
Beyond Coreset Discovery: Evolutionary Archetypes
Pietro Barbiero

Politecnico di Torino
Torino, Italy

pietro.barbiero@studenti.polito.it

Giovanni Squillero
Politecnico di Torino

Torino, Italy
giovanni.squillero@polito.it

Alberto Tonda
INRA, Université Paris-Saclay
Thiverval-Grignon, France

alberto.tonda@inra.fr

ABSTRACT
In machine learning a coreset is defined as a subset of the training
set using which an algorithm obtains performances similar to what
it would deliver if trained over the whole original data. Advantages
of coresets include improving training speed and easing human
understanding. Coreset discovery is an open line of research as
limiting the training might also impair the quality of the result.
Differently, virtual points, here called archetypes, might be far more
informative for a machine learning algorithm. Starting from this
intuition, a novel evolutionary approach to archetype set discovery
is presented: starting from a population seeded with candidate
coresets, a multi-objective evolutionary algorithm is set to modify
them and eventually create archetype sets, tominimize both number
of points in the set and classification error. Experimental results
on popular benchmarks show that the proposed approach is able
to deliver results that allow a classifier to obtain lower error and
better ability of generalizing on unseen data than state-of-the-art
coreset discovery techniques.

CCS CONCEPTS
•Computingmethodologies→ Supervised learning;Genetic
algorithms.

KEYWORDS
Archetype sets; Classification; Coresets; Coreset discovery; Evolu-
tionary algorithms; Explain AI; Machine learning; Multi-objective

ACM Reference Format:
Pietro Barbiero, Giovanni Squillero, and Alberto Tonda. 2019. Beyond Core-
set Discovery: Evolutionary Archetypes. In Proceedings of the Genetic and
Evolutionary Computation Conference 2019 (GECCO ’19). ACM, New York,
NY, USA, 2 pages. https://doi.org/10.1145/3319619.3326789

1 PROPOSED APPROACH
In machine learning a coreset is defined as a subset of the training
set using which an algorithm obtains performances similar to what
it would deliver if trained over the whole original data. Advantages
of coresets include improving training speed and easing human
understanding. Coreset discovery is an open line of research as
limiting the training might also impair the quality of the result.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
GECCO ’19, July 13–17, 2019, Prague, Czech Republic
© 2019 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-6748-6/19/07. . . $15.00
https://doi.org/10.1145/3319619.3326789

An archetype is defined here as a virtual data point, not originally
present in a given dataset, but created from scratch, taking into
account both the data distribution and the information contained
in the original dataset. If correctly crafted, archetypes can be more
instructional for a ML algorithm, potentially requiring less data
points to obtain the same results of a comparable coreset, and/or
allowing for better generalization. Searching for sets of archetypes,
or archetype sets, can also be seen as a relaxation of the initial
coreset discovery problems, as an optimization algorithm becomes
less constrained, being no longer forced to pick only from a discrete
set of alternatives.

As the search space of all possible archetype sets of varying
size for a given problem is clearly vast, it is necessary to resort
to stochastic optimization to efficiently explore it. It must also be
noted that the problem of coreset/archetype discovery is inherently
multi-objective, as the two conflicting aims are to find a set of
data points that delivers the best possible ML results, while being
as compact as possible. Evolutionary algorithms (EAs) [7] are a
technique with a long track record of successes, able to deliver
good results in a reasonable amount of time. In particular, multi-
objective EAs (MOEAs), such as NSGA-II [8], represent the state of
the art in multi-objective optimization. Building on previous works
on evolutionary coreset discovery [1], the algorithm proposed here
extends coreset discovery to archetype set discovery, using aMOEA.

The genotype of a candidate solution is represented by a matrix,
where each row encodes the real-valued features of one virtual data
point, plus an integer that associates the virtual point to one of
the known classes. The two fitness functions used in this multi-
objective problem are the size of the archetype set (to be minimized),
and the error of the target classifier trained on the archetype set,
evaluated on the original dataset (to be minimized). The starting
population of the MOEA is initialized with candidate coresets of
random size. The minimum size corresponds to the number of
classes in the problem, so that each candidate solution has at least
one data point associated to each class; the maximum size is de-
fined as a 1/10 of the original dataset size. Data points in each of
such coresets are randomly drawn from the original dataset. When
generating new candidate solutions, the MOEA selects one of the
following operators, with flat probability: i. mutate one feature of
one archetype in an archetype set, using a Gaussian mutation with
µ = 0 and σ = 0.1; ii. mutate the class associated to one archetype,
changing it to a different valid class in the problem; iii. remove
one archetype from the archetype set, checking that the solution is
still valid, containing at least one archetype per class; iv. add one
random sample from the original training set to an archetype set; v.
recombine two candidate solutions, by randomly distributing each
archetype contained in both between two children solutions.

47

https://doi.org/10.1145/3319619.3326789
https://doi.org/10.1145/3319619.3326789

GECCO ’19, July 13–17, 2019, Prague, Czech Republic P. Barbiero et al.

Table 1: Iris dataset. Coreset size, accuracy on test set and running time (seconds) of the considered classifiers and coreset
algorithms.

RandomForest Bagging SVC Ridge
algorithm size accuracy avg time size accuracy avg time size accuracy avg time size accuracy avg time
all samples 99 0.9608 99 0.9254 99 0.9412 99 0.8824
EvoArch 5 0.9608 914.3 16 0.9608 838.5 6 0.9412 194.9 3 0.9804 149.5
GIGA 7 0.9216 0.01 7 0.6667 0.01 7 0.9804 0.01 7 0.8431 0.01
FW 15 0.8824 3.6 15 0.8627 3.6 15 0.9412 3.6 15 0.8235 3.6
MP 14 0.9412 4.8 14 0.8627 4.8 14 0.9216 4.8 14 0.7255 4.8
FS 7 0.6667 4.5 7 0.7059 4.5 7 0.6471 4.5 7 0.6275 4.5
OP 5 0.7059 0.01 5 0.5294 0.01 5 0.7843 0.01 5 0.8235 0.01
LAR 4 0.5294 22.2 4 0.6863 22.2 4 0.6471 22.2 4 0.7059 22.2

2 EXPERIMENTAL RESULTS
All the experiments presented in this section exploit 4 classifiers,
representative of both hyperplane-based and ensemble, tree-based
classifiers: Bagging [3], RandomForest [4], Ridge [15], and SVC
(Support Vector Machines) [11]. All classifiers are implemented in
the scikit-learn1 [14] Python module and use default parame-
ters. The code for reproducing the following experiments is freely
available in a BitBucket public repository2. For the sake of compar-
ison, it is important that the classifier will follow the same training
steps, albeit in different conditions. For this reason a fixed seed has
been set for all those that exploit pseudo-random elements in their
training process.

The experiments are performed on well-known data sets publicly
available in the scikit-learn: i. Blobs, three isotropic gaussian
blobs (3 classes, 400 samples, 2 features); ii. Circles, a large circle
containing a smaller one (2 classes, 400 samples, 2 features); iii.
Moons, two interleaving half circles (2 classes, 400 samples, 2 fea-
tures); iv. Iris [10] (3 classes, 150 samples, 4 features). For each case
study, samples are randomly split between the original training set
Tr (66%) and test set (33%).

The results obtained by the proposed approach are then com-
pared against the 6 coreset discovery algorithms GIGA [5], FW [6],
MP [13], OMP [13], LAR [9][2], and FS [12]. The comparison is
performed on three measures: i. the coreset size (low is better); ii.
the classification accuracy on the test set (high is better); iii. the
running time of the algorithm (low is better). Table 1 shows the
results of the comparison on the Iris data set, where the proposed
approach is labeled EvoArch. Text in bold highlights the highest
accuracy for each classifier on the test set. Figure 1 shows the details
of the evolved solutions on the Moons data set using SVC.

Experimental results suggest that the performance of ML clas-
sifiers would not be a function of the size of the training set, but
rather a function of the mutual position of the training samples in
the feature space. By exploiting the original training set and by
relaxing the constraint of sample positions, EvoArch generates a
new smaller data set suited for each classifier in order to provide
the best generalisation ability.

1scikit-learn: Machine Learning in Python, http://scikit-learn.org/stable/
2Evolutionary Discovery of Archetypes, https://bitbucket.org/evomlteam/
evolutionary-archetypes/src/master/

−2 −1 0 1 2 3

−3

−2

−1

0

1

2

SVC - acc. 0.9179

train

test

errors

−2 −1 0 1 2 3

−3

−2

−1

0

1

2

SVC - acc. 0.9328

test

archetypes

errors

Figure 1: SVC classifier on the Moons data set. Pareto front
(Left), decision boundary using all training samples (Center),
and decision boundary using an archetype set (Right).

REFERENCES
[1] Pietro Barbiero and Alberto Tonda. 2019. Fundamental Flowers: Finding Core

Sets for Classification using Evolutionary Computation. In EvoApplications 2019.
[2] Christos Boutsidis, Petros Drineas, and Malik Magdon-Ismail. 2013. Near-optimal

Coresets For Least-Squares Regression. Technical Report. arXiv:1202.3505v2
https://arxiv.org/pdf/1202.3505.pdf

[3] Leo Breiman. 1999. Pasting small votes for classification in large databases and
on-line. Machine Learning 36, 1-2 (1999), 85–103.

[4] Leo Breiman. 2001. Random forests. Machine learning 45, 1 (2001), 5–32.
[5] Trevor Campbell and Tamara Broderick. 2018. Bayesian Coreset Construction

via Greedy Iterative Geodesic Ascent. In International Conference on Machine
Learning (ICML). arXiv:arXiv:1802.01737v2 https://arxiv.org/pdf/1802.01737.pdf

[6] Kenneth L Clarkson. 2010. Coresets, Sparse Greedy Approximation, and the
Frank-Wolfe Algorithm. In ACM Transactions on Algorithms. http://citeseerx.ist.
psu.edu/viewdoc/download?doi=10.1.1.145.9299

[7] Kenneth A De Jong. 2006. Evolutionary computation: a unified approach. MIT
press.

[8] Kalyanmoy Deb, Amrit Pratap, Sameer Agarwal, and TAMT Meyarivan. 2002. A
fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE transactions on
evolutionary computation 6, 2 (2002), 182–197.

[9] Bradley Efron, Trevor Hastie, Iain Johnstone, and Robert Tibshirani. 2004. Least
Angle Regression. The Annals of Statistics 32, 2 (2004), 407–451. https://doi.org/
10.1214/009053604000000067

[10] Ronald A Fisher. 1936. The use of multiple measurements in taxonomic problems.
Annals of eugenics 7, 2 (1936), 179–188.

[11] Marti A. Hearst, Susan T Dumais, Edgar Osman, John Platt, and Bernhard
Scholkopf. 1998. Support vector machines. IEEE Intelligent Systems and their
Applications 13, 4 (1998), 18–28.

[12] Efroymson M. A. 1960. Multiple Regression Analysis. Mathematical Methods for
Digital Computers (1960).

[13] Y.C. Pati, R. Rezaiifar, and P.S. Krishnaprasad. 1993. Orthogonal matching pursuit:
recursive function approximation with applications to wavelet decomposition.
Proceedings of 27th Asilomar Conference on Signals, Systems and Computers (1993),
40–44. https://doi.org/10.1109/ACSSC.1993.342465 arXiv:1108.3326

[14] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M.
Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cour-
napeau, M. Brucher, M. Perrot, and E. Duchesnay. 2011. Scikit-learn: Machine
Learning in Python. Journal of Machine Learning Research 12 (2011), 2825–2830.

[15] Andrey Nikolayevich Tikhonov. 1943. On the stability of inverse problems. In
Dokl. Akad. Nauk SSSR, Vol. 39. 195–198.

48

http://scikit-learn.org/stable/
https://bitbucket.org/evomlteam/evolutionary-archetypes/src/master/
https://bitbucket.org/evomlteam/evolutionary-archetypes/src/master/
http://arxiv.org/abs/1202.3505v2
https://arxiv.org/pdf/1202.3505.pdf
http://arxiv.org/abs/arXiv:1802.01737v2
https://arxiv.org/pdf/1802.01737.pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.145.9299
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.145.9299
https://doi.org/10.1214/009053604000000067
https://doi.org/10.1214/009053604000000067
https://doi.org/10.1109/ACSSC.1993.342465
http://arxiv.org/abs/1108.3326

	Abstract
	1 Proposed Approach
	2 Experimental results
	References

