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ABSTRACT
Modern gradient based optimization methods for deep neural net-
works demonstrate outstanding results on image classification tasks.
However, methods that do not rely on gradient feedback fail to
tackle deep network optimization. In the field of evolutionary com-
putation, applying evolutionary algorithms directly to network
weights remains to be an unresolved challenge. In this paper we
examine a new framework for the evolution of deep nets. Based
on the empirical analysis, we propose the use of linear sub-spaces
of problems to search for promising optimization trajectories in
parameter space, opposed to weight evolution. We show that linear
sub-spaces of loss functions are sufficiently well-behaved to allow
trajectory evaluation. Furthermore, we introduce fitness measure
to show that it is possible to correctly categorize trajectories ac-
cording to their distance from the optimal path. As such, this work
introduces an alternative approach to evolutionary optimization of
deep networks.
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1 INTRODUCTION
Deep neural networks are complex optimization problems often
tackled with approximation of gradients. They are used to guide
some random point in parameter space to an optimal position. Al-
though such methods have shown impressive results, there are still
no alternatives to this purely mathematical approach. Evolution-
ary methods are still unable to undertake direct neural network
optimization, thus development of new methods is required.
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In our investigation we analyze a possibility of searching for lin-
ear sub-spaces with best optimization trajectories. In other words,
we propose encoding individuals not as points, but as lines in param-
eter space. Based on our analysis of properties of linear sub-spaces,
we hypothesize that 1-D encoding, opposed to 0-D encoding, may
be a better way of performing a search in high-dimensional space.

We conclude this from the following experimental observations:
• Loss is unimodal along random lines. This has two main
conclusions: (1) Optimal network configuration in a given
linear sub-space is easy to determine. (2) Unimodality in
random directions ensures that populations of sufficient size
can be generated.

• Consistency in sub-optimal space. We confirm smooth-
ness of loss surface as lines move away from the optima,
which is required for evolvable setting.

• Lines are classifiable. Individuals encode multiple solu-
tions, and as such a method to measure the overall line fit-
ness is required. We propose such method and show that
trajectories are classifiable according to their performance.

2 RELATEDWORK
In the field of deep learning, genetic computation is often used for
automatic development of network structures [6, 7]. Neuroevolu-
tion evolves only weights of the neural networks while its structure
remains fixed [2, 3], but with increasing size of networks this ap-
proach faces significant challenges [4].

The possibility of evolving 1-D linear directions instead of a
point in neural network parameter space has not yet been explored.
In previous work we have seen the use of 1-D and 2-D linear inter-
polations for analysis of gradient path [1] and for visualization of
loss surfaces [5]. We explore further and discuss the practical and
algorithmic value of directional search.

3 EXPERIMENTS
In our experiments we examine high-dimensional space of neural
network parameters and its linear sub-spaces. To do that, we use
1-D interpolations computed in a sub-space of two points θi and
θ j . Let Li j (θi ,θ j ) denote a set of solutions such that ∀θk ∈ Li j ,
θk = (1 − k

n )θi +
k
n θ j and k = 0, 1, ...n and |Li j | = n. As such,

Li j is a set containing solutions θi , θ j and n − 2 discrete points
on a line between them. Finally, the optimization function J (θ ) is
interpolated from the set, J (θk ),∀θk ∈ Li j .

In the way described above, we define optimal trajectory. The
set of starting network parameters θs is randomly initialized, and
trained with gradient descent methods until optimization function
converges at θf . Gradient trajectory Lsf (θs ,θf ) is taken as optimal
(fig. 1.a, red line). Next, we examine random trajectories leading to
minima θf . To do that we initialize 50 random parameter vectors
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(a) Directions random-to-optima (b) ε ∈ [−.25, .25] (c) Line fitness evaluation for ε1, ε2 (d) Linear sub-spaces of DE solutions

Figure 1: Main experiments results

θ
(l )
rand , l = 1, ..., 50, and interpolate while θf remains fixed, yield-

ing L
(l )
r f (θ

(l )
rand ,θf ), l = 1, ..., 50 (fig. 1.a, green lines). First of all,

this shows that surface of high-dimensional objective function is
smooth, further contributing to the opinion that neural networks do
not enter end escape local minimas during optimization. We see no
evidence that there are saddle points on random directions leading
to algorithmic optima. Secondly, we confirm that there are many
unimodal sub-spaces leading to optima, not just gradient trajectory,
implying that generating populations of individuals encoded as
directions is possible.

Figure 1.b shows results of other series of experiments where
we explore directions that are drifting apart from θf . To diverge
from optima, we add an error ϵ to our random paths while fixing
θs , thus computing L

(l )
sϵ (θs ,θf + ϵ (l )), l = 1, ..., 50. This provides

further argument that the surface is smooth, as linear sub-spaces
demonstrate consistent pattern even when trajectories are away
from optima. Furthermore, we see that unimodality is retained even
with intensifying levels of noise, meaning optimal configuration
within lines are easy to find. As such, it can be concluded that lines
of different performance levels have analogous properties.

Naturally, we are interested in classifying trajectories accord-
ing to their performance. We propose following trajectory fitness
evaluation: F =

∑n
0 acc(θk ),∀θk ∈ Li j (θi ,θ j ), where acc(θk ) is ac-

curacy of neural network with θk solution. To validate an ability
of this metric to classify trajectories, we examine lines that are ϵ1
and ϵ2 distances away from optima. ϵ1 ∈ [−.05, .05] is a smaller
noise, meaning trajectories containing ϵ1 are closer to optimal line
(fig.1.c, upper-left), than the ones containing ϵ2 ∈ [−.1, .1], which
represents larger noise (fig.1.c, upper-right). Computing line fit-
ness as described above, we see that two groups of trajectories are
successfully classified. Box-plot on figure 1.c shows that the fit-
ness measure of individual lines correspond to their distance from
optimal trajectory, further demonstrating the consistency of the
approach.

In our final experiment, we implement preliminary tests to sup-
port the proposed encoding. The test is conducted as follows: we
apply direct differential evolution (DE) to a small CNN to obtain
a population of solutions trapped in local minimas with similar
levels of performance. Similar to the previous test, we examine lin-
ear sub-spaces of DE solutions. Figure 1.d shows the result. Upper
figure shows loss interpolations, and the lower image - accuracy
measurements. Red line indicates performance threshold for DE

solutions. Examining linear sub-spaces of these solutions reveals
some points that are better performing than others, as we see many
above threshold. This preliminary test shows that linear sub-spaces
contain better performing configurations than the ones initially
available.

4 NETWORKS
All test were run on three neural networks and 2 data sets. Their con-
figurations are as follows: (1) MNIST, MLP: 5 dense layers, dropout
0.2; (2) MNIST, CNN-1: 3 convolutional layers, maxpolling and 2
dense layers, no dropout, figure 1.a,b. (3) CIFAR-10, CNN-2: 5 con-
volutional layers with maxpolling and 4 dense layers, dropout 0.3,
figure 1.c.

5 RESULTS SUMMARY
Based on experiments, we make the following conclusions:

• Landscapes of examined networks are obstacle-free, as there
was no evidence of surface irregularity.

• Based on unimodality of linear sub-spaces, we propose tra-
jectory encoding to be a discrete set of linearly aligned solu-
tions.

• Encoded Individuals have consistent fitness mapping.
• Linear sub-spaces can contain directional information.
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