
Probabilistic Grammar-based Deep Neuroevolution
Pak-Kan Wong

The Chinese University of Hong Kong
Hong Kong

pkwong@cse.cuhk.edu.hk

Man-Leung Wong
Lingnan University

Hong Kong
mlwong@ln.edu.hk

Kwong-Sak Leung
The Chinese University of Hong Kong

Hong Kong
ksleung@cse.cuhk.edu.hk

ABSTRACT
Designing deep neural networks by human engineers can be chal-
lenging because there are various choices of deep neural network
structures. We developed a deep neuroevolution system to automat-
ically design deep neural network structures using deep neuroevo-
lution. Our approach defines a set of structures using a probabilistic
grammar and searches for best network structures using Proba-
bilistic Model Building Genetic Programming. Our approach takes
advantage of the probabilistic dependencies found among the struc-
tures of networks. The system was applied to tackle the problem of
the physiological signal classification of abnormal heart rhythm. In
the classification problem, our discovered model is more accurate
than AlexNet. Our discovered model uses about 2% of the total
amount of parameters of AlexNet.

CCS CONCEPTS
• Software and its engineering → Genetic programming; •
Computing methodologies→ Neural networks;

KEYWORDS
Estimation of Distribution Programming, Deep Neural Network

ACM Reference Format:
Pak-Kan Wong, Man-Leung Wong, and Kwong-Sak Leung. 2019. Proba-
bilistic Grammar-based Deep Neuroevolution. In Genetic and Evolutionary
Computation Conference Companion (GECCO ’19 Companion), July 13–17,
2019, Prague, Czech Republic. ACM, New York, NY, USA, Article 4, 2 pages.
https://doi.org/10.1145/3319619.3326778

1 INTRODUCTION
Recently, Deep Neural Network (DNN) is a powerful machine learn-
ing technique and attains outstanding performance inmanymedical
applications, such as the identification of skin lesions [1]. Even a
slight improvement of the performance for these detection systems
implies an early diagnosis of diseases and save the people’s lives.
However, manually configuring of a DNN is complicated because
the large search space of DNN covers many aspects, such as the
topology of the network and the learning parameters. In this pa-
per, we explore a physiological application of Deep Neuroevolution
(DNE) to the automatically design of Convolutional Neural Network
(CNN), which has not been reported before.

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
GECCO ’19 Companion, July 13–17, 2019, Prague, Czech Republic
© 2019 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-6748-6/19/07.
https://doi.org/10.1145/3319619.3326778

In this paper, we propose a new procedure to evolve DNN struc-
tures from a set of convolutional layers, called modules, using
Probabilistic Model Building Genetic Programming (PMBGP) ap-
proach. There are several advantages to this approach. First of all, it
explicitly models the preference for combinations among different
modules via probabilistic dependencies in the set of DNNs. PMBGP
approach can automatically learn how to compose the highly de-
pendent network modules. Secondly, since the DNN is represented
in a grammar, new forms of regularities can be discovered to opti-
mize the DNN structures. The system can decide what components
to be inserted using the structural context, i.e. information about
the location of a new component with respect to other existing
components in a network structure. The context information can be
nicely captured in Probabilistic Context-Sensitive Grammar (PCSG)
while this is also the first study to apply PCSG and PMBGP on DNE.

2 DEEP NEURAL NETWORK STRUCTURE
SEARCH

Our proposed Deep Neuroevolution (DNE) system can evolve DNNs
in five steps (Figure 1):

(1) Deriving DNN structures encoded in parse trees according
to the grammar;

(2) Translating the parse trees into Python code;
(3) Evaluating the performance of the network using data;
(4) Collecting samples from the parse trees of the set of good

networks (by their ranking);
(5) Updating Bayesian networks in the grammar.

Steps 1 to 5 are repeated until it reaches the maximum number of
generations. Our system is based on Grammar-based Genetic Pro-
gramming with Bayesian Network (BGBGP) [8], and the evaluation
step relies on PyTorch [7]. Stochastic gradient descent algorithm is
adopted to optimize the weights in DNNs.

A DNNmodel contains a DNN structure of several DNNmodules
and a set of weights. A DNN topology is a specification describing a
set of DNN structures of interest. We define eight network modules
as the building blocks. An input module is a convolutional layer
which has an incoming edge from the input data. An output module
is a fully connected layer to transform its input to a class output in
the one-hot encoding which can represent categorical variables as
binary vectors. As for the remaining six modules, their incoming
edges and outgoing edges connect to one of the eight network
modules. A BRC module is composed of a batch normalization
layer [3], a rectified linear layer [6], and a convolutional layer [5],
which are connected in sequential order. An aggregator module is an
addition function to combine multiple incoming edges into a single
outgoing edge. Lastly, four local features extraction (LFE) modules
can extract the local features from input at different scales in parallel.
LetLFE(m,n) denote a LFEmodule, wherem andn are the size of the

87

https://doi.org/10.1145/3319619.3326778
https://doi.org/10.1145/3319619.3326778


GECCO ’19 Companion, July 13–17, 2019, Prague, Czech Republic P. K. Wong et al.

Grammar

1.1 Start -> [Input Module→] Topology1 [→Output Module]
2.1 Topology -> [BRC Module→] Topology2 [→] Topology3
2.2 Topology -> LFETopology1

3.1 LFETopology -> [LFE(4,0)]

3.2 LFETopology -> [LFE(5,0)]

3.3 LFETopology -> [LFE(2,2)]

3.4 LFETopology -> [LFE(3,2)]

DNN structures 

encoded in parse trees

1.1

2.1

2.1 2.1

2.2 2.2

3.4 3.1

2.2

3.1

2.2

3.2

Translation

Derivation

DNN structures

in Python code

Evaluation

Topology2 Topology3
2.1 2.1
2.2 2.2
… …

Rule 2.1

i24 i2 i4 … i16 i15 i3

Sample collection

LTETopology1
3.4
3.1
3.2
3.1
…

Rule 2.2

U
p

d
at

e 
B

ay
es

ia
n

 n
et

w
o

rk
s

Rule 1.1

Topology1
1.1
…

LFE(4,0) LFE(5,0) LFE(2,2) LFE(3,2)

Bayesian network 2.1

Bayesian network 1.1

Bayesian network 2.2

Derivation Records

Evaluated DNNs

Figure 1: DNE system.

parallel part and the size of the sequential part respectively. Figure
1 shows the internal structure of LFE(4,0), LFE(5,0), LFE(2,2), and
LFE(3,2). They are composed of several BRC modules (Rectangles)
and aggregator modules (Triangles).

A DNN topology grammar encodes how DNN modules are as-
sembled. It is a PCSG which comprises of a set of rules associated
with a Bayesian network for each of them. The grammar in Figure
1 restricts the search space for the DNN structures. The 7 rules in
the grammar are labelled from 1.1 to 3.4. Terminals are embraced
by a pair of square brackets while other are non-terminals. Rule
1.1 defines the starting point and ending point of a network struc-
ture, i.e. an input module and an output module. Rule 2.1 says that
a network topology Topology can be composed of two network
topologies. The input to the compositions of network topologies is
preprocessed by a BRC module. Rule 2.2 means that a LFE topology
(LFETopology), which is defined in rules 3.1 to 3.4, is also a network
topology. During the derivation of a parse tree, the structural con-
text is provided by context variables and Bayesian networks can
guide the search. The details of the derivation can be found in [8].

3 EVALUATION
A data set of the physiological measures from electrocardiography
leads and pulse oximetry collected from four hospitals in the USA
and Europe was downloaded [2]. Each record lasts 20 seconds long
and contains 5000 features in total. Our goal is to detect if ventricular
tachycardia occurs immediately after 20 seconds. There are 310
records. The records can be categorized into two classes. Patients
who suffered from ventricular tachycardia, which contributes 29%
of records. Another class of records were collected from patients
who did not suffer from ventricular tachycardia. Stratified sampling
was applied. The test, train, and validation sets contain 30%, 56%,
and 14% of records respectively. In our experiment, we tested four
other DNNs for comparison. Each of them was run for 50 runs.
Then, the best model of each DNN was compared with our evolved
network.

In our best model, the number of model parameters is around
0.064M using initial learning rate of 0.01. The network was trained
for a maximum of 500 epochs. Four neural networks for comparison
covered a different amount of parameters (from 0.031M to 24M) and

Table 1: Comparison with other DNN classifiers.

DNE AlexNet-A AlexNet-B Net-A Net-B
Parameters 0.064M 24M 2.8M 0.080M 0.031M
Accuracy 76% 75% 75% 62% 56%

network structures. The results are shown in Table 1. DNE denotes
the best model discovered using our method. AlexNet [4] is a well-
known DNNs designed by experts in DNN. It is originally applied in
image classification tasks. AlexNet, denoted by AlexNet-A, contains
only eight layers: five convolutional layers and three fully connected
layers. AlexNet-B is a simplified version of AlexNet-A and has 16
neurons in the fully connected layers, which is the same as that in
our evolved network. DNE has slightly higher accuracy than that
of AlexNet-A and AlexNet-B but the total number of parameters in
DNE is only 2.2% of that in AlexNet-B.

There is no guarantee that the performance of the network will
increase with the total number of parameters. To demonstrate this
property, two neural networks were tested. Net-A is made of three
fully connected layers and has 16 neurons. There are about 0.016M
more parameters in Net-A than DNE does, but the performance
of Net-A drops by 14%. Net-B connects a convolutional layer to a
fully connected layer such that the number of parameters is only
half of that in DNE. The performance drops by 20%. This suggests
that neuroevolution on the DNN structure is vital to achieve high
accuracy using a small number of parameters.

4 CONCLUSIONS
We proposed a deep neuroevolution approach using a probabilistic
grammar-based method. It can not only improve but learn DNN
structures. It is evident that DNNs attaining comparable predictive
performance can be evolved while deploying our DNNs requires
much less computing resources. It will help experts to adopt DNN
to analyze complex data sets. In the future, we will investigate if
our system can learn novel DNN structures for complex data sets,
such as those with many modalities.

ACKNOWLEDGMENTS
This research is supported by the Institute of Future Cities of The
Chinese University of Hong Kong.

REFERENCES
[1] A. Esteva, B. Kuprel, R. A. Novoa, J. Ko, S. M. Swetter, H. M. Blau, and S. Thrun.

Dermatologist-level classification of skin cancer with deep neural networks. Na-
ture, 542(7639):115, 2017.

[2] A. L. Goldberger, L. A. Amaral, L. Glass, J. M. Hausdorff, P. C. Ivanov, R. G. Mark,
J. E. Mietus, G. B. Moody, C.-K. Peng, and H. E. Stanley. Physiobank, physiotoolkit,
and physionet. Circulation, 101(23):e215–e220, 2000.

[3] S. Ioffe and C. Szegedy. Batch normalization: Accelerating deep network training
by reducing internal covariate shift. In Proc. of the 32th ICML, pages 448–456, 2015.

[4] A. Krizhevsky, I. Sutskever, and G. E. Hinton. Imagenet classification with deep
convolutional neural networks. In Proc. of the NIPS 2012, pages 1097–1105, 2012.

[5] Y. LeCun, B. Boser, J. S. Denker, D. Henderson, R. E. Howard, W. Hubbard, and
L. D. Jackel. Backpropagation applied to handwritten zip code recognition. Neural
Computation, 1(4):541–551, 1989.

[6] V. Nair and G. E. Hinton. Rectified linear units improve restricted Boltzmann
machines. In Proc. of the 27th ICML, pages 807–814, 2010.

[7] A. Paszke, S. Gross, S. Chintala, G. Chanan, E. Yang, Z. DeVito, Z. Lin, A. Desmaison,
L. Antiga, and A. Lerer. Automatic differentiation in pytorch. In NIPS-W, 2017.

[8] P.-K. Wong, L.-Y. Lo, M.-L. Wong, and K.-S. Leung. Grammar-based genetic
programming with Bayesian network. In Proc. of IEEE CEC 2014, pages 739–746.
IEEE, 2014.

88


	Abstract
	1 Introduction
	2 Deep Neural Network Structure Search
	3 Evaluation
	4 Conclusions
	Acknowledgments
	References

