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ABSTRACT
This abstract summarizes the results reported in the paper [3]. In
this paper a method named Low-Dimensional Euclidean Embed-
ding (LDEE) is proposed, which can be used for visualizing high-
dimensional combinatorial spaces, for example search spaces of
metaheuristic algorithms solving combinatorial optimization prob-
lems. The LDEE method transforms solutions of the optimization
problem from the search space Ω to Rk (where in practice k = 2 or
3). Points embedded in Rk can be used, for example, to visualize
populations in an evolutionary algorithm.

The paper shows how the assumptions underlying the the t-
Distributed Stochastic Neighbor Embedding (t-SNE) method can be
generalized to combinatorial (for example permutation) spaces. The
LDEE method combines the generalized t-SNE method with a new
Vacuum Embedding method proposed in this paper to perform the
mapping Ω → Rk .

CCS CONCEPTS
•Computingmethodologies→ Scientific visualization; •Math-
ematics of computing→Combinatorial optimization; Evolu-
tionary algorithms;

KEYWORDS
Visualization, Combinatorial optimization, Euclidean embedding,
t-Distributed Stochastic Neighbor Embedding (t-SNE)

ACM Reference Format:
Krzysztof Michalak. 2019. Low-Dimensional Euclidean Embedding for Visu-
alization of Search Spaces in Combinatorial Optimization. In Genetic and
Evolutionary Computation Conference Companion (GECCO ’19 Companion),
July 13–17, 2019, Prague, Czech Republic. ACM, New York, NY, USA, 2 pages.
https://doi.org/10.1145/3319619.3326761

1 METHOD DESCRIPTION
The Low-Dimensional Euclidean Embedding (LDEE) method con-
sists of the t-Distributed Stochastic Neighbor Embedding (t-SNE)
method [4] generalized to combinatorial (e.g. permutation) spaces
and the Vacuum Embedding method. The method proposed in the
paper is very general and can be applied to various combinatorial
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Figure 1: The generalized t-SNE method working on solu-
tions of the Four Peaks Problem (4PP) [1] for n = 100. It-
erations: 200, 400, and 1000.

Figure 2: The Vacuum Embedding method working on solu-
tions of the Four Peaks Problem (4PP) for n = 100. In the top
row: the embedding produced by t-SNE (left) and produced
after 10 and 40 iterations of the VacuumEmbeddingmethod.
In the bottom row: iteration 500 of the Vacuum Embedding
(the last one before edge "snapping" became active) and iter-
ations in which edge "snapping" was active: 501, and the last
one 582.

search spaces, most importantly binary vector spaces and permuta-
tion spaces.

The working of the LDEE method
The steps which constitute the LDEE method are as follows.
(1) An optimization algorithm generates solutions which are

elements of the search space Ω, for example permutations
of a given length.

(2) The generalized t-SNE method is used to map solutions from
Ω to Rk , where, for visualization purposes, the dimensional-
ity k is 2 or 3 (Figure 1).

(3) The Vacuum Embedding (VE) method proposed in this paper
places the points embedded in Rk on a regular square grid
(Figure 2). It moves points by simulating forces exerted by
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Figure 3: Population of an evolutionary algorithm solving
the Four Peaks Problem (white dots) at generation number
100. The population consists of good non-REWARDed solu-
tions. Only after REWARDed solutions are found the pop-
ulation transits to the area with high values of evaluation
function (coloured red).

empty spaces in the grid and includes a "snapping" mecha-
nism which aligns points to the grid starting from outside.

Overall, a mapping from Ω to Rk is performed which can be
denoted as a composition of two transformations: x ′ = LDEE(x)
= VE(t-SNE(x)), where x ∈ Ω and x ′ ∈ Rk . The steps 1-3 do not
change attributes of solutions, such as the value of the objective
function(s), values of constraint violation in constrained problems,
information about genetic operators that generated the solutions,
etc. Visualizations are made using positions of points in Rk cor-
responding to solutions in Ω obtained using the LDEE method.
Attributes of solutions, such as objective function values can be
used, for example, to colour the points plotted in the visualization.
For example, on the regular grid produced by the LDEE method,
populations of an evolutionary algorithm can be plotted (Figure 3).

Main characteristics of the LDEE method
Thanks to the properties of the t-SNEmethod, nearby points in Ω

(which can be, for example, a permutation space with the Kendall-τ
distance) are mapped to nearby points in Rk . If it is desirable to
preserve the distances as best as possible the next step may be
omitted, but if the goal is to make every solution clearly visible the
Vacuum Embedding method can be used to obtain a square grid.
Some of the advantages of the presented approach are:

(1) A 1-1 mapping between solutions in Ω and points in Rk is
preserved, allowing to plot every solution using e.g. a colour
corresponding to the objective function value. It makes it
easy to visually assess how many of the solutions have a cer-
tain characteristic, such as a low objective function value.

(2) The regular grid produced by the LDEE method is a good
basis for plots such as the ones presented in this abstract,
but also for example three-dimensional plots.

(3) Because nearby points in Ω are mapped to nearby points in
Rk it is possible to assess how distances between solutions
influence the values of the attributes of these solutions.

Figure 4: Solutions of the bi-objective Firefighter Problem
[2] with Nv = 500 graph nodes. Plots show the generation
number (top-left), the number of non-burning nodes (top-
right) and the values of both objectives (bottom). Arrows
show the areas with the highest values.

(4) Contrary to methods that produce clusters of solutions or
graph nodes the LDEEmethod makes all the solutions visible.
This is particularly useful for visualizing population dynam-
ics, because all solutions can be tracked and it is possible to
see if they tend to group or scatter.

The LDEE visualization for multiobjective optimization
In Figure 4 solutions of the bi-objective Firefighter Problem [2]

are presented. Clearly, the algorithm managed to increase the num-
ber of graph nodes which fire did not reach (top-right). Solutions
maximizing individual objectives were found relatively early (two
bottom plots). Because the algorithm performed Pareto optimiza-
tion, it can be concluded that in later generations better trade-offs
were found, not necessarily maximizing individual objectives.

2 ADDITIONAL MATERIALS
Additional materials can be found on the LDEE method web page
at http://krzysztof-michalak.pl/research/ldee/index.html. This web
page contains ready to use tools with which it is possible to apply
the LDEE method to the user’s own data set. A detailed example
is available at http://krzysztof-michalak.pl/research/ldee/example.
html along with data files and instructions on how to run the pro-
grams to obtain the presented results.
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