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ABSTRACT 
When applying genetic algorithms (GAs) in the design real 

products, reducing the computational cost of fitness functions is 

one of the major challenges. In some cases, the computational cost 

of calculating specific eigenvalues is a predominant factor and 

needs to be reduced. We proposed the use of a GA with “neural-

network (NN) assistance,” which enables this computational cost 

to be reduced. With this GA, the NN assistance infers the 

approximate eigenvalues. Then, these approximate eigenvalues are 

used when starting the convergence calculation to obtain the 

precise eigenvalues. This procedure is effective in reducing the 

total computational cost of some of the fitness functions of real 

products. In addition, the precision of the eigenvalue is retained 

because the precise eigenvalues are obtained by the convergence 

calculation. The results of our case study show that the GA using 

our method achieves a 3x speed-up in fitness computation while 

maintaining equivalent solution quality. 
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1 INTRODUCTION 
Evolutionary computation techniques such as genetic algorithms 

(GAs) offer a promising approach to the design of the structures of 

real products since they enable the exploration and identification of 

optimal structures by simulation. However, simulations used to 

evaluate fitness functions are often computationally expensive, 

which makes GAs difficult to employ in real-world applications. 

To overcome this problem, there are some reports that neural 

networks (NNs) are applied as surrogate models of fitness functions. 

This approach is effective to reduce computational cost [1, 2]. 

However, some mismatch between the simulation and NN results 

remains because of surrogation. 

Often when designing the structures of real products, it is 

necessary to analyze specific operating modes and their 

corresponding eigenvalues using techniques such as the finite-

element method (FEM) to evaluate the fitness functions. The 

convergence calculation to obtain these eigenvalues is a 

predominant factor in the overall computational cost. In this study, 

we propose the use of a GA with “neural-network (NN) assistance” 

to reduce this calculation cost. With this method, approximate 

eigenvalues are inferred by the NNs, and the convergence 

calculations used to obtain the precise eigenvalues begin from these 

approximated eigenvalues. This method is effective in reducing the 

large computational cost of the convergence calculations. In 

addition, unlike surrogate models, precision is retained because 

precise eigenvalues are determined using convergence calculations. 

In this study, we applied our GA with the proposed neural-

network assistance to an optimization problem involving the 

surface acoustic wave (SAW) guide structure on an acousto-optic 

tunable filter (AOTF) [3]. The numerically evaluated results 

obtained for this case study demonstrate the effectiveness of our 

proposed method. 

2 CASE STUDY AND APPLICATION OF 

PROPOSED METHOD 
AOTFs, which we used in our case study, are filters for optical fiber 

communications. Given the requirements of a particular application, 

the optimization objectives of these devices are to increase the AL 

value, i.e., the SAW power on the optical signal, and to increase the 

La/Lb value, i.e., the shift length ratio of the SAW power with 

respect to the wavelength, as shown in Fig. 1 [3]. The optimization 

of these objectives is realized via the structure of the SiO2 layer on 

the surface. Figure 2 shows a flow chart of the GA procedure for 

this case study. First, we divided the whole device into small 2-m 

areas. Then, we encoded each area using either a “1” for layers with 

SiO2, or a “0” for those without SiO2, as shown in Fig. 2(a). This 

coding enables representation of the structure of the SiO2 layer by 

genotype for the GA. Specific operating modes and the 

corresponding eigenvalues are uniquely determined based on each 

structure. We solved for these eigenvalues by applying a matrix 

method, which can be applied to any configuration structure 

because it is a primitive FEM [4]. By applying this genotype coding 

and matrix method, we can simultaneously optimize the 

configuration of the SiO2 layer and the size parameter using a 

genotype consisting of 90 codes of either “1” or “0.” 

This case study required many trials to calculate eigenvalues 

for each structure because we needed four eigenvalues to evaluate 

the fitness functions. To address this problem, we applied NNs to 

405



GECCO’19, July 13-17, 2019, Prague, Czech Republic Y. Tsunoda et al. 

 

 

infer approximate eigenvalues from the genotypes and rounded 

each of the inferred eigenvalues into one of 20 kinds of quantized 

approximate eigenvalues. Then, we determined the precise 

eigenvalues using these approximated eigenvalues, thereby 

reducing the total computational cost, as shown in Figs. 2(b) and 

2(c).  

3 EXPERIMENT 
We optimized the configuration structure of the AOTF using a non-

dominated sorting GA. We set the population size to 200 and 

performed the evolution 100 times. To confirm the base 

performance of the GA on this case study, we did not use the NN 

assistance at first. As shown in Fig. 3, the Pareto-optimal designs 

are obtained, and these structures outperforming the known 

structure [3]. We applied the GA five times, and confirmed that 

almost the same result was obtained. 

Next, we applied the GA with NN assistance, also for five times. 

The NN inputs are genotypes that indicate the structures and the 

NN outputs are the approximate eigenvalues. We trained four-layer 

fully connected NN, 90-90-90-20, and the activation function of the 

trained NN was sigmoid. Because the structure of this NN is very 

simple, the computational cost of its training and inference process 

is sufficiently lower than that of a fitness evaluation. Training data 

is indispensable for training NNs. Therefore, we solved the initial 

data for the 1st to 25th generations using the conventional method 

and used these result as our initial training data. We used the results 

inferred by the NNs in the computations from the 26th generation 

onward. Then, we evaluated two methods for training the NNs. In 

the first method, we used the NNs trained with data from the 1st to 

25th generations and applied them to all generations from the 26th 

onward (Method 1). In the second method, we used the NNs trained 

with data from the recent 25 generations and continuously updated 

them with the evolution (Method 2). 

Then, we also applied the GA with NN assistance to this case 

study and evaluated its performance. The Pareto-optimal design is 

equivalent to that of the GA without NN assistance, as shown in 

Fig. 3, because the precision of the eigenvalues is not affected. 

Figure 4 shows the accuracy of the inferred eigenvalue. In this 

study, we defined top-1 accuracy as an accuracy rate in which the 

exact eigenvalue is the approximate eigenvalue with the highest 

probability inferred by the NNs. Top-2 accuracy indicates a rate at 

which the exact eigenvalue is in either of two highest probabilities. 

In this study, method 1 achieved a top-1 accuracy of 62–67%, and 

method 2 achieved 64–78%. The accuracy of method 2 is better, 

which is because method 2 incorporates recent genetic selections. 

Because its top-2 accuracy is better than 90%, the precise 

eigenvalue can be determined at low computational cost using these 

inferred results. Figure 5 shows the total trial iterations required to 

calculate the eigenvalues, which represent the average of five trials. 

With NN assistance, we reduced by a factor of three the amount of 

computation required to calculate the eigenvalue after the 26th 

generation. Overall, we reduced the amount of required 

computation by about half. With method 2, the amount of 

computation can be reduced further, but the improvement is not 

significant, so we consider the accuracy of method 1 to be 

sufficiently high in this case study.  

4 CONCLUSIONS 
In this paper, we proposed the use of a GA with NN assistance for 

designing the structures of real products. Some cases require that 

specific operating modes be solved to evaluate their fitness 

functions, and the high amount of computation associated with this 

task is a predominant factor of the total computational cost. To 

overcome this problem, approximate eigenvalues are inferred by 

NNs and the convergence calculation begins from these 

approximated eigenvalues. Using this approach with NN assistance, 

the amount of computation required to calculate eigenvalues can be 

reduced by a factor of three. Our case study results, demonstrate the 

effectiveness of using a GA with NN assistance to suppress 

computational cost. 
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