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ABSTRACT
Stochastic synthesis of recursive functions has historically proved

difficult, not least due to issues of non-termination and the often

ad hoc methods for addressing this. We propose a general method

of implicit recursion which operates via an automatically-derivable

decomposition of datatype structure by cases, thereby ensuring

well-foundedness. The method is applied to recursive functions

of long-standing interest and the results outperform recent work

which combines two leading approaches and employs ‘human in

the loop’ to define the recursion structure. We show that stochastic

synthesis with the proposed method on benchmark functions is

effective even with random search, motivating a need for more

difficult recursive benchmarks in future. This paper summarizes

work that appeared in [1].
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1 INTRODUCTION
Synthesis of recursive programs is of long-standing interest in the

Genetic Programming (GP) community [10], with a wide variety of

proposed approaches (see e.g. [2, 5, 11, 12, 14]). Most of these pro-

posals focus on explicit recursion, i.e. recursion expressed directly

within the body of the synthesised code. In contrast, previous work

by Yu et al. [15–17] demonstrated the utility of implicit recursion,
where the control flow of the recursion is orchestrated by a spe-

cific template of individually handled cases. The implicit approach

makes no recursive calls in the synthesized code: these are instead

delegated to an external, fixed combinator : a stateless function that

factors out the recursion pattern.
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The implicit approach has several advantages. It ensures that

the recursion is well-founded, thus bypassing the issue of non-

termination. The search space of the implicit case is likely to be

smaller than that of the explicit approach, since the code for par-

titioning the recursion into base and alternative cases is provided

by a template. The cases further constrain the list of fitness cases

(examples) that can be used in GP-based search, thereby reducing

the computational expense. Yu’s method of implicit recursion was

applied to the List data-type via its associated fold method. The fold
method of List is a higher-order function that takes as argument a

callback function used to accumulate information as the fold tra-

verses the list. Although fold can express a surprisingly wide range

of functions [6], it realises only one specific recursion scheme, i.e. it
does not encompass all possible ways of performing recursion.

In our article [1] we describe a generalisation of this familiar fold
on lists to all inductively defined data types. We use the resulting

recursion schemes as a basis for inducing several widely-studied

functions using stochastic heuristic search. This approach can auto-

matically derive recursion schemes from the datatype declaration

and produces programs that are guaranteed to issue valid recursive

calls. When applied to a range of benchmarks, it robustly produces

recursive programs that pass all tests and generalise well, and does

so in a significantly smaller number of evaluations than the current

state-of-the-art method (which we consider to be CTGGP, the call-

tree-guided genetic programming heuristic proposed by Alexander

and Zacher [3]).

2 METHOD
Our program synthesis heuristic uses algebraic data types and struc-

tural recursion to constrain the space of candidate solutions and

to cope with the brittleness of recursion. Similarly to standard GP,

the method learns inductively and thus requires fitness cases (tests),
each of which is an input-output sample from the target function to

be synthesized. The design of the method is dictated by the catamor-

phism recursion scheme (or any other general recursion scheme),

which is essentially a list of non-recursive functions, each meant

to handle one of many pattern-matching cases. We thus perform

synthesis of the complete catamorphism-based implementation in

two phases that follow.

In the first stage, the heuristic determines case expressions to
be used to match against the arguments of the synthesized func-

tion. For recursive data types, the procedure requires a somewhat

technical category-theoretic construction [7, 9], but can be auto-

mated nonetheless. In the second stage, once case expressions have

been determined, the heuristic synthesizes a function for each case.

These case-specific callback functions are supplied as arguments to

the corresponding recursion scheme, which then represents a can-

didate solution that is evaluated on the fitness cases. The individual
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case functions synthesized in this second phase are themselves

not recursive, as the entirety of the recursion required for solving

the synthesis task is captured by the underlying recursion scheme.

Therefore, we could in principle synthesize the case callbacks us-

ing any type-aware variant of GP, or any other method capable of

synthesizing programs from input-output examples.

To demonstrate the usefulness of our approach in real-world

settings and for a fully-fledged programming language, we use

ContainAnt [8], an online algorithm configurator/optimiser that

can optimise any measurable property of code, given a set of com-

ponents defined by a context-free grammar.

To search the space of such solutions, ContainAnt implements

a range of strongly-typedmetaheuristic search algorithms that guar-

antee candidate solutions to be consistent with the grammar. In this

study, we employ ContainAnt’s Ant Programming [4] heuristic,

a variant of Ant-Colony Optimization in which the combinatorial

structure traversed by the ‘ants’ is the tree of grammar productions.

As a baseline, we use ContainAnt’s implementation of random

search, which draws each solution independently by randomly

traversing grammar productions.

3 EXPERIMENTS
We compare our methods to CTGGP using its own Fib2, Fib3, Odd-

Evens, Lucas and Pell benchmarks. We replicate all details of the

CTGGP benchmark setup and use the best two out of the four con-

figurations reported there as our baseline. These are grammatical

evolution (referred to as plain grammatical evolution in [3]; GE in

the following) and CTGGP combined with Scaffolding (CTGGP
in the following). As an additional reference point, we also solve

the benchmarks using PushGP [13] (PushGP in the following), the

arguably most popular and continuously developed variant of stack-

based GP. Our method employs two heuristics, ant programming

(Cata-AP) and, as a further baseline, random search (Cata-RS). In
both cases, we rely on the implementations of the ContainAnt

library. The grammar defining the search space is identical for

each algorithm, and is automatically extracted from source code

by ContainAnt via reflective analysis of the corresponding class

definitions.

Table 1: Experimental results. Results for GE and CTGGP
from [3].

Benchmark Mean number of evaluations

GE CTGGP PushGP Cata-RS Cata-AP

Fib2 53168 1081 288800 449 418
Fib3 117875 10347 278140 10301 5722
Lucas 105663 1622 275780 1116 699
OddEvens 539 255 14480 81 26
Pell 56240 1879 300000 1827 544

The results, partially showcased in Table 1, are unanimous: Cata-

AP and Cata-RS synthesize optimal recursive programs in each

run, and systematically use a lower number of evaluations than

GE, CTGGP, and PushGP. Strikingly, this holds not only for the

quite sophisticated ant programming heuristic, but even for random

search, a memory-less trial-and-error. We find the superiority to

CTGGP particularly important, as that method has been designed

specifically with recursive programs in mind, and is state-of-the art

in metaheuristic synthesis of recursive programs from examples,

while Plain GE and PushGP are generic frameworks not meant to

address this aspect natively. The main conceptual upshot of these

findings is that the space of recursive programs of practical rele-

vance turns out to be much smaller than widely assumed, as long

as it is approached in a principled formalism, to the extent that

even random search can synthesize them efficiently. In a broader

context, it is likely that making more intense use of the concep-

tual framework offered by recursion scheme formalisms can help

address other challenges inherent in program synthesis.
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