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ABSTRACT
As the demand for computationally expensive optimization has
increased, so has the interest in surrogate-assisted evolutionary
algorithms (SAEAs). However, if a fitness landscape is approxi-
mated using only a surrogate model, thereby replacing a fitness
function, it is possible for a solution to evolve toward a false opti-
mum based on the surrogate model. Therefore, many conventional
studies have been carried out in which the real fitness function
and surrogate model are dealt with simultaneously. Nevertheless,
such an approach leaves much to be desired because studies should
be performed for real fitness function evaluation and surrogate
model-aware search mechanisms. In this study, we discovered that
the approximation error of the surrogate model at low dimensions
has a significant relationship with the performance of SAEAs at
high dimensions for three binary encoding problems and three
real encoding problems. Therefore, if the approximate error is suf-
ficiently small in the low dimension, then high GA performance
can be obtained even when the real fitness function is not used,
because a high-quality surrogate model can be obtained in the high
dimension.
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1 INTRODUCTION
A majority of problems in the real-world have no analytical fitness
function by which to accurately calculate the fitness value of a
chromosome [2]. In this case, if the respective fitness evaluation is
highly time consuming when obtaining fitness through experiment
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or by computational simulation, surrogate-assisted evolutionary al-
gorithms (SAEAs) should be considered to reduce the computation
time. However, if a fitness landscape is approximated using only a
surrogate model, it is possible for the solution to evolve toward a
false optimum based on the surrogate model [1]. Therefore, many
studies have been carried out in which a surrogate model and a real
fitness function are dealt with simultaneously. In this paper, we
discovered that, for the same type of problem, the approximation
error of the surrogate model at low dimensions has a significant
relationship with the performance of SAEAs at high dimensions.
Therefore, because a high quality surrogate model can be obtained
in a high dimension if the approximation error is sufficiently small
in the low dimension, the SAEAs can achieve high performance
even when a real fitness function is not used. This paper is an ex-
tension of [3] in which an NK landscape problem (k=12) is added to
previous binary encoding problems (One-max, NK landscape (k=2)
problem), and in which additional experiments have been carried
out for three real encoding problems (Minimum-sum, Rastrigin,
Rosenbrock problem).
2 APPROXIMATE MODELS
The algorithms used to make a model are linear regression (LR),
support vector regression (SVR), and deep neural networks (DNN).
In our experiments, “LinearRegression” and “SMOreg” algorithm of
WEKA1 was used. TensorFlow2 was used to make a neural network
model.
3 PROBLEMS
Experiments targeting three problems each of the binary encoding
and real encoding, respectively, were performed. In the case of real
encoding problems, the value range of the gene was set at [-5, 5].
For the binary encoding and real encoding problems, computational
budgets of 50 and 1,000 generations were used, respectively. The
one-max problem is to maximize the number of genes each of which
has a value of 1. An NK landscape model was constructed to define
a fitness function with various dimensions and epistasis. The fitness
function is tuned by two parameters n and k, where n defines the
dimensions of the problem space, and k determines the degree
of epistasis between the genes making up chromosomes. In our
experiment, we used NK landscape with k of 2 and one with k of
12. The minimum sum problem is to minimize the value of genes
in chromosome. The Rastrigin function is a non-convex function
and a non-linear multimodal function. Because of the large search
space and many local optima, it is somewhat difficult to find a
global optimum. The global optimum is f(0,. . . ,0)=−330. Since the
Rosenbrock function is a non-convex function, a global optimum
exists in a parabolic-shaped flat valley. Finding the valley is simple,
1https://www.cs.waikato.ac.nz/ml/weka
2https://www.tensorflow.org
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but convergence to the global optimum is somewhat difficult. The
global optimum is f(0,. . . ,0)=390.
4 RESULTS AND ANALYSIS
All of the binary encoding problems used tournament selection and
one-point crossover. Bitwise mutation was used with probability of
0.7, and a generational genetic algorithm was used. The population
size and the number of generations was 50. All of the real encoding
problems used tournament selection and extended box crossover.
Gaussian mutation was used with a probability of 0.5, and a gener-
ational genetic algorithm was used. The population size was 300
and the number of generations was 1,000.
At low dimensions (n≤16), the root mean square error (RMSE) be-
tween the value predicted by the approximate model and the actual
fitness was calculated. The results are shown in Figure 1.3 For the bi-
nary encoding problems, the approximation error was obtained by
using all solutions, and for the real encoding problems, the approxi-
mation error was obtained by arbitrarily extracting 30,000 solutions.
Based on these findings, it was determined that, in the binary en-
coding problems, the approximation error of the One-max problem
was smallest, followed by that of the NK landscape (k=2) and NK
landscape (k=12) problems, in that order. In the real encoding prob-
lems, the approximation error of the minimum-sum was smallest,
followed by that of the Rastrigin and Rosenbrock problems, in that
order. At high dimensions (n>16), a surrogate model was created
by arbitrarily extracting 10,000 solutions for the binary encoding
and real encoding problems, and the performance of the GA that
used the surrogate model was compared to the performance of the
GA that solved the objective function directly. The performance of
the approximated and calculated objective functions was evaluated
using an average value with n = 50. The value of the difference be-
tween the GA performance obtained by the objective function and
the one obtained by the SVR model at high dimensions is shown
in Figure 2. The performance of the approximated and calculated
objective functions is shown in Table 1. Based on these findings, it
was confirmed the difference in performance was small with regard
to the order of the approximation error when the dimension was
low.
5 CONCLUSION
Many surrogate-assisted evolutionary algorithms deal with a real
fitness function and a surrogate model together instead of replacing
the fitness function with the surrogate model. However, they leave
much to be desired, because a large number of real fitness function
evaluations must still be performed. In this paper, we conducted
experiments for three binary encoding problems and three real
encoding problems. From the results, it was determined that the
approximation error of the surrogate model at low dimensions has
a significant relationship with the performance of SAEAs at high
dimensions. The three binary encoding problems and the minimum-
sum problem showed small approximation errors at low dimensions,
and because the performance of the SAEAs at high dimensions was
high, the fitness function could only be replaced by the surrogate
model. However, the Rastrigin and Rosenbrock problems demon-
strated large approximation errors at low dimensions. Because the
performance of the SAEAs at high dimensions was poor when the
fitness function was replaced by only the surrogate model, the
solution evolved toward a false optimum. In future research, addi-
tional experiments will be conducted on highly time-consuming
real-world problems.
3SVR was adopted as a representative. Because of the space limit of this paper, we
could not show all results of algorithms we tested.

(a) Binary encoding problem (b) Real encoding problem

Figure 1: Normalized approximation error of SVR model at
low dimensions (n≤16).

(a) Binary encoding problem (b) Real encoding problem

Figure 2: The normalized value of difference between GA
performance obtained by objective function and one ob-
tained by SVR model at high dimensions (n>16).

Table 1: Comparison of performance
Problem

(size: n or n, k)
Obj function SVR DNN LR

Ave/SD Ave/SD Ave/SD Ave/SD
One-max(20) 19.86/0.35 19.94/0.24 19.98/0.14 19.86/0.35
One-max(25) 24.54/0.61 24.82/0.39 24.76/048 24.54/0.61
One-max(50) 44.40/1.73 45.38/1.67 45.58/1.53 44.40/1.73
One-max(100) 77.68/3.07 80.18/2.53 79.22/3.19 77.68/3.07

NK(20, 2) 13.78/0.73 13.39/0.52 14.38/0.53 13.41/0.61
NK(25, 2) 17.04/0.77 17.27/0.72 17.76/0.52 17.25/0.67
NK(50, 2) 32.68/1.36 31.63/1.36 33.03/1.24 31.06/1.21
NK(100, 2) 60.30/1.76 56.66/2.11 59.17/2.30 56.82/2.15
NK(20, 12) 13.79/0.68 12.33/1.02 11.68/1.25 12.23/1.12
NK(25, 12) 17.04/0.78 14.83/1.17 14.54/1.10 14.82/1.34
NK(50, 12) 32.20/0.86 27.71/1.23 27.50/1.56 27.97/1.52
NK(100, 12) 61.60/0.95 53.47/1.28 53.19/2.57 53.60/1.68

Minimum(20) -100.00/0.00 -99.00/0.64 -100.00/0.00 -100.00/0.00
Minimum(25) -125.00/0.00 -123.31/0.77 -125.00/0.00 -125.00/0.00
Minimum(50) -249.97/0.42 -242.46/1.46 -243.14/1.53 -249.86/0.42
Rastrigin(20) -308.19/7.41 -25.81/32.51 -126.35/47.94 -13.58/30.97
Rastrigin(25) -294.54/9.25 31.57/57.10 -65.27/41.14 51.95/49.27
Rastrigin(50) -161.08/25.92 403.11/70.48 208.99/60.73 403.90/59.58

Rosenbrock(20) 448.3/25.7 19134.2/7962.9 1934.2/519.1 22436.9/6307.1
Rosenbrock(25) 483.7/25.5 27446.2/6340.4 5914.1/2298.6 28276.5/6989.2
Rosenbrock(50) 670.1/32.1 42669.5/18195.8 11203.0/4327.5 39542.5/11757.6
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