pt of size Ninit ;
4: Evaluate f (®x) and v(®x) for ®x ∈ Pt ;
5: Number of fitness evaluations FES ← NPinit ;
6: while FES ≤ FESmax do
7: Adjust weights;
8: Sets SFk ← ∅, SCRk ← ∅,k = 1, 2, 3, 4 ; C ← ∅;
9: Randomly select λ individuals (denoted by Q) from Pt and

then update Pt ← Pt −Q ;
10: for xi in Q , i = 1, . . . , λ do
11: Choose strategy k with probability qk and generate Fk

and CRk with respective circle memories;
12: Generate a trail vector ®yi ;
13: Evaluate f (®yi) and v(®yi);
14: Q ′ ← Q ∪ { ®yi };
15: Normalise ẽ(®x), f (®x) and v(®x) in Q ′;
16: Calculate fi (®yi) and fi (®xi);
17: if fi (®yi) < fi (®xi) then
18: Store | fi (®yi) − fi (®xi)|
19: Save Fk and CRk into respective SFk and SCRk ;
20: update probability qk of choosing strategy k ;
21: Insert xi into archive A and insert yi into set C;
22: end if
23: end for
24: Pt+1 ← Pt ∪C;
25: if |A| > NA then
26: Randomly delete |A| − NA individuals from archive A

where NA = 4.0|Pt |;
27: end if
28: Update circle memories;
29: Recompute population size of Pt+1;
30: if |Pt+1 | < |Pt | then
31: Reduce the population size of Pt+1 by remove superflu-

ous individuals;
32: end if
33: end while
34: t ← t + 1;
Ensure: the best individual ®x ∈ Pt+1.

Lines 1-5 contribute to initialisation of the initial population
size (NPinit), minimum population size (NPmin), the maximum
number of fitness evaluations (FESmax), circle memories for DE
parameters adaptation, strategy selection probability qk , external
archive A, initial population P0.

Line 7 is to adjust weightsw1i ,w2i ,w3i . Their initial value is set
to i

λ . Weightw1i,t is adjusted by

w1i,t = (t
Tmax
)Lw1i,0 (7)

where Tmax is the maximum count of generations and L is set to
100. Weightsw2i,t andw3i,t are adjusted by

w2i,t = l(t)w2i,0, w3i,t = (1 − l(t))w3i,0. (8)

where l(t) = (t
Tmax
).

In Line 8, all sets SFk and SCRk ,k = 1, 2, 3, 4 are set to ∅. In Line
9, λ individuals (of set Q) are randomly chosen from Pt .

In Lines 10-23, for each point ®xi in subpopulationQ , its trail point
®yi is appended into setQ , then a new subpopulationQ ′ is generated
whose size is λ + 1. Let ®x∗(Q ′) be the best solution in Q ′ which is

®x∗ =

{
argmin{v(®x); ®x ∈ Q ′}, if Q ′ ∩ ΩF = ∅,

argmin{ f (®x); ®x ∈ Q ′ ∩ ΩF }, if Q ′ ∩ ΩF , ∅.
(9)

Let f ∗(Q ′) := f (®x∗).
For an ®x ∈ Q ′, calculate the value of fi (®x) according to formula

(6). Thus, the comparison between ®xi and its trail point ®yi is based
on fi (®xi) and fi (®yi). ®xi will never be replaced if it is the best in
population P .

Afterwards, Lines 24 is to put back individuals from set C to
Pt . In Lines 25-27, if the archive size |A| > NA, then randomly
delete |A| −NA individuals from the archiveA to ensure the archive
size remaining invariant. Line 28 is to update circle memories [5].
In Lines 29-32, the population size of Pt+1 is linearly decreased
by randomly removing superfluous individuals from population
Pt+1 [5].

The theoretical foundation of the helper and objective method
for COPs and the detailed explanation of the HECO-DE algorithm
can be found in [9]. But the parameters used in this implementation
is a little different from [9]. Results and codes are shared on [8]

REFERENCES
[1] K. Deb. 2000. An efficient constraint handling method for genetic algorithms.

Computer methods in applied mechanics and engineering 186, 2-4 (2000), 311–338.
[2] R. Poláková, J. Tvrdík, and P. Bujok. 2016. L-SHADE with competing strategies

applied to CEC2015 learning-based test suite. In Evolutionary Computation (CEC),
2016 IEEE Congress on. IEEE, 4790–4796.

[3] R. Storn. 1999. System design by constraint adaptation and differential evolution.
IEEE Transactions on Evolutionary Computation 3, 1 (1999), 22–34.

[4] P. D. Surry and N. J. Radcliffe. 1997. The COMOGA method: constrained optimi-
sation by multi-objective genetic algorithms. Control and Cybernetics 26 (1997),
391–412.

[5] R. Tanabe and A. S. Fukunaga. 2014. Improving the search performance of SHADE
using linear population size reduction. In Evolutionary Computation (CEC), 2014
IEEE Congress on. IEEE, 1658–1665.

[6] J. Tvrdık. 2006. Competitive differential evolution. In MENDEL. 7–12.
[7] J. Tvrdík. 2009. Adaptation in differential evolution: A numerical comparison.

Applied Soft Computing 9, 3 (2009), 1149–1155.
[8] T. Xu. 2019. Results and codes. (2019). https://drive.google.com/open?id=

1PS0uvVbQ9EE6Ih78gJotmnlMZHVyMNzz
[9] T. Xu, J. He, and C. Shang. 2019. Helper and Equivalent Objectives: An Efficient

Approach to Constrained Optimisation. arXiv preprint arXiv:1903.04886 (2019).
[10] J. Zhang and A. C. Sanderson. 2009. JADE: adaptive differential evolution with

optional external archive. IEEE Transactions on evolutionary computation 13, 5
(2009), 945–958.

[11] Y. Zhou, Y. Li, J. He, and L. Kang. 2003. Multi-objective and MGG Evolutionary
Algorithm for Constrained Optimisation. In Proceedings of 2003 IEEE Congress on
Evolutionary Computation. IEEE Press, Canberra, Australia, 1–5.

10

https://drive.google.com/open?id=1PS0uvVbQ9EE6Ih78gJotmnlMZHVyMNzz
https://drive.google.com/open?id=1PS0uvVbQ9EE6Ih78gJotmnlMZHVyMNzz

	Abstract
	References

