
The (1 + 1)-EA with mutation rate (1 + ε)/n is efficient
on monotone functions: an entropy compression argument.

(Hot-off-the-Press Track at GECCO 2019)
Johannes Lengler

Department of Computer Science,

ETH Zürich, Zürich, Switzerland

Anders Martinsson

Department of Computer Science

ETH Zürich, Zürich, Switzerland

Angelika Steger

Department of Computer Science

ETH Zürich, Zürich, Switzerland

ABSTRACT
An important benchmark for evolutionary algorithms are (strictly)

monotone functions. For the (1 + 1)-EA with mutation rate c/n, it
was known that it can optimize any monotone function on n bits

in time O(n logn) if c < 1. However, it was also known that there

are monotone functions on which the (1+ 1)-EA needs exponential

time if c > 2.2. For c = 1 it was known that the runtime is always

polynomial, but it was unclear whether it is quasilinear, and it was

unclear whether c = 1 is the threshold at which the runtime jumps

from polynomial to superpolynomial.

We show there exists a c0 > 1 such that for all 0 < c ≤ c0 the
(1 + 1)-Evolutionary Algorithm with rate c/n finds the optimum in

O(n log2 n) steps in expectation. The proof is based on an adaptation
of Moser’s entropy compression argument. That is, we show that

a long runtime would allow us to encode the random steps of the

algorithm with less bits than their entropy.

This short note summarizes the results that have been
published as “When Does Hillclimbing Fail on Monotone
Functions: An entropy compression argument” in the pro-
ceedings of the 16th Workshop on Analytic Algorithmics
and Combinatorics (ANALCO), SIAM, 2019 [9].

SUMMARY OF OUR RESULTS
One of the most basic evolutionary algorithms (EAs) is the (1 + 1)-
Evolutionary Algorithm or (1 + 1)-EA for maximizing an objective

function f : {0, 1}n → R. It uses a population size of one, and

in each round it creates an offspring by flipping each bit of the

parent independently with probability c/n, where c > 0 is the

mutation parameter. Then it greedily selects the fitter one, breaking

ties towards the offspring.

Here we study the impact of the mutation parameter c on the

performance of the (1 + 1)-EA on (strictly) monotone functions.

A function f : {0, 1}n → R is said to be monotone if f (x) < f (y)
whenever x , y and x i ≤ yi for all i ∈ [n], where x i denote the i-th
coordinate of x . For any such function, the unique global maximum

is the all-ones string. Monotone functions are an important class

of benchmark functions for EAs because of their discriminative

power. On the one hand, there is good reason to consider mono-

tone functions as easy benchmarks, and there is a large variety

Permission to make digital or hard copies of part or all of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for third-party components of this work must be honored.

For all other uses, contact the owner/author(s).

GECCO ’19, July 13–17, 2019, Prague, Czech Republic
© 2019 Copyright held by the owner/author(s).

ACM ISBN 978-1-4503-6748-6/19/07.

https://doi.org/10.1145/3319619.3326767

of EAs that optimize all monotone functions efficiently. On the

other hand, a surprising number of EAs need exponential time on

some monotone functions if the mutation is too aggressive, includ-

ing the (1 + 1)-EA, the (1 + λ)-EA, the (µ + 1)-EA, their so-called
“fast” versions and the (1+ (λ, λ))-GA, while the genetic algorithms

(µ + 1)-GA and its “fast” version seem to be more robust, see [8]

for an overview. Monotone functions also have surprising links to

optimization in dynamic environments [10].

The (1 + 1)-EA is a prototypical example for the behavior of

many EAs. While for any constant mutation parameter c < 1 it is

easy to see that the algorithm needs timeO(n logn) to find the opti-
mum of any monotone function [4], it was shown in a sequence of

papers [4, 5, 11] that for c > 2.13 . . . there are monotone functions

(dubbed HotTopic functions in [8]) on which the algorithm needs

exponential time. The standard proof techniques for upper runtime

bounds fail precisely at c = 1, and there were split opinions in the

community on whether there should be a phase transition from

polynomial to exponential at c = 1 [3]. On the presumed threshold

c = 1 a more general model of Jansen [7] shows that the runtime is

O(n3/2), but it was unclear whether the runtime is quasilinear.

The value c = 1 is of special interest, for several reasons. From

a practical perspective, it is considered the standard choice and

explicitly recommended by textbooks [1, 2]. From a theoretical

perspective, c = 1 is known to be the optimal parameter choice for

linear functions, i.e., for functions of the form f (X ) =
∑n
i=1wiX

i
,

where the wi are fixed weights. More precisely, the choice c = 1

gives runtime (1 + o(1))en logn on any linear function, while any

other (constant) choice of c gives a strictly worse leading constant

on any linear function [14].

In the new result, we use an entropy compression argument to

show that there is an ε > 0 such that for c ≤ 1 + ε the runtime

remains quasilinear for all monotone functions. More precisely, we

show that a long runtime would allow us to encode the random

trajectory of the algorithm with fewer bits than its entropy, which

is an information theoretic contradiction. This type of argument

is attributed to Moser, who used the technique in his celebrated

algorithmic proof of the Lovász local lemma [6, 12]. Since then, the

method has been used in other computer science contexts, see [9]

for a summary. Nevertheless, and despite popular blogposts [6, 13],

the method still does not seem to be widely known.

We use this technique to prove that no phase transition occurs

at c = 1. More precisely, we show the following.

Theorem 0.1. There exists an ε > 0 such that, for any (strictly)
monotone function f and any constant 0 < c ≤ 1 + ε , the (1 + 1)-EA
withmutation parameter c requires an expected number ofO(n log2 n)
steps until it finds the maximum of f , and it visits an expected number

25

https://doi.org/10.1145/3319619.3326767


GECCO ’19, July 13–17, 2019, Prague, Czech Republic Johannes Lengler, Anders Martinsson, and Angelika Steger

ofO(n) search points. The same remains true if the initial search point
of the algorithm is chosen by an adversary.

To be more precise, we show that there are constants ε,C > 0

such that for all 0 < c ≤ 1 + ε the runtime is at most C/c · n log2 n,
and the number of search points is at most C · n.

To apply an entropy compression argument, it turns out to be

natural to not measure performance in the number of time steps,

but in the number of updates, i.e. the number of times Xt+1 , Xt .
We show that the expected number of updates until the algorithm

finds the maximum of any monotone f is O(n). Towards the end
of the proof, we link the expected number of updates to the ex-

pected number of time steps and show that they only differ by a

polylogarithmic factor.

We first give some intuition on the behaviour of the algorithm

and on our proof. For a general monotone function f , it is natural
to measure the progress of the (1 + 1)-EA is terms of number of

one-bits in the current search point. In order to make an update,

it is necessary to flip at least one zero-bit into a one-bit, since

otherwise the offspring would be rejected due to monotonicity

(unless it is identical to the parent, in which case there is no update

either). Thus, if the average update does not flip too many ones to

zeros, the number of ones in the current search point will tend to n
efficiently. For a small mutation parameter (specifically for c < 1),

this is indeed true as the average number of ones flipped to zeros is

at most c , and this remains true for update steps. For larger c , one
might expect this to still hold as, intuitively, any offspringwithmore

ones flipped to zeros than zeros flipped to ones should be unlikely

to be fitter than its parent. To see why this intuition fails for large c ,
consider the following situation for a linear objective function. If a

zero-bit of high weight is flipped to a one, then the algorithm may

accept the offspring even if many low weight one-bits are flipped at

the same time. The larger c is, the more such one-bits are flipped in

expectation. While such bad steps do not occur too often for linear

functions, it has been shown that there exist monotone (locally

linear) functions, such as HotTopic functions [8], where this effect

keeps the algorithm away from the optimum for exponentially long

time.

Based on this intuition, we define good and bad updates. The bad

updates capture cases in which a zero-bit with a disproportionally

high weight is flipped. Then we study the entropy of the update

steps of the algorithms. On the one hand, we will analyze the

algorithm in a forwardmanner to give a lower bound on the entropy

of each update. On the other hand, we give a backwards encoding

(from last step to first) of the update steps, and this encoding saves

some bits in bad update steps. Since the expected number of bits

needed for the encoding is lower bounded by the entropy, we get

an upper bound for the expected number of bad update steps. This,

in turn, gives us a linear upper bound for the expected number

of update steps. Finally, the runtime bound follows by a slight

refinement of the calculation, in which we compute how many

steps we need to decrease the number of zero-bits from 2
m

to 2
m−1

,

form = logn, . . . , 1.

It remains open whether the technique transfers to other EAs. It

was shown in [8] that also other EAs than the (1 + 1)-EA optimize

every monotone function efficiently if their parameters are set

conservatively. E.g., this was shown for the (1+λ)-EA with constant

λ ∈ N, if the mutation parameter satisfies c < 1. It remains an open

question whether an entropy compression technique can also be

used to show that the runtime of the (1+λ)-EA is quasilinear for c ≤

1+ε . Moreover, in [8] analogous results were shown for the so-called

“fast (1+1)-EA” and “fast (1+λ)-EA”, and for the (1+(λ, λ))-GA, but
the condition c < 1 needs to be replaced by analogous conditions

on the parameters of the respective algorithms.
1
Also in these cases

it remains open whether the entropy compression method can be

used to push the condition under which the algorithm is provably

fast for all monotone functions.

REFERENCES
[1] T. Bäck. Evolutionary algorithms in theory and practice: evolution strategies,

evolutionary programming, genetic algorithms. Oxford university press, 1996.

[2] T. Bäck, D. B. Fogel, and Z. Michalewicz. Handbook of evolutionary computation.
CRC Press, 1997.

[3] B. Doerr, C. Doerr, and T. Kötzing. Personal communication.

[4] B. Doerr, T. Jansen, D. Sudholt, C. Winzen, and C. Zarges. Optimizing monotone

functions can be difficult. In Parallel Problem Solving from Nature (PPSN), 2010.
[5] B. Doerr, T. Jansen, D. Sudholt, C. Winzen, and C. Zarges. Mutation rate matters

even when optimizing monotonic functions. Evolutionary computation, 21(1):1–
27, 2013.

[6] L. Fortnow. A Kolmogorov Complexity Proof of the Lovász Local

Lemma. Blogpost, 2009. https://blog.computationalcomplexity.org/2009/06/

kolmogorov-complexity-proof-of-lov.html.

[7] T. Jansen. On the brittleness of evolutionary algorithms. In Foundations of Genetic
Algorithms (FOGA). Springer, 2007.

[8] J. Lengler. A general dichotomy of evolutionary algorithms on monotone

functions. In Parallel Problem Solving from Nature (PPSN), full version at
arxiv.org/abs/1803.09227 , 2018.

[9] J. Lengler, A. Martinsson, and A. Steger. When does hillclimbing fail on monotone

functions: An entropy compression argument. In Analytic Algorithmics and
Combinatorics (ANALCO). SIAM, 2019.

[10] J. Lengler and U. Schaller. The (1+ 1)-EA on noisy linear functions with random

positive weights. In Foundations of Computational Intelligence (FOCI). IEEE, 2018.
[11] J. Lengler and A. Steger. Drift Analysis and Evolutionary Algorithms Revisited.

Combinatorics, Probability and Computing, 27(4):643–666, 2018.
[12] R. Moser. A constructive proof of the Lovász Local Lemma. In Symposium on

Theory of Computing (STOC), 2009.
[13] T. Tao. Moser’s entropy compression argument. Blogpost, 2009. https://terrytao.

wordpress.com/2009/08/05/mosers-entropy-compression-argument/.

[14] C. Witt. Tight bounds on the optimization time of a randomized search heuristic

on linear functions. Combinatorics, Probability and Computing, 22(2):294–318,
2013.

1
In the case of the “fast (1 + λ)-EA”, the result was only proven if the algorithm starts

sufficiently close to the optimum.

26

https://blog.computationalcomplexity.org/2009/06/kolmogorov-complexity-proof-of-lov.html
https://blog.computationalcomplexity.org/2009/06/kolmogorov-complexity-proof-of-lov.html
arxiv.org/abs/1803.09227
https://terrytao.wordpress.com/2009/08/05/mosers-entropy-compression-argument/
https://terrytao.wordpress.com/2009/08/05/mosers-entropy-compression-argument/

	Abstract
	References

