
Genetic Algorithms are Very Good Solved Sudoku Generators

Amit Benbassat
Sapir Academic College

M. P. Hof Ashkelon, Israel

amitbenb@mail.sapir.ac.il

ABSTRACT

I present a simple and yet e�ective GA-based approach to con-

tent generation in the Sudoku domain. �e GA �nds multiple full

boards which can act as solutions for Sudoku and Killer Sudoku

puzzles. In this work I use a binning-based diversity maintenance

approach in order to encourage GA to �nd more solution boards.

resluts prove that though both approaches routinely manage to

�nd multiple solution boards it is in fact the simple GA without

any diversity maintenance that �nds more such boards. Using a

simpler approach to manipulate the �tness function to penalize

previously found solutions improves the algorithm further.

CCS CONCEPTS

•Computing methodologies →Genetic algorithms; •�eory

of computation→Evolutionary algorithms;

KEYWORDS

evolutionary algorithms, puzzles, Sudoku, diversity

ACM Reference format:

Amit Benbassat. 2019. Genetic Algorithms are Very Good Solved Sudoku

Generators. In Proceedings of Genetic and Evolutionary Computation Con-

ference Companion, Prague, Czech Republic, July 13–17, 2019 (GECCO ’19

Companion), 2 pages.

DOI: 10.1145/3319619.3326793

1 INTRODUCTION

Sudoku puzzles and Killer Sudoku puzzles have been maintaining

their worldwide popularity for roughly two decades. �e simple

nature of the problem’s de�nition coupled with the potential for

solving di�culty make for an engaging puzzle game.

Below we quickly explain the Sudoku puzzle and show our ap-

proach to solving Sudokus as well as to problem generation.

2 SUDOKU

Sudoku is a 1-player puzzle game played on an n × n board. In

puzzles solved by humans n is typically 9 but can in principle be

any square number. A Sudoku puzzle consists of this n×n partially
�lled by numbers in the range {1, 2...n}. �e �lled squares are

calledGivens and are designed to constrain the puzzle so that there

is only one legal solution. �e remaining squares are empty and

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for pro�t or commercial advantage and that copies bear this notice and the full cita-
tion on the �rst page. Copyrights for third-party components of this work must be
honored. For all other uses, contact the owner/author(s).

GECCO ’19 Companion, Prague, Czech Republic

© 2019 Copyright held by the owner/author(s). 978-1-4503-6748-6/19/07. . . $15.00
DOI: 10.1145/3319619.3326793

to be �lled by the solver in a fashion that is in line with board

constraints.

In addition to the givens each Soduko puzzle solution has to

comply by 3n additional constraints. 3n subsets of n board posi-

tions must each contain each one of the numbers in {1, 2...n} ex-
actly once. �ese 3n subsets of the board consist of the following:

(1) �e n rows of the board.

(2) �e n columns of the board.

(3) �en smaller squares of size
√
n×

√
n (called boxes), which

make up the board.

In Figure 1 we see a 9x9 Sudoku puzzle. �is is considered an

easy Sudoku because of the relatively high number of givens (30).

2 5

1 7 5 2

4

4

9

9

7

7 3

8 1 3 4 9

3 6 12

2 8 4

8 9 2

87

Figure 1: A 9 × 9 Sudoku Puzzle with 30 givens. A solution

must be found where each row, colomn, and 3 × 3 square

contains a permutation of {1, 2...9}

2.1 Killer Sudoku

Killer Sudoku is a popular variant of Sudoku where additional con-

straints are added to the 3n row, column and box constraints. �ere

are typically less givens in a Killer Sudoku puzzle because of the

extra constraints. An extra constraint in Killer Sudoku consists of

a set of (typically adjacent) squares and a target sum for that set.

�ere are many variants of Sudoku, however A Solved Killer Su-

doku board looks the same as a solved Sudoku board. A solved

Sudoku board can therefore be used as the basis for the generation

of both types of puzzles.

3 GENERATING PUZZLES

In order to �nd Sudoku boards I �rst had to implement a GA-based

solver for Sudoku. In this work I focus only on 9x9 boards. In

49

GECCO ’19 Companion, July 13–17, 2019, Prague, Czech Republic Amit Benbassat

designing the GA I take a cue from previous research in solving

Sudoku boards, most notably from Mantere and Koljonen [2] who

used an optimized GA in order to both solve existing puzzles and

create new ones. Following the example of Mantere and Koljonen

I wish to �nd solved boards as the �rst step in �nding new Sudoku

Puzzles. But I also stray from their approach in some ways.

While previous work started with empty boards and ran a GA

on these empty boards, the simulations I ran had the entire �rst

row �lled with givens. �e reason for this is the observation that

each solution board can be used to generate 9! solutions simply

by permuting the locations of the numbers. My interest is in get-

ting di�erent solutions that cannot be reached that way from each

other, and �lling the �rst row with givens accomplishes that task.

I implemented a GA with individuals using a genome of 81 inte-

gers between 1 and 9 that represent the full Sudoku board. I then

added a�ributes to the GA until it became an adequate Sudoku

solver that I then used for content generation.

(1) �e GA imposed a rule that kept all the rows as permu-

tations of {1, 2...9} that are in line with the givens in the

row (thus reducing the number of constraints to be met

from 27 to 18)

(2) A single genetic operator was implemented, a swap muta-

tion that replaces the contents of two squares in the same

row, neither of which is limited by givens (I used a 0.8 mu-

tation rate).

(3) A �tness function of 100/(err + 1) where err is the num-

ber of mistakes in a permutation constrains (number of

repeated numbers).

(4) Tournament selection with tournament size 4.

(5) In some runs, hash-based bucketing diversitymaintenance

selection (also using tournament selection with tourna-

ment size 4) [1].

(6) Elitism with elite size 4.

�is GA speci�cation was su�cient to solve some Sudoku puz-

zles provided that the population size and generation limits were

generous. I chose a high mutation rate since mutation is the only

means of generating new solutions. �e implementation of elitism

prevents the high mutation rate from destroying the very best in-

dividuals.

4 RESULTS

To begin with, I ran 2 simulation sets of 20 runs each: One using a

standard GA and the other using GA with bucketing. In both sets I

used a population size of 1000 and a generation count of 2000. �e

idea was that the large population and long run would allow the

diversity-maintaining bucketing technique to �nd more solutions.

�e results were the complete opposite. It seems that due to

the existence of many similar Sudoku solutions it was in fact the

standard GA, unencumbered by the push for population diversity,

which every time managed to �nd more solutions.

Bucketing GA found an average of 17.1 solutions (standard de-

viation of 2.05). Standard GA found an average of 25.9 solutions

(standard deviation of 3.19).

4.1 Finding More Solutions by Manipulating

Fitness

Clearly bucketing as it was implemented was inappropriate in this

domain. Following this I a�empted a simpler form of diversity

maintenance inspired by clearing [3]. I implemented a genera-

tion counter that would activate every 100 generations, moving

all found solutions into a special list which ensures their �tness

will now be valued at 0.

A single standard GA simulation using the same parameters as

above and augmented by this technique yielded 55 distinct solu-

tions, far more than any previous a�empt.

Next I a�empted a larger simulation with a population size of

2000, and 4000 generations. �is simulation yielded 228 distinct

solutions.

5 CONCLUSIONS

I examined GAs as a content generation tool for Sudoku. We fo-

cused on a�empting to �nd multiple distinct solved boards. It

seems that due to the nature of the problem space a standard GA

without any diversity maintenance manages to �nd multiple solu-

tions with relative ease and in fact outperformed the more sophis-

ticated diversity maintenance method.

I then decided to use a more straightforward approach to pro-

mote diversity and had success in roughly doubling the number

of boards found by the same size of run. Increasing population

size and number of generations increases the number of solution

found.

�is research is still ongoing. I believe that the GA system could

use some improving and perhaps it will be able to �nd more solu-

tions. I also wish to be able to implement the GA system on gen-

erating content to larger boards (I a�empted to evolve boards for

n = 16 but there was no success on that front as of yet).

Another part of process to be considered is turning the solved

boards into challenging Sudoku puzzles. Perhaps it is possible to

improve the method suggested by [2]. It may also be possible to

generate puzzles for Sudoku variants. �e system can be adapted

to Killer Sudoku, for example, without requiring any changes other

than to the �tness function so it takes the additional constraints

into account.

REFERENCES
[1] Amit Benbassat and Yuri Shafet. 2017. A Simple Bucketing Based Approach to

Diversity Maintenance. In Proceedings of the Genetic and Evolutionary Computa-
tion Conference Companion (GECCO ’17). ACM, New York, NY, USA, 1559–1564.
DOI:h�p://dx.doi.org/10.1145/3067695.3082528

[2] TimoMantere and Janne Koljonen. 2007. Solving, rating and generating Sudoku
puzzles with GA. In 2007 IEEE congress on evolutionary computation. IEEE, 1382–
1389.

[3] Alan Pétrowski. 1996. A clearing procedure as a niching method for genetic
algorithms. In Evolutionary Computation, 1996., Proceedings of IEEE International
Conference on. IEEE, Nagoya, Japan, 798–803.

50

http://dx.doi.org/10.1145/3067695.3082528

	Abstract
	1 Introduction
	2 Sudoku
	2.1 Killer Sudoku

	3 Generating Puzzles
	4 Results
	4.1 Finding More Solutions by Manipulating Fitness

	5 Conclusions
	References

