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ABSTRACT
This paper proposes a region-learning based JADE algorithm, name-
ly RL-JADE, to solve numerical optimization problems. To exploit
as much as possible the most promising areas known by the current
population, the worst parts of population are eliminated, and some
new individuals are regenerated in the area where the best parts of
population locate. RL-JADE is tested based on COCO benchmarks,
and compared with other DE-variants. Experimental results show
that RL-JADE has a better performance than JADE on the tested
5-D problems.
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1 INTRODUCTION
In some classicmutation operators of DE algorithm, such asDE⇑current−
to −best and DE⇑current − to −pbest , the population moves to the
best one or several individuals. The method proposed in this paper
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concentrates on the guidance of population to a region, not several
best individuals. This operation tends to improve the possibility of
finding the global optimumcan by providing more samples for the
promising regions. The distribution characteristics of the global
optimal solution introduced in paper [5] illustrate the necessity
of sampling around the current optimal solution. The proposed
method is devoted to the exploitation of the current known most
promising area. In each generation, all the individuals are ranked in
terms of fitness value, and the distribution range of top p% individ-
uals are regarded as the promising region. To exploit the promising
area, p%×NP new individuals are randomly sampled, where NP is
the population size. To keep the fixed population size, the worst p%
population are eliminated.

To test this method, it is embedded into JADE [4] to become a
new algorithm RL-JADE. JADE algorithm is an improved version of
Differential evolution with adaptive parameter setting. It has good
performance on the optimization benchmarks, so is a suitable and
convincing comparison with RL-JADE.

The rest of this paper is organized as follows: Section 2 introduces
the proposed region learning in details. The experimental procedure
is presented in section 3. Section 4 is devoted to the result analysis
of experiment. The paper is concluded in section 5 with a future
outlook.

2 ALGORITHM PRESENTATION
In each generation of RL-JADE, the learned promising range is
denoted by lower boundaries RL and upper boundaries RU . Among
them,

RL = {RL1 , . . . ,R
L
j , . . . ,R

L
DIM},R

U
= {RU1 , . . . ,R

U
j , . . . ,R

U
DIM},

where DIM is the problem dimension. A matrix rank is set to store
the ranking information of population {x1,G , . . . ,xi ,G , . . . ,xNP ,G}.
Assuming that in generation G, the area those current best p%
population {xm,G ⋃︀rank(m) < f loor(p% × NP)} locate at is the
learning target, the promising range can be learned by

)︀⌉︀⌉︀
⌋︀
⌉︀⌉︀]︀

RLj =min({x j ,m,G ⋃︀rank(m) < f loor(p% × NP)})

RUj =max({x j ,m,G ⋃︀rank(m) < f loor(p% × NP)})

where 1 <= j <= DIM and NP is population size. x j ,m,G is the j−th
dimension of individual xm,G . Then, the samples are generated in
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the learned range by x j ,n,G+1 = rand(RLj ,RUj ), where rank(n) >
f loor(p% × NP).

The implementation of JADE-RL, is shown in algorithm 1. The in-
troductions of parameters (µCR , µF ,A, SF , SCR ,meanA(∆),meanL(∆),
c) related to JADE algorithm can be found in paper [4].

Algorithm 1: RL-JADE
Input: Population size NP ; Problem dimension DIM ;

Maximum generation Gmax ;
Output: Best solution: xa,G
G ← 0, µCR ← 0.5, µF ← 0.5, A = ∅;
for Each i < NP do

Produce individual xi ,G randomly;
end
for Each generation G do

Rank the population, and store the ranking index of
individuals in matrix rank ;

SF ← ∅, SCR ← ∅;
for Each individual xi ,G do

Generate CRi ← randni(µCR , 0.1),
Fi ← randci(µF , 0.1);
PerformMutation on xi ,G to generate vi ,G ;
Perform Crossover on vi ,G to generate ui ,G ;
Perform Selection on ui ,G to generate xi ,G+1;
if f (xi ,G+1) < f (xi ,G) then

xi ,G → A;
end

end
Perform Region Learning to produce new individuals;
µCR ← (1 − c) ⋅ µCR + c ⋅meanA(SCR);
µF ← (1 − c) ⋅ µF + c ⋅meanL(SF );
Print xa,G , where rank(a) = 1;

end

3 EXPERIMENTAL PROCEDURE
The performance of RL-JADE on COCO benchmark functions is
compared with JADEctpb, DEctpb, DE-ttb, BBDE, BBDE-N, BBDE-
best, and DE-PSO. The test code is written in MATLAB based on
work in paper [3], and the CPU of computation machine is Intel(R)
Core(TM) i5-7200Uwith 2.50GHz. The RAM is 8.00GB, and the oper-
ation system is 64-bit WIN10. The test data of compared algorithms
are obtained from the webpage of COCO 1. The configuration for
RL-JADE is as follows: the max function evaluation times = 5e4×D,
µF = 0.5, µCR = 0.5, learning rate for µCR = 0.1, and learning rate
for µF = 0.1. The population size is 5 × D. P is set to be 10%, and
the dimension of tested problems is 5.

4 RESULTS
Results from experiments according to [1] [2] on the benchmark
functions are presented in figure 1. Algorithms are tested with
the rank-sum test for a given target ∆ft (10−8) for each trial. Fig-
ure 1 shows the bootstrapped empirical cumulative distribution
1http://coco.gforge.inria.fr/doku.php?id=algorithms-bbob

Figure 1: The performances of all the compared algorithms

of the number of objective function evaluations divided by di-
mension (#f − evals⇑dimension) for 50 targets in 10(︀−8..2⌋︀ for all
functions and subgroups in 5-D. The best 2009 line corresponds
to the best ERT observed during BBOB 2009 for each single tar-
get. Among all the compared algorithms, RL-JADE performs best,
and has significantly improved the performance of JADE. The su-
periority is obvious after log(#f − evals⇑dimension) > 4, while
log(#f − evals⇑dimension) < 4, RL-JADE and JADE have the simi-
lar performances.

5 CONCLUSIONS AND FUTUREWORK
This paper proposes a partial population regeneration method to
produce samples in the current known promising region. Experi-
mental result shows that this operation can provide effect detailed
search in the target area. According to the complexity of a specific
optimization problem, the proportion p of regenerated individuals
can be slightly changed.
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