
Combining Artificial Neural Networks and Evolution to Solve
Multiobjective Knapsack Problems

Roman Denysiuk
CEA, LIST

Gif-sur-Yvette, France
roman.denysiuk@cea.fr

António Gaspar-Cunha
University of Minho
Guimarães, Portugal
agc@dep.uminho.pt

Alexandre C. B. Delbem
University of São Paulo

São Carlos, Brazil
acbd@icmc.usp.br

ABSTRACT
The multiobjective knapsack problem (MOKP) is a combinatorial
problem that arises in various applications, including resource al-
location, computer science and finance. Evolutionary multiobjec-
tive optimization algorithms (EMOAs) can be effective in solving
MOKPs. Though, they often face difficulties due to the loss of so-
lution diversity and poor scalability. To address those issues, our
study [2] proposes to generate candidate solutions by artificial neu-
ral networks. This is intended to provide intelligence to the search.
As gradient-based learning cannot be used when target values are
unknown, neuroevolution is adapted to adjust the neural network
parameters. The proposal is implemented within a state-of-the-art
EMOA and benchmarked against traditional search operators base
on a binary crossover. The obtained experimental results indicate a
superior performance of the proposed approach. Furthermore, it is
advantageous in terms of scalability and can be readily incorporated
into different EMOAs.

CCS CONCEPTS
•Computingmethodologies→Artificial intelligence; Search
methodologies;

KEYWORDS
Evolutionary computing, artificial neural networks, multiobjective
knapsack problem

ACM Reference Format:
Roman Denysiuk, António Gaspar-Cunha, and Alexandre C. B. Delbem.
2019. Combining Artificial Neural Networks and Evolution to Solve Multi-
objective Knapsack Problems. In Proceedings of the Genetic and Evolutionary
Computation Conference Companion 2019 (GECCO ’19 Companion). ACM,
New York, NY, USA, 2 pages. https://doi.org/10.1145/3319619.3326757

1 INTRODUCTION
The knapsack problem is a well-known combinatorial optimization
problem. It comprises a knapsack of certain capacity and a set of
items characterized by weights and profits. The aim is to fill up
the knapsack by a collection of items so that the total profit is
maximized and the total weight does not exceed the given capacity.
There are several variants of a knapsack problem. Themost common

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
GECCO ’19 Companion, July 13–17, 2019, Prague, Czech Republic
© 2019 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-6748-6/19/07. . . $15.00
https://doi.org/10.1145/3319619.3326757

one is the 0-1 knapsack problem, where the number of copies of
each item is either zero or one. MOKP is an extension of a single
objective knapsack problem [7] and can be formulated as follows.

maximize
x ∈{0,1}n

fj (x) =
n∑
i=1

xipi j

subject to
n∑
i=1

xiwi j ≤ c j ∀j ∈ {1, . . . ,m}

wherem is the number of knapsacks, n is the number of items, pi j
andwi j are respectively the profit and weight of the i-th item with
respect to the j-th knapsack, c j is the capacity of the j-th knapsack.

A feasibility ration r j determines the capacity of the j-th knap-

sack as c j = r j
n∑
i=1

wi j .

A binary string x encodes the solution such that

∀i ∈ {1, . . . ,n} : xi =

{
1 if the i-th item is selected
0 otherwise.

Due to its practical importance, the knapsack problem has been
intensively investigated. There have been developed different exact
and approximate algorithms. This study aims to address difficulties
experienced by EMOAs on MOKPs, such as the loss of diversity,
poor convergence and scalability [4, 6]. The mechanism for gener-
ating solutions, aimed to exploit learning capabilities of ANNs, is
suggested. The intelligence to this mechanism is provided by using
the item profits and weights as input data. This input is propagated
through neural networks whose outputs offer decisions on the se-
lection of items in multiobjective search. Although this resembles
a traditional classification task, there are no target values for train-
ing and gradient-based learning cannot be applied. Therefore, it
is suggested to evolve network networks by evolutionary process,
which is known as neuroevolution [3].

2 METHOD
The S metric selection evolutionary multiobjective optimization al-
gorithm (SMS-EMOA) [1] is adopted as the baseline framework for
operating in the objective space. SMS-EMOA evolves the population
using a steady-state evolutionary process where a single offspring
is produced in each generation. The mating selection is performed
by picking up uniformly at random a set of parent individuals. The
variation procedure generates single offspring manipulating the
selected parents. The replacement procedure updates the popu-
lation by removing an individual with the smallest hypervolume
contribution in the last nondominated front.

For generating offspring, the study suggests to use artificial neu-
ral networks (ANNs) instead of traditional evolutionary operators.
This explores the nature inspired notion of genotype-phenotype
mapping [5]. The genotype space defines a search space where

19

https://doi.org/10.1145/3319619.3326757
https://doi.org/10.1145/3319619.3326757

GECCO ’19 Companion, July 13–17, 2019, Prague, Czech Republic R. Denysiuk et al.

evolutionary operators act for reproduction. The phenotype space
represents a space of actual solutions to the problem at hand. The
phenotype representation is used to compute the objective values
for the given solution.

In our study, a solution the genotype space is represented by
a chromosome encoding parameters of neural network. We use
a direct encoding with one-to-one mapping between genes and
network parameters. Each chromosome is represented by a real-
valued string. Depending on the location, a gene encodes either
weight, bias or a component of boolean mask for the hidden layer.
The boolean mask is determined by thresholding at zero. The false
values indicate the removal of neurons with all incoming and out-
going connections. This is a simple yet effective encoding scheme
that can learn the parameters and topology of neural networks.

A suitable genotype-phenotype mapping is defined as follows.
An individual’s chromosome is decoded into the feedforward neural
network with one hidden layer. The standard sigmoid function is
used in all hidden and output neurons. The items associated with
the MOKP are placed into a feature space. The simplest way is to
use normalized weights and profits of the item as features. The
features of each item are fed into the neural network. The output
neuron produces binary variables by thresholding indicating the
items selection.

To achieve a desired behavior, i.e. the optimal genotype-phenotype
mapping, the population of chromosomes undergoes the evolution.
The selection and replacement are performed using the framework
of SMS-EMOA. As to recombination, a real valued encoding en-
ables the application of established operators for continuous opti-
mization. The effects of different operators are investigated in the
experimental study. Thus, our study revolves around the idea of
combining neural networks and evolutionary computing to exploit
the strengths of both.

3 RESULTS
The proposed approach has been validated through computational
experiments. These involved MOKP instances having between 2
and 5 knapsacks with items ranging from 500 to 10000. All the
tested algorithms performed 21 independent runs using different
seeds for the random number generator. The population size and
the maximum number of generations were set to 100 and 1000,
respectively. The hypervolume and epsilon indicators were used for
performance comparison. The Wilcoxon rank sum test was applied
to draw statistically sound conclusions.

The experiments investigated the following issues.
1. The effectiveness in comparison with traditional evolution. We

compared evolutionary and neuroevolution search having them op-
erating identically in the objective space. The former evolved binary
strings using one-point, two-point and uniform crossovers. The
latter evolved neural networks for genotype-phenotype mapping.
As a result, neuroevolutionary approach significantly outperformed
evolutionary ones regarding both convergence and diversity. The
results also revealed neuroevolution performs superior in terms of
scalability. This is because the size of the search space explored by
neuroevolution depends slightly on the MOKP size.

2. The effect of variation operator. This operator is responsible
for generating offspring and is important for the effectiveness of

the search process. One advantage of the used real encoding is the
ability to adapt different variation operators proved effective in con-
tinuous optimization. Three variation operators were investigated,
namely simulated binary crossover (SBX), differential evolution
(DE) and evolution strategy (ES). Better results were obtained with
ES operator. This can be explained by a self-adaptation of strat-
egy parameters, such as the mutation strengths encoded into the
chromosome.

3. The effect of feature mapping. Two possible ways to repre-
sent items in the feature space were investigated. The one used
normalized profits and weights of items. This mapping is simple
and leads to the size of input layer being twice the size of the ob-
jective space. The other used the ratio between profits and weights.
Such mapping can be useful because it reduces the number of input
neurons and parameters in neural network. The results showed
that the first approach performs better. A possible reason is that
the features represented by the ratio between profits and weights
are less informative.

4. The effect of network topology. The topology refers to the
number of neurons and the way they are connected in ANN. This
is an important issue as it influences the learning and determines
the expressive capacity. We studied the ability of neuroevolution to
determine the optimal network structure. We compared the results
obtained with a fixed number of neurons in the hidden layer and
those determined by search. Slightly better results were produced
using a fixed topology. This can be due to an additional complexity
introduced into the search.

4 CONCLUSIONS
This study suggested a neuroevolutionary approach to solveMOKPs.
Contrary to traditional evolutionary approaches evolving solutions
to the MOKP, the proposed approach evolves genotype-phenotype
mappings. The obtained results showed it can produce outperfor-
mance and exhibit scalability.

As future work, the introduced idea can be adapted to solve
similar combinatorial problems. Another interesting research di-
rection is to explore the notion of transfer learning, where neural
networks resulting from addressing one task are applied to solve
other problems.

REFERENCES
[1] N. Beume, B. Naujoks, and M. Emmerich. 2007. SMS-EMOA: Multiobjective

Selection Based on Dominated Hypervolume. Eur. J. Oper. Res. 181, 3 (2007),
1653–1669.

[2] R. Denysiuk, A. Gaspar-Cunha, and A. C. B. Delbem. 2019. Neuroevolution for
solving multiobjective knapsack problems. Expert Syst. Appl. 116 (2019), 65–77.
https://doi.org/10.1016/j.eswa.2018.09.004

[3] D. Floreano, P. Dürr, and C. Mattiussi. 2008. Neuroevolution: from architectures
to learning. Evol. Intell. 1, 1 (2008), 47–62.

[4] H. Ishibuchi, N. Akedo, and Y. Nojima. 2015. Behavior of Multiobjective Evolution-
ary Algorithms on Many-Objective Knapsack Problems. IEEE Trans. Evol. Comput.
19, 2 (2015), 264–283.

[5] F. Rothlauf. 2006. Representations for Genetic and Evolutionary Algorithms (2 ed.).
Springer, Heidelberg.

[6] H. Sato, H. E. Aguirre, and K. Tanaka. 2007. Local dominance and local recombi-
nation in MOEAs on 0/1 multiobjective knapsack problems. Eur. J. Oper. Res. 181,
3 (2007), 1708–1723.

[7] E. Zitzler and L. Thiele. 1999. Multiobjective Evolutionary Algorithms: A Compar-
ative Case Study and the Strength Pareto Approach. IEEE Trans. Evol. Comput. 3,
4 (1999), 257–271.

20

https://doi.org/10.1016/j.eswa.2018.09.004

	Abstract
	1 Introduction
	2 Method
	3 Results
	4 Conclusions
	References

