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ABSTRACT
Wedescribe a genetic programming-based system for the automated
discovery of new test statistics. Specifically, our system was able
to discover test statistics as powerful as the t-test for comparing
sample means from two distributions with equal variances [1].
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The goal of the present studywas to develop an evolutionary system
for the automated discovery of new test statistics. There were three
important challenges that needed to be addressed to accomplish this
objective. First, we needed an engine for generating mathematical
candidates for test statistics, in our case using available array-based
operators in a modern programming language with a data structure
that is easy for the computer to manipulate. Second, we needed
a set of evaluation criteria that are general enough to allow the
computer to generate innovative solutions while specific enough to
satisfy human statistical objectives without directing the computer
to pre-determined outcomes. Third, we needed a system that could
tinker with candidate test statistics as a mathematician would, by
making small changes and by interchanging functional modules
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to create new solutions. We applied a genetic programming (GP)
solution to this problem.

In our GP experiments, we asked whether the GP system is
capable of discovering test statistics similar in power to the t-test
(Equation 1) when presented with our general evaluation criteria.
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To answer this question, we first simulated data drawn from two
normal distributions, each with different means (0 and 1, 0 and 2,
or 0 and 4) but the same variances (standard deviations of 1, 2, or
4, respectively). A total of 30 data sets with sample size of n=100
were simulated for each set of means. These data are used for the
evaluation criteria to represent data consistent with the alternate
hypothesis of a difference in means. Next, we permuted each of
these 30 data sets to create pairs of distributions consistent with the
null hypothesis that the data were drawn from the same distribution
with equal means and variances. Finally, we simulated data under
the alternate hypothesis such that as the difference in the means
increased (0 and 10 or 0 and 100) the equal variances also increased
(10 or 100, respectively). A total of 30 datasets were simulated for
each set of means and variances. These data were used to evaluate
scale invariance. Finally, we implemented an evaluation criterion
that encourages smaller models, to incentivize the GP system to
explore smaller models while at the same time being able to create
diversity by considering larger models.

The key to implementing an evolutionary approach to the dis-
covery of test statistics is to articulate the objective criteria that are
important to human statisticians. We chose here to focus on four
very general criteria to allow the system to be innovative. First,
we want a test statistic to have a low rate of type I errors. These
occur when the null hypothesis is true but is rejected. Second, we
want a statistic to have good power under the alternative hypothe-
sis (power is the probability that the test correctly rejects the null
hypothesis when a specific alternative hypothesis is true). Third,
we want a statistic to be invariant to the scale of the data, making
it generalizable. Finally, we would like a statistic to be as simple as
possible, thus making it easy to understand and implement.
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To quantify the objective criteria we used the following fitness
function. When we evaluate an individual, we provide the afore-
mentioned pairs of distributions to the evolved test statistic to
generate the test statistic scores for the pairs. Next, we compute a
Gaussian kernel density estimate (KDE) of the test statistics from
the null distribution pairs (the null distribution is the probability
distribution of the test statistic when the null hypothesis is true).
The KDE allows us to measure the probability of a test statistic
value appearing in the null distribution.

For the first objective—low false positive rate—we take the evolved
test statistic values computed from the null distributions across
each set of 30 data sets and measure the probability of them occur-
ring in the null distribution. In this case, higher probabilities are
considered better because it entails that the null test statistic values
are distributed together around a single value.

For the second objective—high power—we take the evolved test
statistic values computed from the distribution pairs with differ-
ences in means and measure the probability of them occurring in
the null distribution. In this case, lower probabilities are considered
better because it entails that the test statistic values, when there
is a difference in means, fall outside the null distribution. We note
that we combined objectives one and two into a single fitness com-
ponent to limit the multiobjective search space, as the objectives
are highly related.

For the third objective—scale invariance—we used the evolved
test statistic values from the distribution pairs with means of 0 and
1, 0 and 10, and 0 and 100. As these distribution pairs are the exact
same but with a multiplier of 1, 10, and 100, respectively, a test
statistic that is scale invariant should produce the exact same test
statistic values for these distributions. Thus, for this objective we
considered lower sums of differences between the test statistic pairs
to be better.

For the fourth objective—simplicity—we used the number of
primitives in the GP tree as the measure of complexity. The number
of primitives in the GP tree directly correlates to the complexity of
the function; thus, GP trees with fewer primitives are considered
better.

Using the GP system with these evaluation data and criteria,
we ran 30 unique replicate runs (i.e., with different random seeds)
with a population size of 1000 candidate test statistics for 1000 GP
generations. We saved the entire Pareto front of test statistics at
the end of every replicate run and manually inspected every test
statistic on the final Pareto fronts.

Figure 1 shows the t-test as a GP tree and Figure 2 shows evolved
solutions.

Across all 30 replicate runs, the GP system discovered test statis-
tics that had a fitness that was equal to or better than the t-test.

Our results showed that in each of the replicate runs the GP
system was able to generate test statistics that had fitness values
as good as or better than the t-test that is the widely accepted and
applied solution to this problem. Further, our GP-generated test
statistics were linearly related to the t-test and tended to be much
simpler. We concluded that GP is suited to the automatic generation
of test statistics and should be extended and applied to unsolved
test statistic problems in statistics.

The need for new statistics is exploding as new technologies give
us new data with unique characteristics that yield new scientific

Figure 1: The two-sample t-test equation represented as a
binary expression tree. The vector of sample values is rep-
resented by X, sample means by X bar, variances by V, and
sample sizes by N for samples one and two.

Figure 2: Three GP-generated test statistics represented as
binary expression trees. The vector of sample values is rep-
resented by X, sample means by X bar, standard deviations
by S, standard error by SE, and median by M.

questions. There is no question that data and experimental designs
are changing at a rate that exceeds that of mathematical statisticians.
In fact, the number of statisticians that actively develop new test
statistics is decreasing as trainees opt formore exciting and lucrative
fields such as data science, where the demand for the application of
statistical methods and machine learning is exploding. This is the
right time to explore artificial intelligence methods for assisting
statisticians with the automated development of test statistics.
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