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ABSTRACT
This extended abstract previews the usage of Gaussian processes in
a surrogate-model version of the CMA-ES, a state-of-the-art black-
box continuous optimization algorithm. The proposed algorithm
DTS-CMA-ES exploits the benefits of Gaussian process uncertainty
prediction, especially during the selection of points for the eval-
uation with the surrogate model. Very brief results are presented
here, while much more elaborate description of the methods, pa-
rameter settings and detailed experimental results can be found in
the original article Gaussian Process Surrogate Models for the CMA
Evolution Strategy [2], to appear in the Evolutionary Computation1.
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1 INTRODUCTION
The CMA-ES [5] stands for one of the most successful evolutionary
continuous black-box optimizers of the last two decades. It itera-
tively samples λ points from a Gaussian distribution N(m,σ 2C)

1Article available at https://www.mitpressjournals.org/doi/abs/10.1162/evco_a_00244
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and then recalculates the distribution parametersm, σ and C based
on the µ best fitness-evaluated points.

The CMA-ES learns some core characteristics of the fitness via
perturbations of its covariance matrix C and the step-size σ . Nev-
ertheless, the exact information from the passed evaluations can
be used more intensively via surrogate modeling. Such acceleration
was previously shown, for example, in [7] or [8]. Our contribution
is in more intensive exploitation of the Gaussian process uncer-
tainty prediction in the algorithm DTS-CMA-ES (Doubly Trained
Surrogate CMA-ES). The algorithm uses a GP surrogate model for
evaluation of the most promising points every iteration, and the
selection of these points relies on the GP ability to estimate the
whole distribution of the predicted fitness values.

This abstract introduces the proposed evolution control and the
DTS-CMA-ES algorithm and briefly overviews the experimental
results of Gaussian process surrogate CMA-ES algorithms on the
COCO single-objective benchmark testing set.

2 DOUBLY TRAINED EVOLUTION CONTROL
As the so-far existing evolution controls—methods of combining eval-
uations from the original and model fitness—makes the exploitation
of the GP predictive uncertainty difficult, we have proposed another
solution called doubly trained evolution control. Each generation
of this control can be summarized in the following steps:

(1) sample a new population of size λ (CMA-ES offspring),
(2) train the first surrogate model on the points from the archive,
(3) select ⌈αλ⌉ point(s) wrt. a criterion C and the first model,
(4) evaluate these point(s) with the original fitness,
(5) re-train the surrogate model (into the second model),
(6) predict the fitness for the non-original evaluated points with

this second model.
Employing the doubly trained evolution control in the CMA-ES

results in the Doubly trained surrogate CMA-ES (DTS-CMA-ES,
[9]) whose pseudocode is shown in Algorithm 1. The algorithm is
parametrized by the parameter α (0)—the initial value of the ratio
of original-evaluated points in a population, by the criterion C for
the selection of these points, and by the surrogate model and its
parameters. The ratio α adapts itself throughout the run in the
self-adaptive version of the algorithm.
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3 IMPLEMENTATION DETAILS AND
EXPERIMENTAL RESULTS

The original article [2] provides the details of the proposed algo-
rithms, their parameter tuning and the chosen parameter settings.
Particularly, it includes:
• GP model-training procedure,
• GP model parameter tuning (training set selection methods,
training-set size, GP covariance function, hyperparameter
initialization, etc.) and implementation details,
• DTS-CMA-ES parameter tuning (ratio α , population size λ,
original re-evaluation criteria C),
• DTS-CMA-ES self-adaptation method and its parameter set-
tings.

The article evaluates six algorithms based on the CMA-ES and
a GP model: the S-CMA-ES [1] (the predecessor of DTS-CMA-ES),
DTS-CMA-ES in both the fixed and self-adaptive version, the MA-
ES [11], GPOP [3] and SAPEO [12]. For the sake of comparison
with other state-of-the-art optimizers, we present also the results
of the IPOP-CMA-ES with both the recommended and the dou-
bled population size, two other surrogate-assisted CMA-ES algo-
rithms lmm-CMA [7] and s∗ACM-ES [8], a Bayesian optimizer called
SMAC [6], and two local-search numerical optimization algorithms
based on a trust region method: the BOBYQA algorithm [10] and
the interior-point method [4] from the Matlab fmincon function.

Figure 1 asses the set of 13 algorithms in 10-D, using the COCO-
provided ECDF graphs2. Based on the much more detailed results in
the original work, we conclude that the fixed-α-ratio DTS-CMA-ES
represents an algorithm of choice for multimodal functions with
weak global structure and is very eligible for unimodal landscapes,
too, especially in lower dimensions. The self-adaptive version of
the DTS-CMA-ES, on the other hand, excels on the globally decreas-
ing multimodal functions where it outperforms other compared
algorithms.
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2A raw COCO results dataset is already available at the COCO website:
http://coco.gforge.inria.fr/doku.php?id=algorithms-bbob

Algorithm 1: DTS-CMA-ES (simplified pseudocode)

Input : initial value of α (0), C, GP model
1 A ← ∅; λ, σ (0),m(0),C(0) ← CMA-ES initialize
2 for generation д = 0, 1, 2, . . . until stopping conditions met do
3 xk ∼ N(m(д), (σ (д))2C(д)) for k = 1, . . . , λ
4 fM1 ← trainModel(A,σ (д),C(д)) /* 1st model train */
5 (ŷ, ŝ2) ← fM1([x1, . . . , xλ]) /* model-fitness eval */
6 Xorig ← select ⌈α (д)λ⌉ best points according to C(ŷ, ŝ2)
7 yorig ← f (Xorig), A = A ∪ {(Xorig, yorig)}
8 fM2 ← trainModel(A,σ (д),C(д))
9 y← fM2([x1, . . . , xλ]) /* 2nd model prediction */

10 α (д+1)←selfAdaptation(α (д), ŷ, y)
11 σ (д+1),m(д+1),C(д+1) ← update based on sorted x1:λ
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Figure 1: Aggregated results of 13 algorithms, COCO’s ECDF
performance graphs in 10-D. Bootstrapped empirical cumu-
lative distribution of the number of objective function eval-
uations divided by dimension (FEs/D).
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