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ABSTRACT 
1With the implementation of dynamic tariffs, the electricity 

retailer may define distinct energy prices along the day. These tariff 
schemes encourage consumers to adopt different patterns of 
consumption with potential savings and enable the retailer to 
manage the interplay between wholesale and retail prices. In this 
work, the interaction between retailer and consumers is 
hierarchically modelled as a bi-level (BL) programming problem. 
However, if the lower level (LL) problem, which deals with the 
optimal operation of the consumer’s appliances, is difficult to 
solve, it may not be possible to obtain its optimal solution, and 
therefore the solution to the BL problem is not feasible. 
Considering a computation budget to solve LL problems, a hybrid 
particle swarm optimization (PSO) – mixed-integer programming 
(MIP) approach is proposed to estimate good quality bounds for the 
upper level (UL) objective function. This work is based on [4]. 
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1 INTRODUCTION 
Some approaches considering BL models have been proposed 

in the literature to define dynamic tariffs anticipating the 
consumer’s decisions (e.g. [1,2]). We have also proposed BL 
approaches to model the interaction between an electricity retailer 
and consumers, where the LL (consumer’s) problem is modelled as 
a MIP considering detailed physical information related with load 
operation and control [3,4]. In [4], the UL problem is tackled by a 
PSO algorithm and the LL problem is solved by an exact MIP 
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solver. The consumer’s model incorporates shiftable, interruptible 
and thermostatic loads. The modelling of the thermostat operation 
imposes a severe computational effort, which impairs obtaining the 
optimal solutions in an acceptable computation time by a state-of-
the-art solver. This approach computes good quality estimates for 
the retailer’s profit whenever a computational budget exists, 
helping to make sounder decisions in an adequate time frame. 

2 BI-LEVEL MODEL 
In the electricity retail market, the retailer defines dynamic 

tariffs and the consumers react by adjusting the energy 
consumption through the scheduling of load operation. Using a BL 
model to model this interaction, the UL objective function (Eq. (1)) 
is the maximization of the retailer’s profit: difference between the 
revenue with the sale of energy to consumers (term (A)+(B)) and 
the cost of buying energy in the wholesale market (term (C)). 
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(1) 

The planning period 𝑇 is divided into I sub-periods of prices 
𝑃) ⊂ 𝑇, 	𝑖 ∈ {1,… , 𝐼}, disjoint and contiguous, for which the retailer 
should define the prices of electricity to be charged to the 
consumers, 𝑥)  (in €/kWh), with h being the unit of time the 
planning period is discretized into. The electricity prices are limited 
by minimum and maximum values for each sub-period 𝑃), and an 
average price for the whole planning period 𝑇  to account for 
competition (UL constraints). Coefficients 𝜋,  in Eq, (1) are the 
prices of energy incurred by the retailer at time 𝑡 ∈ 𝑇. 

In each time t of the planning period 𝑇, the model considers the 
power required by a (non-controllable) base load – bt, J shiftable 
appliances (whose operation cycles cannot be interrupted once 
initiated) – 𝑝/,, K interruptible appliances – 𝑞4,, and a thermostatic 
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load, an air conditioner system – 𝑠,𝑃89:;< (the binary variables 𝑠, 
indicate the state on/off – 1/0). The retailer also defines L levels of 
power demand and the consumer pays 𝑒J (in €) for the power level 
corresponding to the peak ul, 𝑙 ∈ {1,… , 𝐿}. The decision variables 
of the UL problem are the electricity prices 𝑥. 

The LL problem arises as a constraint of the UL problem and 
the LL objective function (Eq. (2)) relates to the minimization of 
the consumer’s electricity bill: the cost of the energy consumed by 
controllable and uncontrollable loads (term (A)) and the power cost 
(term (B)), and the costs resulting from the monetization of the 
positive and negative deviations (∆,_	and ∆,` , respectively) of a 
temperature variable from a reference temperature (term (D)). 
Coefficients 𝑐_  and 𝑐`  are the costs (in €/ºCh) incurred by the 
positive and negative temperature deviations, respectively. The 
terms (A) and (B) are the same as in Eq. (1). 

min 𝑓 =	(A) + (B) +'(𝑐_∆,_ + 𝑐`∆,`)
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The consumer should specify comfort time slots in which each 
shiftable and interruptible load should operate, according to his 
preferences and routines, as well as minimum, maximum and 
reference indoor temperatures used for setting the air conditioner. 
The detailed LL constraints are presented in [4]. The decision 
variables of the LL problem are binary variables that indicate 
whether a load is “on” or “off” (and even in which operation stage 
it is) at each time, which define the auxiliary variables 
𝑝/,, 𝑞4,, 𝑢J,	∆,_, ∆,` that appear in Eq.(1) and (2). 

3 ALGORITHM AND RESULTS 
The BL model is dealt with a hybrid approach, which uses a PSO 
algorithm to generate and evolve the UL variables. A special 
routine has been developed for repairing unfeasible pricing vectors 
considering the UL constraints. When the global best does not 
improve over a number of consecutive iterations, then the 
exploration capability is enhanced by introducing some turbulence 
in the population. For each UL pricing vector x, a MIP solver 
(Cplex) is called to solve the consumer’s problem. 

However, considering a realistic h (we have considered h =1/4 
h) for the discretization of the planning period 𝑇, the LL problem 
may not be amenable to exact resolution, mainly due to the high 
computation effort associated with the modelling of the 
thermostatic load. For the dataset we have used, the LL problem 
has 839 binary variables, 535 continuous variables and 1700 
constraints. The UL problem has 6 decision variables (since 6 
periods have been defined for different prices) and 13 constraints. 

If the LL problem cannot be solved to optimality, then it is not 
possible to guarantee the feasibility of the solution to the BL model. 
Thus, assuming that a computation budget exists, the aim is 
offering the retailer good quality estimates of bounds for his profit. 
For this purpose, an incremental strategy has been designed, 
starting by considering a reasonable computation time limit (15s) 
to solve each instantiation of the LL problem, storing k solutions 
with the highest F value. At the final of the algorithm, the LL 
problem is solved again for the k solutions with an increased time 

limit (60s). The output is the solution that presents the highest F. 
The algorithm is performed several independent runs and 10 
selected solutions still undergo a deeper analysis, which consists in 
solving the LL problem with a longer time limit (5 min). This 
analysis aims at decreasing the MIP gap of the LL solution, so that 
good upper estimates (UE) of F can be obtained within a reasonable 
computation time. To obtain good lower estimates (LE), the 
characteristics of the problem are taken into account, namely the 
negative correlation between 𝐹	 and 𝑓. Accordingly, the discomfort 
component (C) is removed from the LL objective function and the 
LL problem is solved for the 10 prices of the solutions selected 
(with time limit of 5 min). This leads to minimum consumers’ cost 
solutions and, consequently, to expected minimum retailer’s 
revenues. Fig. 1 displays the intervals obtained for the retailer’s 
profit in each of the 10 final solutions. For the corresponding UL 
prices and detailed statistics, please see [4]. 

 
Figure 1: Retailer’s profit intervals, [LE,UE], in the 10 final solutions. 

This analysis indicates that solution 10 may be an adequate 
option for a risk-averse decision maker. Solutions 5 and 7 are also 
good options for a decision maker not willing to engage in a high 
risk, while solution 2 may yield a very good F value but with a 
higher risk of obtaining a low value. 

4 CONCLUSIONS 
The inclusion of a thermostatic load into the consumer’s problem 
imposes a very high computational effort. Since the LL 
optimization problem arises as a constraint of the UL problem, only 
optimal solutions to the LL problem are feasible to the BL problem. 
We propose an incremental strategy based on a hybrid PSO – MIP 
solver approach to compute lower/upper estimates for the retailer’s 
profit with a computational budget. 
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