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ABSTRACT

Generative adversarial networks (GAN) facilitate the learning of
probability distributions of complex data in the real world, and
allow neural networks to generate the distribution. GANs (GAN
and its variants) exhibit excellent performance in applications like
image generation and video generation. However, GANs sometimes
experience problems during training with regard to the distribution
of real data. We applied a genetic algorithm to improve and optimize
the GAN’s training performance. As a result, the convergence speed
and stability during the training process improved compared to the
conventional GAN.
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1 INTRODUCTION

Generative adversarial networks (GAN) [1] constitute one of the
major methods used for learning and generating complex data in
the real world. To generate meaningful data that are similar to real
data, GANs (GAN and its variants) adversarially train not only the
generator but also the discriminator to classify real samples and
generated fake samples. In recent years, such GANs have been suc-
cessfully applied to applications like image generation and editing.
However, when the distribution of the training dataset and the
distribution of the generated samples are not similar, the GAN ex-
periences issues with training. To solve this, deep convolutional
GAN (DCGAN) [2] was developed to apply a convolutional struc-
ture to a conventional GAN that uses multilayer perceptron. More-
over, evolutionary GAN [3] was developed to apply evolutionary
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computation to the adversarial training. Specifically, generators
generate offspring through mutation, and the population of gener-
ators evolves while preserving only the good generators.

We sought to improve and optimize the GAN’s training perfor-
mance by applying a GA. In particular, this was achieved by fo-
cusing on the oscillation phenomenon, in which the training is
unstable and model does not converge even if trained for a signifi-
cant amount of time. This study aims to improve the discrimination
performance of the discriminator using the GA and to improve
the generation performance of the generator. Experiments were
conducted by applying the proposed method to the actual MNIST
dataset. The results yielded performance improvements during the
training process compared to the conventional GAN.

2 GENERATIVE ADVERSARIAL NETWORKS
COMBINED WITH A GENETIC
ALGORITHM

2.1 GAN

The GAN learns the minimax game between the generative network
G and the discriminative network D. The G receives the latent vector
z ~ p(2) (sampled from a normal distribution) as input, and outputs
new data G (z) ~ py that approaches the data distribution pg,;4-
On the other hand, the D discriminates the real data x ~ p (x) and
the data G (z) ~ pg (G (2)) generated by G. Such a training process
for the GAN can be expressed by the following equation.

min max Eyp(x) [log D ()] + Ez~p(z) [log (1 =D (G (] (1)

If the training is continued in this manner, then, at the end, pj,;4 =
Pg» Which represents the state in which the D cannot discriminate
between the real and the fake, i.e., D (x) = D (G (z)) = %

2.2 Parameters of GA

A population of the same size as the GAN’s training batch size
was chosen, and each chromosome was a fake sample (i.e., G (z))
generated by the G. The fitness of the chromosome was the D’s
discrimination value (i.e., D (G (z))). Roulette wheel selection was
used for the selection type, and arithmetic recombination crossover
for the crossover type. The mutation was carried out by adding an
arbitrary number between —0.05 and +0.05 to each gene with a
probability of 10%. When the fitness of the offspring was higher than
that of the individual with the lowest fitness of the conventional
population, the worst individual was replaced by the offspring.

2.3 GAN combined with GA

A conventional GAN trains the D and G alternately, as shown in
Figure 1(a). Because of this, at a certain step, a problem may occur
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whereby the training of the D and the training of the G cancel each
other out. By applying the GA to each training step, as shown in
Figure 1(b), we attempted to improve the discrimination ability of
the D and, accordingly, improve the performance of the G.

First, the initial population was populated with the fake samples
(i-e., chromosome) generated by the G, and the fitness of each fake
sample was calculated. The samples of high fitness (samples that
were discriminated as real by the D) were selected, and the popula-
tion was evolved by using the parameters introduced in Section 2.2.
By supplying it with fake samples from the evolved population (i.e.,
G’(z)), the D was trained. Through this process, the D should be
perform better, in turn causing the G to improve even more.
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Figure 1: Conventional GAN and the proposed GAN

3 RESULTS AND ANALYSIS

In this section, the experiments and analysis are discussed for tasks
of several generations to evaluate the proposed GAN combined
with GA. The data used in the experiments were from the MNIST
dataset (a dataset that consists of handwritten digits between 0 and
9), which are widely used for training and validation in machine
learning. We trained the GAN and performed the data generation ex-
periment by separating the data by each digit. The performance was
measured using the loss (binary cross-entropy) of the discriminator
and the generator before and after the application of the GA to the
conventional GAN. The binary cross-entropy is calculated from the
equation below. When the GAN is trained and D (x) = D(G (z)) = %
is obtained, the loss value becomes 0.69, at which point model has
converged.

H[X]=-[P(X=0)logP (X =0)+P(X = 1)logP(X = 1)] (2)

Figure 2 compares the loss of the discriminator and the generator
before and after application of the GA to the GAN. Although these
did not converge before or after application of the GA to the GAN,
the training proceeded more stably and more convergently when
the GA was applied. Figure 3 shows the kernel density estimate
plot for the distribution of digit 0 and the distribution of samples
generated during the training of the GAN. For each step, the data
generated by the GAN combined with GA closely matched the
distribution of the actual data, and the training and generation per-
formance improved slightly. Because of the space limit of this paper,
we did not include all results. As representatives, we compared the
results of digit 0 and step 420.
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Figure 2: Comparison of loss for each step of GAN during
training for the digit 0
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Figure 3: Comparison of generation performance with GA
at step 420

4 CONCLUSION

GANSs constitute one of the major methods used in data genera-
tion and editing. Additionally, the GA approach is widely used in
various optimization problems. This study proposed an approach
in which a GA was utilized to address the GAN’s issues and im-
prove performance. When the GA was used, the generated samples
evolved in a diverse manner and the discriminator was able to
discriminate more stably. Although there was no noticeably large
improvement, it was confirmed that it is possible to solve some of
the issues present in GANs and improve performance by applying
a GA. In the future, we plan to conduct a more in-depth study on
methods for improving GANs by applying a GA and improving the
generation performance.
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