
Parallel GPQUICK
W. B. Langdon

Department of Computer Science, University College, London
w.1angdon@cs.ucl.ac.uk

ABSTRACT
We modified GPQuick to use SIMD parallel floating point AVX 512
bit instructions and 48 threads to give up to 139 billion GP opera-
tions per second, 139 giga GPops, on a single Intel Xeon Gold 6126
2.60GHz server. The multi-threaded single instruction multiple
data genetic programming GP interpreter has evolved binary trees
of more than 396 million instructions using subtree crossover and
run populations for a million generations.

CCS CONCEPTS
• Computing methodologies→ Parallel algorithms;

KEYWORDS
Evolutionary computing, Sextic polynomial, performance

ACM Reference Format:
W. B. Langdon. 2019. Parallel GPQUICK. In Genetic and Evolutionary Com-
putation Conference Companion (GECCO ’19 Companion), July 13–17, 2019,
Prague, Czech Republic. ACM, New York, NY, USA, 2 pages. https://doi.org/
10.1145/3319619.3326770

1 INTRODUCTION
We built a new GP engine based on Andy Singleton’s GPQUICK.
This allowed us to switch from Boolean [8] to floating point and run
up to a million generations [9]. Excluding some special applications
or Boolean benchmarks based on graphics hardware (GPUs), this
appears to be the fastest single computer GP system, see table.

Without size control we expect bloat and so we need a GP system
not only able to run for a million generations1 but also able to
process trees with well in excess of a 100 million nodes2. The new
system we use is based on Singleton’s GPQuick [15],[1],[4], but
enhanced to take advantage of both multi-core computing using
pthreads and Intel’s SIMD AVX parallel floating point operations.
Keith and Martin [1] say GPQuick’s linearisation of the GP tree
will be hard to parallelise. Nevertheless, GPQUICK was rewritten to
use 16 fold Intel AVX-512 instructions to do all operations on each
node in the GP tree immediately. This leads to a single eval pass
and better cache locality but at the expense of keeping a T = 48
wide stack of partial results per thread.

1 The median run for a million generations (pop=48) took 39 hours [9, Figure 2]. Under
ideal growing conditions, a million generations for E.Coli corresponds to 38 years.
2 Again referring to the extended runs in [9, Figure 2], crossover creates highly evolved
trees containing 4 108 nodes. These are by far the largest programs yet evolved.

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
GECCO ’19 Companion, July 13–17, 2019, Prague, Czech Republic
© 2019 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-6748-6/19/07.
https://doi.org/10.1145/3319619.3326770

Table 1: GPPrimitives Interpreted Per Second. (Default GPU
is nVidia GeForce 8800 GTX. Fragment of [7, Tab. 3].)

Experiment Pop Prog Test Speed GPU
size size cases 106 OP/S

Mackey-Glass 204 800 11.0 1200 895
Mackey-Glass 204 800 13.0 1200 1056
Mackey-Glass 204 800 10.2 1200 1720
Protein 1 048 576 56.9 200 504
Laser 18 225 55.4 151 360 656
Laser 5 000 49.6 376 640 190
Sextic 100 16 200 .5 XBox 360
Sextic 12 500 70.0 100 000 4 073
Image processing 2 048 2048 ≈ 108 26 200 28×8200
TMBL 120 300 65 536 191 724 260 GTX
Multiplexor-6 12 500 120.6 64 47
Multiplexor-11 12 500 156.2 2 048 501
Multiplexor-20 262 144 428.5 2 048 254 000 295 GTX
Multiplexor-37 262 144 915.6 8 192 665 000 295 GTX
GeneChip 16 384 ≤63.0 200 314
Cancer 5 242 880 ≤15.0 128 535
Cancer 5 242 880 12.9 91 1 352 C2050
Cancer 5 242 880 12.9 91 8 517 C2050
Sextic 4000, 500, 48 4 108 48 138 948 GPQuick

The next section describes howGPQUICKwas adapted to take ad-
vantage of Intel SIMD instructions able to process 16 floating point
numbers in parallel and to use Posix threads to perform crossover
and fitness evaluation on 48 cores simultaneously. Technical re-
port RN/19/01 [9] describes the experiments and results on Koza’s
Sextic Polynomial (x6 − 2x4 + x2 [3, Tab. 5.1]) with populations of
4000, 500 and 48 trees. RN/19/01 reports the earlier predictions of
sub-quadratic bloat [5] and Flajolet limit (depth ≈

√
2π |size| [6]) to

essentially hold. 3

2 GPQUICK

2.1 Sextic and GPQuick

Andy Singleton’s GPQUICK [15] is a well established fast and mem-
ory efficient C++ GP framework. In steady state mode [16] it stores
GP trees in just one byte per tree node. Using separate parent and
child populations doubles this (although [2] shows doubling is not
necessary). The 8 bit opcode per tree node allows GPQUICK to
support a number of different functions and inputs. Typically the
remaining opcodes are used to support about 250 fixed ephemeral
random constants [12]. In the Sextic polynomial we have the tradi-
tional four binary floating point operations (+, −, × and protected
division), an input (x) and 250 constants.

3Inspired by Dagstuhl Seminar 18052 on Genetic Improvement of Software.

63

http://www.cs.ucl.ac.uk/staff/W.Langdon/
http://www.cs.ucl.ac.uk/staff/W.Langdon/
https://doi.org/10.1145/3319619.3326770
https://doi.org/10.1145/3319619.3326770
https://doi.org/10.1145/3319619.3326770
https://www.dagstuhl.de/en/program/calendar/semhp/?semnr=18052

2.2 AVX GPQuick Tree Evaluation
GPQUICK stores the GP population by flattening each tree into
a linear buffer. To avoid heap fragmentation the buffers are all of
the same size. Traditionally the buffer is interpreted once per test
case by multiple recursive calls to EVAL and the tree’s output is the
return value of the outer most EVAL. Each nested EVAL moves the
instruction pointer one position forward in the tree’s buffer, decodes
the opcode there and calls the corresponding function. In the case
of inputs x and constants a value is returned immediately, whereas
ADD, SUB, MUL and DIV will each recursively call EVAL twice to
obtain their arguments before operating on them and returning
the result. For speed GPQUICK’s FASTEVAL, does an initial pass
though the buffer and replaces all the opcodes by the address of
the corresponding function that EVAL would have called. Thus,
originally, EVAL processed the treeT + 1 times (forT=48 test cases).

The AVX instructions process up to 16 floating point data simul-
taneously. EVAL was rewritten to take advantage of this. Indeed as
we expect trees that are far bigger than the CPU cache (≈16 mil-
lion bytes, depending on model), EVAL now processes each tree
only once. This is achieved by EVAL processing all of the test cases
for each opcode, instead of processing the whole of the tree on
one test case before moving on to the next test case. EVAL now
returns 48 floating point values. This is done via a stack, where
each stack level contains 48 values. The AVX instructions operate
directly on the top of this stack and EVAL keeps track of which
instruction is being interpreted, where the top of the stack is, and
(with PTHREADS) which thread is running it. AVX instructions
are used to speed loading each constant into the top stack frame.
Similarly all 48 test cases (x) are rapidly loaded on to the top of
the stack. However, the true power of the implementation comes
from being able to use AVX instructions to process the top of the
stack and the adjacent stack frame (holding a total of 96 floats) in
essentially three instructions to give 48 floating point results.

The depth of the evaluation stack is simply the depth of the GP
tree. Fixing the buffer size also effectively places a limit on tree
depth [6] near

√
2πbuffer size. Thus the user specified tree size limit

is converted into an expected maximum depth.
To avoid parallelism creating minor changes in calculated fitness,

the final fitness summation is not done as a reduction but instead
done in a fixed order with a for loop.
2.3 Posix threads version of GPquick
The second major change to GPQUICK was to delay fitness evalua-
tion so that the whole new population can have its fitness evaluated
in parallel. As trees are of different sizes, each fitness evaluation
will require a different time. Therefore which tree is evaluated by
which thread is decided dynamically. Due to timing variations, even
in an otherwise identical run, which tree is evaluated by which
thread may be different. However great care is taken so that this
cannot affect the course of evolution.

EVAL requires a few data arrays. These are all allocated at the
start of the GP run. Those that are read only can be shared by the
threads. Each thread requires its own instance of read-write data.
To avoid “false sharing”, care is taken to align read-write data on
cache line boundaries (64 bytes), e.g. with additional padding bytes
and ((aligned)). So that each thread writes to its own cache lines
and therefore these cached data are not shared with other threads.

2.4 Multi-threaded Parallel Crossover
Crossover operations were also moved to these parallel threads.
Each crossover is done immediately before EVAL is run on the newly
created tree. Since crossover involves random choices of parents
and subtrees these were unchanged (i.e. left in the sequential code,
not done in parallel) and so the children remain unaffected by
multithreading. Instead of performing the crossover immediately a
small amount of additional information is kept to be read later by
the threads. This allows the crossover to be delayed and performed
in one of 48 C++ pthreads. This gives an additional ≈two-fold speed
up which does not change the course of evolution.

3 CONCLUSIONS
The availability of multi-core SIMD capable hardware has allowed
us to push GP performance on single computers with floating point
problems to that previously only approached with sub-machine
code GP operating in discrete domains [11, 13]. This in turn has
allowed GP runs far longer than anything previously attempted
whilst evolving far bigger programs.

The new parallel GPQuick code is in http://www.cs.ucl.ac.uk/
staff/W.Langdon/ftp/gp-code/GPavx.tar.gz

REFERENCES
[1] M. J. Keith and M. C. Martin. Genetic programming in C++: Implementation

issues. In K. E. Kinnear, Jr., editor, Advances in Genetic Programming, chapter 13,
pages 285–310. MIT Press, 1994.

[2] J. R. Koza. Genetic Programming: On the Programming of Computers by Means of
Natural Selection. MIT Press, Cambridge, MA, USA, 1992.

[3] J. R. Koza. Genetic Programming II: Automatic Discovery of Reusable Programs.
MIT Press, Cambridge Massachusetts, May 1994.

[4] W. B. Langdon. Genetic Programming and Data Structures: Genetic Programming
+ Data Structures = Automatic Programming!, volume 1 of Genetic Programming.
Kluwer, Boston, 1998.

[5] W. B. Langdon. Linear increase in tree height leads to sub-quadratic bloat.
In T. Haynes et al., editors, Foundations of Genetic Programming, pages 55–56,
Orlando, Florida, USA, 13 July 1999.

[6] W. B. Langdon. Size fair and homologous tree genetic programming crossovers.
Genetic Programming and Evolvable Machines, 1(1/2):95–119, Apr. 2000.

[7] W. B. Langdon. Large scale bioinformatics data mining with parallel genetic
programming on graphics processing units. In S. Tsutsui and P. Collet, editors,
Massively Parallel Evolutionary Computation on GPGPUs, Natural Computing
Series, chapter 15, pages 311–347. Springer, 2013.

[8] W. B. Langdon. Long-term evolution of genetic programming populations. In
GECCO 2017: The Genetic and Evolutionary Computation Conference, pages 235–
236, Berlin, 15-19 July 2017. ACM.

[9] W. B. Langdon and W. Banzhaf. Faster genetic programming GPquick via mul-
ticore and advanced vector extensions. Technical Report RN/19/01, University
College, London, London, UK, 23 Feb. 2019.

[10] W. B. Langdon, T. Soule, R. Poli, and J. A. Foster. The evolution of size and shape.
In L. Spector et al., editors, Advances in Genetic Programming 3, chapter 8, pages
163–190. MIT Press, Cambridge, MA, USA, June 1999.

[11] R. Poli andW. B. Langdon. Sub-machine-code genetic programming. In L. Spector
et al., editors, Advances in Genetic Programming 3, chapter 13, pages 301–323.
MIT Press, Cambridge, MA, USA, June 1999.

[12] R. Poli, W. B. Langdon, and N. F. McPhee. A field guide to genetic
programming. Published via http://lulu.com and freely available at
http://www.gp-field-guide.org.uk, 2008. (With contributions by J. R. Koza).

[13] R. Poli and J. Page. Solving high-order Boolean parity problems with smooth
uniform crossover, sub-machine code GP and demes. Genetic Programming and
Evolvable Machines, 1(1/2):37–56, Apr. 2000.

[14] R. Sedgewick and P. Flajolet. An Introduction to the Analysis of Algorithms.
Addison-Wesley, 1996.

[15] A. Singleton. Genetic programming with C++. BYTE, pages 171–176, Feb. 1994.
[16] G. Syswerda. A study of reproduction in generational and steady state genetic

algorithms. In G. J. E. Rawlings, editor, Foundations of genetic algorithms, pages
94–101. Morgan Kaufmann, Indiana University, 15-18 July 1990. Published 1991.

2

64

http://www.cs.ucl.ac.uk/staff/W.Langdon/ftp/gp-code/GPavx.tar.gz
http://www.cs.ucl.ac.uk/staff/W.Langdon/ftp/gp-code/GPavx.tar.gz
http://cognet.mit.edu/sites/default/files/books/9780262277181/pdfs/9780262277181_chap13.pdf
http://mitpress.mit.edu/books/genetic-programming
http://www.genetic-programming.org/gpbook2toc.html
http://dx.doi.org/10.1007/978-1-4615-5731-9
http://www.cs.ucl.ac.uk/staff/W.Langdon/fogp/WBL.fogp.ps.gz
http://dx.doi.org/10.1023/A:1010024515191
http://dx.doi.org/10.1007/978-3-642-37959-8_15
http://dx.doi.org/10.1145/3067695.3075965
http://www.cs.ucl.ac.uk/fileadmin/user_upload/avx_rn1901.pdf
http://www.cs.bham.ac.uk/~wbl/aigp3/ch08.pdf
http://cswww.essex.ac.uk/staff/rpoli/papers/Poli-AIGP3-1999.pdf
http://www.gp-field-guide.org.uk
http://dx.doi.org/10.1023/A:1010068314282
http://www.assembla.com/wiki/show/andysgp/GPQuick_Article

	Abstract
	1 Introduction
	2 GPQUICK
	2.1 Sextic and GPQuick
	2.2 AVX GPQuick Tree Evaluation
	2.3 Posix threads version of GPquick
	2.4 Multi-threaded Parallel Crossover

	3 Conclusions
	References

